For advising you will need:
✓ Degree Advice Report
✓ Transcript Preview
✓ Advising Worksheet
✓ Course Directory

COURSE NOTES:
Courses fulfilling breadth requirements:

Cell & Molecular (CM)
- CAS BI 203 Cell Biology
- CAS BI 206 Genetics
- CAS BI 216 Intensive Genetics

Ecology, Behavior & Evolution (EBE)
- CAS BI 225 Behavioral Biology
- CAS BI 260 Marine Biology
- CAS BI 303 Evolutionary Ecology
- CAS BI 306 Biology of Global Change

Neurobiology & Physiology (PN)
- CAS BI 315 Systems Physiology
- CAS BI 325 Principles of Neuroscience

Upper Level Lab Courses Offered Spring 2022:
- CAS BI 302 Vertebrate Zoology
- CAS/MET BI 303 Evolutionary Ecology
- CAS BI 306 Biology of Global Change
- CAS/MET BI 315 Systems Physiology
- CAS BI/CH 422 Biochemistry 2
- CAS BI/NE 449 Neuroscience Design Lab
- CAS BI 519 Theoretical Evolutionary Ecology
- CAS BB 522 Molecular Biology Lab
- CAS BI/CH 528 Biochemistry 2
- CAS BI 550 Marine Genomics
- CAS BI Undergrad. Research Courses (first 4-credit semester)

TABLE OF CONTENTS:

Cell & Molecular Courses .. Pg. 2-7
Ecology, Behavior & Evolution Courses Pg. 8-10
Physiology & Neurobiology Courses Pg. 11-13
MET Biology Courses ... Pg. 14-15
Research & Readings Courses ... Pg. 16-22
Index .. Pg. 23

REGISTRATION NOTES:
• **Permission required courses**: Students may not register for these courses on their own, but need the instructor’s permission. An Add/Drop form may be required for registration (no advisor signature needed).
• **Full time status** is 12-18 credits per semester. Seniors are automatically awarded a fee waiver so that they may take up to 20 credits per semester without additional fees. Non-seniors with a 3.3 GPA may submit the CAS Course Overload Fee Waiver form.
• **PDP, ROTC, and CAS FY/SY courses do not count** toward the 128 credits needed to graduate with a BA.
• The following courses **do not count** toward the Biology or BMB major or minor:
 - CAS BI 114 Human Infectious Diseases
 - CAS/MET BI 210 Human Anatomy
 - CAS BI 528 (unless both sections of BI 527/528 are taken)
 - MET BI 366 Neurobio. of Consc. & Evol. of Lang.
 - CAS BI Readings or Research Courses (2 credits)
CAS BI 108: BIOLOGY 2

Prereq: High school biology and one semester college chemistry strongly recommended.

For students planning to major in the natural sciences and for premedical students. Required for biology majors. It is strongly recommended students complete CAS CH 101 (or equivalent) before this course. High school biology is assumed. Biochemistry, cell & molecular biology, Mendelian & molecular genetics, physiology, and neurobiology. Three hours lecture, three hours lab. Carries natural science divisional credit (with lab) in CAS. This course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Quantitative Reasoning II, Teamwork/Collaboration, Critical Thinking

<table>
<thead>
<tr>
<th>Lecture</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loechler, Hartmann</td>
<td>10:10am - 11:00am</td>
<td>12:20pm - 1:10pm</td>
<td>1:25pm - 2:15pm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
<th>D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:30pm - 5:15pm</td>
<td>2:30pm - 5:15pm</td>
<td>2:30pm - 5:15pm</td>
<td>6:30pm - 9:15pm</td>
<td>6:30pm - 9:15pm</td>
<td>8:00am - 10:45am</td>
<td>8:00am - 10:45am</td>
<td>8:00am - 10:45am</td>
<td>8:00am - 10:45am</td>
<td>12:30pm - 3:15pm</td>
<td>12:30pm - 3:15pm</td>
<td>3:30pm - 6:15pm</td>
<td>3:30pm - 6:15pm</td>
<td>6:30pm - 9:15pm</td>
<td>6:30pm - 9:15pm</td>
<td>8:00am - 10:45am</td>
<td>8:00am - 10:45am</td>
<td></td>
</tr>
<tr>
<td>8:00am - 10:45am</td>
<td></td>
</tr>
</tbody>
</table>

Grading: Lecture exams and quizzes account for approximately 2/3 of the final grade and lab accounts for approximately 1/3 of the final grade.

CAS BI 114: HUMAN INFECTIOUS DISEASES

Prereq: None

Not for Biology major or minor credit. A study of the world's major human diseases, their causes, effects on history, pathology, and cures. Principles of immunology. Emphasis on present maladies such as AIDS, herpes, cancer, mononucleosis, tuberculosis, influenza, and hepatitis. This course is appropriate for non-majors and students in the health and paramedical sciences (Sargent College). Three hours lecture, three hours lab. Carries natural science divisional credit (with lab) in CAS. This course fulfills a single unit in the following BU Hub areas: Scientific Inquiry I, Quantitative Reasoning II, Critical Thinking.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kristiansen</td>
<td>9:05am - 9:55am</td>
<td>12:20pm - 2:05pm</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Not for Biology major or minor credit.

Grading: 4 lecture exams; laboratory.

CAS BI 116: BIOLOGY 2 WITH ISE LAB

Prereq: CH 101

Coreq: CH 116

Integration of general chemistry with biology and neuroscience, with an emphasis on how each discipline interacts experimentally. Laboratory focuses on projects relating to enzymes and their function. 3 lecture hours (meets with CAS BI 108 lecture), 3 hours lab. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Quantitative Reasoning II, Writing-Intensive Course, Critical Thinking.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loechler, Hartmann</td>
<td>10:10am - 11:00am</td>
<td>12:20pm - 1:10pm</td>
<td>1:25pm - 2:15pm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab</th>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed, Fri</td>
<td>8:00am - 10:45am</td>
<td>2:30pm - 5:15pm</td>
</tr>
</tbody>
</table>

Notes: Meets with BI 108 Lecture.

Grading: 4 lecture exams (52%), lecture homework (2%), in-lecture quizzes (4%), in-lecture TopHat questions (2%), lab (40%).
CAS BI 203: CELL BIOLOGY

Prereq: (CAS BI 108 or CAS NE 102) and CAS CH 102 or equivalent.
Coreq: CAS CH 203 or equivalent.

Principles of cellular organization and function: biological molecules, flow of genetic information, membranes and subcellular organelles, and cell regulation. Three hours lecture, one hour discussion. Students may receive credit for CAS BI 203 or 213, but not both courses.

Lecture
A1 Hartmann Tue, Thu 9:30am - 10:45am

Discussion
B1 Wed 12:20pm - 1:10pm
B2 Wed 3:35pm - 4:25pm
B3 Fri 8:00am - 8:50am
B4 Fri 11:15am - 12:05pm

Notes: Students may receive credit for CAS BI 203 or 213, but not both courses.

Textbook & Technology: The Cell 8e by Geoffrey Cooper, Oxford University Press, 2018, electronic access to Dashboard (supplied with certain editions of the textbook available through the BU Bookstore)

Grading: Three midterm exams, homework, in class questions, and a final examination.

CAS BI 206: GENETICS

Prereq: CAS BI 108 and CAS CH 203 or equivalent

Principles of classical, molecular, and evolutionary genetics derived from analytical, molecular, and whole genome cytological evidence in animals, plants, and microorganisms. For CMG and BMB majors, BI 216 is highly recommended instead of BI 206. Three hours lecture, one hour discussion. Students may receive credit for CAS BI 206 or 216, but not both courses. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Historical Consciousness, Quantitative Reasoning II, Critical Thinking.

Lecture
A1 Celenza Tue,Thu 12:30pm - 1:45pm

Discussion
B1 Mon 12:20pm - 1:10pm
B2 Mon 12:20pm - 1:10pm
B3 Mon 1:25pm - 2:15pm
B4 Mon 2:30pm - 3:20pm
C1 Tue 8:00am - 8:50am

Notes: Meets with BI 282 and with BI 216 for the first half of the semester.

Grading: Average of four exam scores given during the semester (75%); discussion (25%)
CAS BI 216: INTENSIVE GENETICS
Prereq: CAS BI 108/116 and BI 203/213, and CAS CH 203 or consent of instructor

Advanced alternative to CAS BI 206, emphasizing depth of coverage, class discussion, and reading research papers. BI216 (instead of BI206) is highly recommended for BMB majors and Biology majors in the CMG track. Principles of classical, molecular, and evolutionary genetics derived from analytical, molecular, and whole genome cytological evidence in animals, plants, and microorganisms. Three hours lecture, one hour discussion. Students may receive credit for CAS BI 216 or 206, but not both courses. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Historical Consciousness, Quantitative Reasoning II, Research and Information Literacy.

Lecture
A1 Celenza, Loechler Tue,Thu 12:30pm - 1:45pm
Thu 6:30pm - 8:15pm*

*Thursday evening timeslot reserved for exams after spring break

Discussion
B1 Mon 12:20pm - 1:10pm D2 Mon 11:15am - 12:05pm
B2 Mon 2:30pm - 3:20pm E1 Wed 10:10am - 11:00am
D1 Wed 2:30pm - 3:20pm E2 Tue 8:00am - 8:50am

Notes: Meets with BI206/282 for the first half of the semester

Grading: Average of four exam scores given during the semester (75%); discussion (25%)

CAS BI 282: FUNDAMENTALS OF BIOLOGY 2
Prereq: (CASCH182) or equivalent, and consent of instructor.

Principles of classical, molecular, and evolutionary genetics derived from analytical, molecular, and whole genome cytological evidence in animals, plants, & microorganisms. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Historical Consciousness, Quantitative Reasoning II, Critical Thinking.

Lecture
A1 Celenza Tues, Thu 12:30pm - 1:45pm

Lab
B1 Mon 12:20pm - 1:10pm C1 Tue 8:00am - 8:50am
B4 Mon 2:30pm - 3:20pm D3 Wed 1:25pm - 2:15pm

Notes: Limited to seven-year medical students. Meets with BI 206.

Textbooks & Technology: See BI 206.

Grading: See BI 206.

CAS BI 385: IMMUNOLOGY
Prereq: CAS BI 203, CAS BI 206 and junior standing

The constituents and regulation of mammalian immune systems are described at the levels of the gene, protein, and cell. Topics include nonspecific, T cell and B cell recognition and responses, genetics of immune receptors, inflammation, tolerance, memory, and evolution and manipulation of defense systems. Three hours lecture, one hour discussion.

Lecture
A1 Siggers Mon,Wed,Fri 1:25pm - 2:15pm

Discussion
C1 Wed 12:20pm - 1:10pm G1 Wed 11:15am - 12:05pm
D1 Thu 8:00am - 8:50am H1 Wed 11:15am - 12:05pm
E1 Fri 2:30pm - 3:20pm I1 Fri 3:35pm - 4:25pm

Grading: 3 exams (2 midterms and 1 final) 80%; discussion/participation 20%.

CAS BI 411: MICROBIOME: OUR INTIMATE RELATIONSHIP WITH MICROORGANISMS
Prereq: CAS BI 203 (or equivalent) and CAS BI 206 (or equivalent) or consent of instructor.

There are more bacterial cells inhabiting our bodies than actual human cells. This abundant and diverse population of microbes – referred to as the “microbiome” – colonizes several tissues in our body and plays important roles in maintaining our health. Topics will include the evolutionary, ecological, cellular, molecular and medical aspects of the interactions between animals and the bacterial communities that have evolved with them. Three hours lecture; one hour discussion.

Lecture and Discussion
A1 Frydman Tue,Thu 3:30pm - 4:45pm
Thu 5:00pm - 5:50pm

Notes: Meets with GRS BI 611.

Textbooks & Technology: Scientific papers will be made available to the students throughout the course via Blackboard.

Grading: Midterm 30%; Oral Presentation and Discussion 20%; Final Exam 40%; Participation 10%.
CAS BI 422: BIOCHEMISTRY 2

Prereq: CAS BI 421 or CAS CH 421 or equivalent

Cell metabolism, with special emphasis on the uptake of food materials, the integration and regulation of catabolic, anabolic, and anaplerotic routes, and the generation and utilization of energy. Lectures include consideration of events in prokaryotic and eukaryotic organisms.

Lecture

- A1: Tolan Mon, Wed, Fri 9:05am - 9:55am
- Wed 7:00pm - 9:00pm

Wednesday evening timeslot reserved for exams

Lab & Discussion

- B1: Mon 1:25pm - 5:25pm Lab
- B2: Tue 8:00am - 12:00pm Lab
- B3: Tue 5:30pm - 9:30pm Lab
- B4: Wed 1:25pm - 5:25pm Lab
- B5: Thu 8:00am - 12:00pm Lab
- B6: Thu 5:30pm - 9:30pm Lab
- B7: Fri 10:10am - 2:10pm Lab
- B8: Fri 3:35pm - 7:35pm Lab
- C1: Fri 10:10am - 11:55am Discussion
- C2: Mon 2:30pm - 4:15pm Discussion
- C3: Tue 3:30pm - 5:15pm Discussion

Notes: Meets with CAS CH 422 A1 and GRS BI/CH 622 A1.

Textbooks & Technology:
2. Lehninger’s Principles of Biochemistry 8th edition* by Nelson, Cox & Hoskins

Grading: Hour exams, lab, final.

CAS BI 510: INSTITUTIONAL RACISM IN HEALTH AND SCIENCE

Prereq: CAS BI 126 or CAS 206/216 or ENG BE 209 and senior standing, or consent of instructor.

Historically, pseudoscientific theories have provided the justification for establishing and maintaining racial hierarchies, which resulted in centuries of dehumanizing and unethical practices meted out to Blacks, Indigenous, and People of Color (BIPOC). Unfortunately, many of these pernicious ideas persist, such that they hinder BIPOC’s opportunities in Science and exacerbate their health outcomes. This course traces the historical roots (e.g. mischaracterization of race as a biological construct) and physiological manifestations of racism in science, and examines harmful consequences on victims’ health outcomes.

Independent

- A1: Osborne Tue, Thu 12:30pm - 3:15pm

Notes: Meets with ENG BF 510.

Textbooks & Technology: *Superior: The Return of Race Science* by Angela Saini ISBN-13 978-0-8070-2842-1; Assigned papers

Grading: Writing assignments/homework, discussion, capstone project

CAS BB 522: MOLECULAR BIOLOGY LAB

Prereq: CAS BI 552

Introduction to techniques of cellular and molecular biology research, including analysis of DNA and protein molecules, by techniques such as plasmid isolation, restriction enzyme digestions, PCR, subcloning, DNA sequence analysis, reporter gene assays, mammalian cell culturing, immunofluorescence, yeast molecular biology, RNA isolation and quantification, RT-qPCR analysis and introduction to RNA-seq bioinformatic analysis.

Lab

- A1: Gilmore Tue, Thu 1:00pm - 4:45pm Wunderlich

Notes: Permission required.

Textbooks & Technology: None required, but copies of Weinberg (2013) *The Biology of Cancer*. Garland Science will be provided for loan at the Science and Engineering Library for supplemental reading, if needed.

Grading: Midterm (20%); final (20%); lab reports (35%); lab participation and preparation (25%).

CAS BI 481: MOLECULAR BIOLOGY OF THE NEURON

Prereq: BI 325 (preferred) or BI 203.

Topics include electrical properties of neurons, a survey of neurotransmitters, molecular structure and function of receptors, synaptic transmission, intracellular signaling, and the molecular biology of sensory transduction.

Independent

- A1: Ho Mon, Wed 2:30pm - 4:15pm

Notes: Meets with CAS NE 481 and GRS BI 681.

Textbooks & Technology: none

Grading: 2 midterms, 1 final exam, and discussion.
CAS BI 528: BIOCHEMISTRY LABORATORY 2

Prereq: BI/CH 421 or BI/CH 527

[2 cr] Not for Biology major or minor credit unless both BI 527 and BI 528 are taken. Emphasizes protein, carbohydrate, nucleic acid, and lipid chemistry. Development and use of modern instrumentation and techniques. Same as CAS CH 528 and laboratory portion of CAS BI/CH 422.

Lecture
- A1 Medrano Fri 10:10am - 11:55am
- A2 Medrano Mon 2:30pm - 4:15pm
- A3 Medrano Tue 3:30pm - 5:15pm

Lab
- B1 Medrano Mon 1:25pm - 5:25pm
- B2 Medrano Tue 8:00am - 12:00pm
- B3 Medrano Tue 5:30pm - 9:30pm
- B4 Medrano Wed 1:25pm - 5:25pm
- B5 Medrano Thu 8:00am - 12:00pm
- B6 Medrano Thu 5:30pm - 9:30pm
- B7 Medrano Fri 10:10am - 2:10pm
- B8 Medrano Fri 3:35pm - 7:35pm

Notes: Meets with CAS CH 422, CAS BI 422, CAS CH 528, GRS CH 622 and GRS BI 622. Not for Biology major or minor credit unless both BI 527 and BI 528 are taken.

Grading: Lab preparation, lab reports, and one exam.

CAS BI 553: MOLECULAR BIOLOGY 2

Prereq: CAS BI 552, recommended: BI/CH 421/422

This course focuses on gene regulatory mechanisms with emphasis on eukaryotes, and current research in molecular biology. General areas of focus include genomics, gene regulation, and cell signaling. Course topics include genome organization and DNA rearrangement, RNA interference and noncoding RNAs, gene editing, mouse transgenic approaches, signal transduction pathways, chromatin structure, and cell cycle. Research articles and molecular biology approaches will be discussed.

Independent
- A1 Naya Tue, Thu 9:00am - 10:45am

Textbooks & Technology: none.

Grading: Three exams, discussion, participation.

CAS BI 565: FUNCTIONAL GENOMICS

Prereq: CAS BI 552 or consent from instructor.

Recent years have seen an explosion in the number of organisms for which sequenced genomes are available. However, we are only beginning to understand how the information encoded in the million/billion DNA bases of eukaryotic genomes is organized and how that information is translated into function. Throughout this course, we will start to answer central questions in the molecular biology and functional genomics fields, including: Given that only ~2% of the genome encodes for proteins, what is the function of the rest of the genome? How is it possible that yeast, worms and humans have a similar number of genes? What is the flow of information in the cell that controls gene function and activity? Which experimental approaches allow us to tackle these questions? This course fulfills a single unit in each of the following BU Hub areas: Oral and/or Signed Communication, Writing-Intensive Course, Critical Thinking.

Independent
- A1 Fuxman Bass Tue, Thu 9:00am - 10:45am

Textbooks & Technology: Review articles and research papers on Blackboard.

Grading: Exam I: 30 %, Exam II: 30 %, Project: 15 %, Assignments: 8%, Participation: 7%, Paper presentation: 10%.
CAS BI 576: CARCINOGENESIS
Prereq: BI 203, BI 206, BI 552

The course covers multiple aspects of cancer biology with a focus on molecular mechanisms underlying cancer development and progression, and the implications for therapy. Topics include oncogenes, tumor suppressors, apoptosis, angiogenesis, metastasis, mouse models, cancer immunity, immunotherapy, and chemotherapy. Emphasis on current research.

Lecture
A1 Gilmore, Tullai Mon 2:30pm - 4:15pm
Wed 2:30pm - 3:20pm

Discussion
B1 Wed 3:35pm - 4:25pm
B2 Wed 4:40pm - 5:30pm
B3 Thu 3:35pm - 4:25pm

Notes: No credit if CAS BI 327 or GMS BT 520 were taken previously.

Grading: Three exams, presentation, participation.

CAS BI 594: TOPICS IN BIOLOGY: QUANTITATIVE MICROBIOLOGY
Prereq: CAS BI 108 or equivalent, CAS MA 121 or equivalent, and CAS PY 105 or equivalent, or consent of instructor

Important bacterial behaviors and phenomena are described with mathematical models including growth, multispecies interactions, motility, and cell differentiation. Every subject is motivated directly by experimental data, with specific discussion of the techniques used to collect the data, their biases, and their limitations. The goal is to show how quantitative models can give a unified, conceptual understanding of complicated, living systems and generate new hypotheses for experiments. Homework assignments will be in python and the course will include an introduction to python. No prior programming experience needed. Even though the course deals specifically with prokaryotes, the techniques and approaches learned are applicable to any area of the life sciences.

Independent
L1 Larkin Mon, Wed, Fri 4:30pm - 6:15pm

Notes: Meets with GRS PY 896

Textbooks & Technology: None. Required reading will be provided by the instructor.

Grading: Homework (75%), Final presentation or project (25%)

Additional electives for the CMG specialization can be found in other sections of the Course Directory.

A list of courses accepted toward the CMG specialization can be found in the Bulletin at www.bu.edu/biology/cmg-bulletin.
CAS BI 260: MARINE BIOLOGY
Prereq: CAS BI 107 or consent of instructor.
Life in the seas: its ecology, evolution, and human impacts. Includes behavioral, physiological, structural, ecological, and evolutionary perspectives. A prerequisite for the Marine Semester. Effective Spring 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry I, Critical Thinking, Research and Information Literacy.
Lecture
A1 Rotjan Mon,Wed,Fri 10:10am - 11:00am
Discussion
B1 Mon 2:30pm - 3:20pm
B2 Wed 4:40pm - 5:30pm
C1 Thu 3:35pm - 4:25pm
C2 Tue 11:15am - 12:05pm
Textbooks & Technology: Castro & Huber. Marine Biology. 9th Edition
Grading: Three exams, discussion, and participation.

CAS BI 302: VERTEBRATE ZOOLOGY
Prereq: CAS BI 107
Methods and principles of comparative vertebrate zoology. Phylogeny, natural history, adaptation, and taxonomy. Laboratory emphasis on correlation among structural, physiological, and evolutionary features of selected vertebrates by both dissection and experimentation. Field trips. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Historical Consciousness, Scientific Inquiry II, Critical Thinking.
Lecture
A1 Wasserman Tue,Thur 11:00am - 12:15pm
Lab
B1 Tue,Thur 8:00am - 10:45am
B2 Tue,Thur 12:30pm - 3:15pm
Grading: Multiple lecture quizzes, lab quizzes, and class participation.

CAS BI 303: ECOLOGY
Prereq: CAS BI 107 recommended: CAS BI 206, MA 121/123
Investigation of ecological processes and patterns at the individual, population, and community level. An evolutionary approach is emphasized. One day-long field trip required. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Quantitative Reasoning II, Digital/Multimedia Expression.
Lecture
A1 Rotjan Mon,Wed,Fri 11:15am - 12:05pm
Lab
B1 Mon 2:30pm - 5:15pm
C1 Tue 3:30pm - 6:15pm
E1 Thu 12:30pm - 3:15pm
F1 Fri 2:30pm - 5:15pm
Textbooks & Technology: Molles. Ecology. 6th Edition
Grading: Two exams, a final exam, lab, 3-minute video assignment, and participation.
CAS BI 306: BIOLOGY OF GLOBAL CHANGE

Prereq: CAS BI 107, Recommended: CAS CH 101 or CH 171

The ecological impacts of human activity on the Earth’s climate and terrestrial and aquatic ecosystems. Climate change, productivity and land-atmosphere feedbacks. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Ethical Reasoning, Research and Information Literacy.

Lecture

A1 Deyle Mon,Wed,Fri 10:10am - 11:00am

Lab

B1 Mon 2:30pm - 5:15pm
 Wed 2:30pm - 5:15pm
 C1 Tue 12:30pm - 3:15pm
 E1 Thu 3:30pm - 6:15pm

Textbooks & Technology: There is no required textbook for this course. Readings will be assigned from the scientific literature and will be available through Blackboard.

Grading: Two exams (20%), final exam (30%), lab and participation (30%).

CAS BI 413: MICROBIAL ECOLOGY

Prereq: BI 107 & BI 108 and CH 101 & CH 102

Microbes (bacteria, archaea, and fungi) are the most diverse and abundant living organisms on the planet and microbial communities are key contributors to ecosystems and their functioning. This course studies how microbes interact with each other and with the environment. Topics will include microbial cell structure and physiology, microbe-microbe interactions including biofilm formation and quorum sensing, and microbe-environment interactions including microbiomes and geochemical cycling.

Lecture and Discussion

A1 Marlow Tues, Thu 9:30am - 10:45am
 Wed 9:05am - 9:55am

Notes: Meets with GRS BI 613.

Grading: Two exams (15%), final paper (25%), homework (15%), discussion participation and presentation (30%).

CAS BI 423: MARINE BIOGEOCHEMISTRY

Prereq: CAS EE 144 and (CH 102 or Marine Semester).

Oceanic nutrient and biogeochemical cycling in the context of the marine response to global change. Links between local and global scales are emphasized. Topics include oceanic productivity, iron limitation, oceanic glacial carbon dioxide budget, biogenic particle fluxes, oceanic glacial-interglacial biogeochemistry.

Independent

A1 Fulweiler Tue,Thu 12:30pm - 1:45pm

Notes: Meets with EE 423 and GRS BI/EE 623.

Textbooks & Technology: All readings will come from the primary literature and will be posted on Blackboard Learn.

Grading: Exams, class presentations, and participation in weekly literature journals and discussions.

CAS BI 475: URBAN ECOLOGY

Prereq: (EE 100 or EE 101) and one of the following: CAS BI 306, CAS BI 443, CAS EE 456, or CAS BI 530; or consent of instructor.

The biophysical environments and ecology of urban settlements. Key topics include the physical environment, patterns in human population growth and development, ecosystem structure and function, global change, urban environment pollution and management, and sustainable urban development.

Independent

A1 Hutyra Tue 12:30pm - 3:15pm

Notes: Meets with CAS EE 475 and GRS BI/EE 675.

Textbooks & Technology: None
CAS BI 504: ADVANCED EVOLUTIONARY ANALYSIS

Prereq: CAS BI 309 or consent of instructor

Modern concepts, controversies, and analytical approaches in evolutionary biology. Topics include adaptation, natural and sexual selection, species and species formation, phylogenetics, origin of evolutionary novelty, adaptive radiation, basic population and quantitative genetics, development and evolution. Three hours lecture, one hour discussion.

Lecture and Discussion

A1 Mullen Mon, Wed, Fri 1:25pm - 2:15pm
 Mon 2:30pm - 3:20pm

Textbooks & Technology: Readings will be available through Blackboard.

Grading: Midterm Exams (50%); Discussion (25%); Paper (25%)

CAS BI 519: THEORETICAL EVOLUTIONARY ECOLOGY

Prereq: CAS BI 107 and CAS MA 123 (also recommended: CAS BI 225 or CAS BI 303 or CAS BI 309) or consent of the instructor.

Familiarizes students with the theory of evolutionary ecology. Students gain enough background to read theoretical evolutionary ecology literature, do simple modeling, and move on to more complex theory. This course fulfills a single unit in each of the following BU Hub areas: Quantitative Reasoning II, Scientific Inquiry II, Critical Thinking.

Lecture and Lab

A1 Buston Mon, Wed, Fri 11:15am - 12:05pm
 Tue 3:30pm - 6:15pm

Textbooks and Technology: TBA.

Grading: TBA.

CAS BI 550: MARINE GENOMICS

Prereq: CAS BI 108 or equivalent.

Covers the evolution of genomes, the architecture of gene networks, and the connection between genotype and phenotype in marine organisms, as well as the technical development of modern genomics. Student research projects utilize modern genomics experimental approaches. Effective Fall 2019, this course fulfills a single unit in the following BU Hub area: Teamwork/Collaboration.

Independent

A1 Finnerty Tue, Thu 12:30pm - 3:15pm

Additional electives for the ECB specialization can be found other sections of the Course Directory.

A list of courses accepted toward the ECB specialization can be found in the Bulletin at www.bu.edu/biology/ecb-bulletin.

Additional electives for the SBB specialization can be found in other sections of the Course Directory.

A list of courses accepted toward the SBB specialization can be found in the Bulletin at www.bu.edu/biology/sbb-bulletin.
CAS BI 210: HUMAN ANATOMY
Prereq: CAS BI 105 or equivalent

Not for Biology major or minor credit. Intensive pre-professional course for students whose programs require anatomy. Gross structure of the human body; skeletal, muscular, nervous, respiratory, circulatory, digestive, urinary, and reproductive systems. Lab requires dissection. Carries natural science divisional credit (with lab) in CAS. Effective Spring 2020, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry I, Digital/Multimedia Expression, Creativity/Innovation.

Lecture
A1 Kristiansen Mon, Wed, Fri 11:15am - 12:05pm

Lab
B1 Mon 9:00am - 10:45am
B2 Mon 12:20pm - 2:05pm
C1 Tue 1:30pm - 3:15pm
C2 Tue 3:30pm - 5:15pm
D1 Wed 9:00am - 10:45am
D2 Wed 12:20pm - 2:05pm
D3 Wed 2:30pm - 4:15pm
E1 Thu 1:30pm - 3:15pm
E2 Thu 3:30pm - 5:15pm
F1 Fri 9:00am - 10:45am
F2 Fri 12:20pm - 2:05pm

Notes: Not for Biology major or minor credit.

Grading: 3 midterm lecture exams; 1 cumulative lecture final; 2 laboratory practical exams.

CAS BI 315: SYSTEMS PHYSIOLOGY
Prereq: (CAS BI 108 or ENG BE 209), and CAS CH 101 & CAS CH 102, and First-Year Writing Seminar (e.g., CAS WR 100 or CAS WR 120), or equivalent.

An introduction to physiological principles applied across all levels of organization (cell, tissue, organ system). Preparation for more advanced courses in physiology. Topics include homeostasis and neural, muscle, respiratory, cardiovascular, renal, endocrine, gastrointestinal, and metabolic physiology. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Writing-Intensive Course, Critical Thinking, Teamwork/Collaboration.

Lecture
A1 Muscedere Mon, Wed, Fri 11:15am - 12:05pm

Lab
B1 Mon 2:30pm - 5:15pm
B2 Mon 2:30pm - 5:15pm
B3 Mon 6:30pm - 9:15pm
B4 Mon 6:30pm - 9:15pm
C1 Tue 8:00am - 10:45am
C2 Tue 12:30pm - 3:15pm
C3 Tue 6:30pm - 9:15pm
D1 Wed 8:00am - 10:45am
D2 Wed 2:30pm - 5:15pm
D3 Wed 2:30pm - 5:15pm
D4 Wed 6:30pm - 9:15pm
E1 Thu 8:00am - 10:45am
E2 Thu 12:30pm - 3:15pm
E3 Thu 6:30pm - 9:15pm
E4 Thu 12:30pm - 3:15pm
F1 Fri 8:00am - 10:45am
F2 Fri 12:20pm - 2:05pm

Grading: Lecture (60%: 4 exams, small assignments); Lab (40%, 4 writing assignments, teamwork assignments).

CAS BI 325: PRINCIPLES OF NEUROSCIENCE
Prereq: CAS BI 203 or consent of instructor.

This course will introduce fundamentals of the nervous system at descriptive scales ranging from individual cells to the entire brain. Topics will include biophysics of excitable membranes, synaptic transmission, sensory and motor systems, learning and memory, plasticity, neuromodulation, and the biological basis of complex behaviors. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Critical Thinking.

Lecture
A1 Cruz-Martin Tue, Thu 2:00pm - 3:15pm

Discussion
B1 Mon 2:30pm - 3:20pm
B2 Wed 3:35pm - 4:25pm
B3 Thu 3:35pm - 4:25pm

Grading: Three midterms.
CAS BI 349: NEUROTOXINS IN BIOLOGY, MEDICINE, AGRICULTURE AND WAR
Prereq: BI 108 or NE 102 or equivalent.

We will start by examining how neurotoxins in different animals are used for distinct behavioral needs, such as defense versus predation. Examining evolutionary lineage of different types Neurotoxins will also be discussed and give us insights on how neurotoxins evolved and their roles in evolutionary “arm race”. We will also cover mechanisms of neurotoxin actions at cellular and molecular levels. At system level, envenomation by poisonous animal is of clinical importance in many parts of the world, consequences of venoms on mammalian physiological systems will be discussed. In addition to naturally occurring neurotoxins, many synthetic chemicals used as pesticides and chemical weapons are also neurotoxins. We will discuss the history, mechanisms and physiological effects of these manmade agents. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Quantitative Reasoning I, Critical Thinking.

Independent
A1 Lin Tue, Thu 3:30pm - 5:15pm

Notes: Meets with CAS NE 349.

Grading: Midterm 1 (25%); Midterm 2 (25%); Final (25%); Discussion/presentation (25%)

CAS BI 449: NEUROSCIENCE DESIGN LAB
Prereq: (BI 315 OR BI 325 OR NE 203) or consent of instructor.

Design and build devices for neuroscience experiments. Interface sensors with computers using Arduino microprocessors. Guided exercises followed by independent design projects to quantify human sensory and motor performance, or emulate animal sensory-motor circuits. All levels of programming experience accepted.

Lab
A1 Gavornik Tue, Thu 12:30pm - 3:15pm

Notes: Meets with CAS NE 449 and GRS BI/NE 649.

Textbooks & Technology: Purchase of an Arduino kit.

Grading: Lab notebook, project and participation.

CAS BI 481: MOLECULAR BIOLOGY OF THE NEURON
Prereq: BI 325 (preferred) or BI 203.

Topics include electrical properties of neurons, a survey of neurotransmitters, molecular structure and function of receptors, synaptic transmission, intracellular signaling, and the molecular biology of sensory transduction. This course fulfills a single unit in each of the following BU Hub areas: Oral and/or Signed Communication, Scientific Inquiry II, Research and Information Literacy.

Independent
A1 Ho Mon, Wed 2:30pm - 4:15pm

Notes: Meets with CAS NE 481 and GRS BI 681.

Textbooks & Technology: none

Grading: 2 midterms, 1 final exam, and discussion.

This course is being offered in spring, but will have a delayed listing on the Link.

CAS BI 520: SENSORY NEUROBIOLOGY
Prereq: (CAS BI 325 OR CAS NE 203) or consent of instructor.

A broad survey of sensory system function in model organisms and humans, focusing on fundamental principles of neural processing. Topics include basic cellular transduction, neural coding, and links between neural activity and sensory perception.

Lecture and Discussion
A1 Chen Tue, Thu 9:30am - 10:45am
Wed 10:10am - 11:00am

Notes: Meets with CAS NE 520.

Textbooks & Technology:

Grading:
CAS BI 525: BIOLOGY OF NEURODEGENERATIVE DISEASES
Prereq: (CAS NE 102 or CAS BI 203) and (CAS NE 203 or CAS BI 325).

This course focuses on understanding the molecular mechanisms that are at the basis of neurodegenerative diseases and on their impact and relevance in clinical diagnosis and treatment. Neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, Huntington’s Disease and CJD disease are becoming more and more common since people are more exposed to pathogenic agents (as in CJD disease and Mad Cow disease) or just encounter these diseases as a result of aging (like Alzheimer’s or Parkinson’s disease). Although very different from one another, these diseases share common mechanisms and features leading to neuronal death, including protein misfolding and aggregation, oxidative stress, impaired protein degradation, and apoptosis. This course will study how these molecular pathways define each disease, contributing to neurodegenerative phenomena. Relevance will be given to Alzheimer’s disease. This course fulfills a single unit in each of the following BU Hub areas: Oral and/or Signed Communication, Ethical Reasoning, Research and Information Literacy.

Independent
A1 Pastorino Mon, Wed, Fri 9:05am - 9:55am
Wed 10:10am - 11:00am

Notes: Meets with CAS NE 525.

Textbooks & Technology: Powerpoint presentations on research articles will be provided to students the day before class.

Grading: Exams (66%), assignments (12%), paper presentation (12%), and participation in class (10%).

CAS BI 599: PHYSIOLOGY OF THE SYNAPSE
Prereq: Junior standing and CAS BI 325 or BI 481 or BI 445 recommended.

Neuron development and maturation, synapse formation, structure and molecular components of synapses, synaptic transmission, synaptic plasticity, neurotransmitter receptors, cellular basis for learning and memory, synaptic pathology in neurological diseases. Two hours lecture, two hours paper presentation and discussion.

Lecture and Discussion
A1 Man Wed, Fri 10:10am - 11:55am

Notes: Wednesday meetings are for paper presentations and Friday meetings are for lecture

Textbooks & Technology: Synapses (2003) by W. Maxwell Cowan and Thomas C. Südhof

Grading: Midterm and final exams (85%); paper presentation and attendance (15%)

Additional electives for the Neurobiology specialization can be found in other sections of the Course Directory.

A list of courses accepted toward the Neurobiology specialization can be found in the Bulletin at www.bu.edu/biology/nb-bulletin.
MET BI 108: BIOLOGY 2

Prereq: One year of high school biology and chemistry strongly recommended.
Coreq: CH 101 and CH 102 recommended as prereqs or coreqs.
For pre-med students and students who plan to major in the natural sciences. Required for Biology majors. Course examines cells, genetics, development, physiology, and neurobiology. This course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Quantitative Reasoning II, Teamwork/Collaboration, Critical Thinking

Lecture
A1 Hulbert Mon 6:00pm - 8:45pm

Lab
A2 Kieswetter Wed 6:00pm - 8:45pm

MET BI 206: GENETICS

Prereq: BI 108 or equivalent; CH 203 recommended.
Principles of classical, molecular, and evolutionary genetics derived from analytical, molecular, and whole genome cytological evidence in animals, plants, and microorganisms. For BMB majors and Biology majors in the CMG track, BI 216 is highly recommended instead of BI 206. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Historical Consciousness, Quantitative Reasoning II, Critical Thinking.

Lecture and Discussion
A1 Celenza Tue, Thu 6:00pm - 7:30pm
Tue 7:30pm - 8:30pm

MET BI 210: HUMAN ANATOMY

Prereq: BI 105
Not for Biology or BMB major/minor credit. Gross structure of the human body: skeletal, muscular, nervous, respiratory, circulatory, digestive, urinary, and reproductive systems. Laboratory course. Effective Spring 2020, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry I, Digital/Multimedia Expression, Creativity/Innovation.

Lecture
A1 Kieswetter Wed 6:00pm - 8:45pm

Lab
A2 Taylor Thu 6:00pm - 7:45pm

Notes: Not for Biology or BMB major credit.

MET BI 303: ECOLOGY

Prereq: BI 107
Basic principles of ecology, population dynamics and behavior, interrelationships of plants and animals and their physical and chemical environment. Structure and function of ecosystems and community dynamics. Laboratory course. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Quantitative Reasoning II, Digital/Multimedia Expression.

Lecture
A1 Wasserman Tue 6:00pm - 8:45pm

Lab
A2 Wasserman Wed 6:00pm - 8:45pm
MET BI 315: SYSTEMS PHYSIOLOGY
Prereq: BI 108, BI 203, and First Year Writing Seminar (e.g., WR 100 or 120)
An introduction to the basic physiological principles applied across all levels of organization (cell, tissue, organ system) and intended to prepare the student for more advanced courses in physiology. Topics include homeostasis, neural, muscle, cardiopulmonary, renal, endocrine, and reproductive physiology. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Writing-Intensive Course, Critical Thinking, Teamwork/Collaboration.

Lecture
A1 Vyshedskiy Thu 6:00pm - 8:45pm

Lab
A2 Seliga Wed 6:00pm - 8:45pm

MET BI 366: NEUROSCIENCE OF HUMAN COGNITION: IMAGINATION, LANGUAGE, AND CONSCIOUSNESS
Prereq: BI 108 or equivalent.
Not accepted for Biology major or minor credit. Your brain is a bizarre device, set in place through natural selection of your ancestors and your own experience. One thing that clearly separates your brain from the brain of any other nonhuman animal is the propensity of your brain for imagination and creativity. In this class we will dive into the neuroscience of imagination: from neurons to memory to neurological control of novel conscious experiences. We will study what makes your brain unique and the selectional forces that shaped the brains of our ancestors. We will discuss what makes human language special and how it evolved. This interdisciplinary class is intended for paleoanthropologists who want to learn neuroscience, psychologists who are interested in the question of the origin of language, biologists who are interested in the uniqueness of the human mind, neuroscientists who want an exposure to paleoanthropology and linguistics, philosophers fascinated by neurological basis of behavior and other students interested in an understanding of the mind of a man and the evolution of the brain.

Independent
A1 Vyshedskiy Wed 6:00pm - 8:45pm

Notes: Not for Biology or BMB major/minor credit. Students cannot take both MET BI 366 and MET BI 566 for credit.
RESEARCH & READINGS

UNDERGRADUATE RESEARCH IN BIOLOGY

Undergraduate Research in Biology courses (CAS BI 140 - CAS BI 453) require an online application. For more information on research requirements and to apply, visit www.bu.edu/biology/ug-research. Time commitment is a minimum of 6 hours a week for 2-credit research and 12 hours a week for 4-credit research. 4-cr research courses can fulfill up to two Electives, one of which can count toward the three-lab requirement for Biology and specialization majors.

CAS BI 140: FIRST YEAR RESEARCH IN BIOLOGY 1

Prereq: first year standing, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for Biology major or minor credit. First semester first year laboratory research under the supervision of a Biology faculty mentor. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor.

Grading: Course grade is determined by laboratory/field work

CAS BI 141: FIRST YEAR RESEARCH IN BIOLOGY 2

Prereq: first year standing, (BI 140 or UROP semester or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for Biology major or minor credit. Second semester first year laboratory research under the supervision of a Biology faculty mentor. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor.

Grading: Course grade is determined by laboratory/field work

CAS BI 240: SOPHOMORE RESEARCH IN BIOLOGY 1

Prereq: sophomore standing, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for Biology major or minor credit. First semester sophomore laboratory research under the supervision of a Biology faculty mentor. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor.

Grading: Course grade is determined by laboratory/field work

CAS BI 241: SOPHOMORE RESEARCH IN BIOLOGY 2

Prereq: sophomore standing, (BI 140 or BI 240 or UROP semester or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for Biology major or minor credit. Second semester sophomore laboratory research under the supervision of a Biology faculty mentor. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor.

Grading: Course grade is determined by laboratory/field work performance

CAS BI 340: JUNIOR RESEARCH IN BIOLOGY 1 (2 CREDITS)

Prereq: junior standing, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for Biology major or minor credit. First semester junior research including the use of research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings required. This course fulfills a single unit in the following BU Hub area: Research and Information Literacy.

Grading: Course grade is determined by laboratory/field work

CAS BI 341: JUNIOR RESEARCH IN BIOLOGY 2 (2 CREDITS)

Prereq: junior standing, consent of instructor (faculty research mentor/sponsor), BI 340 or BI 350 or 2 semesters of first year (BI 140/141) or sophomore research (BI 240/241) or UROP semester or equivalent, and approved application.

[2 cr] Not for Biology major or minor credit. Second semester junior research including the use of research literature and active participation at group meetings. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance with oral presentations at group meetings required. This course fulfills a single unit in the following BU Hub area: Oral/Signed Communication.

Grading: Course grade is determined by laboratory/field work
CAS BI 350: JUNIOR RESEARCH IN BIOLOGY 1 (4 CREDITS)
Prereq: junior standing, consent of instructor (faculty research mentor/sponsor), and approved application.
First semester junior research including the use of research literature and active participation at group meetings. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance with oral presentations at group meetings required. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Oral/Signed Communication.
Grading: Course grade is determined by laboratory/field work performance.

CAS BI 351: JUNIOR RESEARCH IN BIOLOGY 2 (4 CREDITS)
Prereq: junior standing, (BI 340 or BI 350 or 2 semesters of first year (BI 140/141) or sophomore research (BI 240/241) or UROP semester or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.
Second semester junior research including the use of research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Students expected to attend group meetings and take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Creativity/Innovation.
Grading: Course grade is determined by laboratory/field work performance.

CAS BI 352: JUNIOR RESEARCH IN BIOLOGY 3 (4 CREDITS)
Prereq: junior standing, (BI 341 or BI 351 or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.
Third semester junior research including the use of the research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required. Students expected to take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Writing-Intensive and Creativity/Innovation.
Grading: Course grade is determined by laboratory/field work performance.

CAS BI 450: SENIOR RESEARCH IN BIOLOGY 1
Prereq: senior standing, consent of instructor (faculty research mentor/sponsor), and approved application.
First semester senior research including the use of research literature and active participation at group meetings. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings required. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Oral/Signed Communication.
Grading: Course grade is determined by laboratory/fieldwork performance.

CAS BI 451: SENIOR RESEARCH IN BIOLOGY 2
Prereq: senior standing, (BI 340 or BI 350 or BI 450 or 2 semesters of first year (BI 140/141) or sophomore research (BI 240/241) or UROP semester or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.
Second semester senior research including the use of the research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Students expected to attend group meetings and take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Creativity/Innovation.
Grading: Course grade is determined by laboratory/fieldwork performance.

CAS BI 452: SENIOR RESEARCH IN BIOLOGY 3
Prereq: senior standing, (BI 341 or BI 351 or BI 451 or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.
Third semester senior research including the use of research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required. Students expected to take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Writing-Intensive and Creativity/Innovation.
Grading: Course grade is determined by laboratory performance.
CAS BI 453: SENIOR RESEARCH IN BIOLOGY 4

Prereq: senior standing, (BI 352 or BI 452 or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.

Coreq: CAS BI 497 or BI 498

Fourth semester senior research including the use of research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required.

Grading: Course grade is determined by laboratory performance.

HONORS RESEARCH IN BIOLOGY

Honors Research in Biology offers students the ability to participate in two semesters of mentored 4-credit research (CAS BI 401 and 402) and a 2-credit research seminar (CAS BI 497 or 498). Students also write and defend an honors thesis on their research. For more information on research requirements and to apply, visit www.bu.edu/biology/research-credit. Time commitment is minimum 12 hours/week in lab or fieldwork, meetings, data analysis, and writing.

CAS BI 401: HONORS RESEARCH IN BIOLOGY 1

Prereq: senior standing, cumulative GPA of at least 3.5, and approval of the Biology Research and Honors Committee.

First semester of Honors-level mentored laboratory or field research with a faculty member of the Biology Department leading to graduation with Honors in Biology. A minimum grade of B+ in this course and in BI 497 or 498 and BI 401/402 is required to graduate with Honors in Biology. Application through the Biology Department including use of research literature and active participation at group meetings. This course fulfills a single unit in the following BU Hub area: Research and Information Literacy and Oral/Signed Communication.

Grading: Course grade for both BI 401 and 402 is determined by laboratory performance, oral presentation, written thesis, and defense of the thesis before a committee of three faculty members. Grades for both BI 401 and 402 are determined upon completion of BI 402.

CAS BI 402: HONORS RESEARCH IN BIOLOGY 2

Prereq: senior standing, cumulative GPA of at least 3.5, and approval of the Biology Research and Honors Committee.

Honors-level mentored laboratory or field research with a faculty member of the Biology Department leading to graduation with Honors in Biology. A minimum grade of B+ in this course and in BI 497 or 498 and BI 402 is required to graduate with Honors in Biology. Application through the Biology Department including use of research literature. Students expected to attend and participate at group meetings and take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Oral/Signed Communication, Writing-Intensive, and Creativity/Innovation.

Grading: Course grade for BI 402 is determined by laboratory performance, oral presentation, written thesis, and defense of the thesis before a committee of three faculty members. Grades for both BI 401 and 402 are determined upon completion of BI 402.

CAS BI 497: HONORS RESEARCH IN BIOLOGY SEMINAR 1

Prereq: For students currently enrolled in BI 401, BI 402, or BI 453 in the spring semester.

[2 cr] A 2-credit weekly research seminar for students in BI 401, BI 402, or BI 453 in the spring semester. Students learn and present digitally produced descriptions of their research and prepare their theses for defense under the guidance of the Research and Honors Committee. A minimum grade of B+ in this course and BI 402 is required to graduate with honors. Students participate in only one course, either BI 497 or BI 498. This course fulfills a single unit in the following BU Hub areas: Digital/Multimedia Expression.

Grading: Attendance and participation

CAS BI 498: HONORS RESEARCH IN BIOLOGY SEMINAR 2

Prereq: For students currently enrolled in BI 401, BI 402, or BI 453 in the spring semester.

[2 cr] A 2-credit weekly research seminar for students in BI 401, BI 402, or BI 453 in the spring semester. Students learn and present digitally produced descriptions of their research and prepare their theses for defense under the guidance of the Research and Honors Committee. A minimum grade of B+ in this course and BI 402 is required to graduate with honors. Students participate in only one course, either BI 497 or BI 498. This course fulfills a single unit in the following BU Hub areas: Digital/Multimedia Expression.

Grading: Attendance and participation
RESEARCH & READINGS

GRADUATE RESEARCH IN BIOLOGY

Graduate Research in Biology is offered as part of the BA/MS program. This dual degree program is only open to Biology and specialization majors. Students will receive both Bachelor's of Arts and Master's of Science degrees upon graduation. For more information on the BA/MS program, visit https://www.bu.edu/biology/undergrad/bams/.

CAS BI 595: MASTER'S RESEARCH IN BIOLOGY

Prereq: Admission into the MS or BA/MS combined program

Biology laboratory research conducted under supervision of a faculty member. Externships are acceptable with prior approval. Minimum of 7.5 or 15 hours per week in the lab, culminating in submission of a written progress report.

Grading: Course grade is determined by laboratory performance.

CAS BI 372: READINGS IN BIOLOGY 3

Prereq: junior standing, consent of instructor (Biology faculty mentor), and approved application.

[2 cr] **Not for Biology major or minor credit.** Library research on a well-defined topic in the biological sciences, chosen in conjunction with a Biology faculty member.

Grading: Individual discussions and/or a paper presentation may be required.

CAS BI 472: READINGS IN BIOLOGY 4

Prereq: junior or senior standing, cumulative GPA in biology of at least 3.0, and consent of instructor (Biology faculty mentor).

[2 cr] **Not for Biology major or minor credit.** Intensive library research on a well-defined topic in the biological sciences, chosen in conjunction with a Biology faculty member. May be taken as preparation for Undergraduate Research or Honors Research in Biology.

Grading: Individual discussions and/or a paper presentation may be required.

READINGS IN BIOLOGY

Readings in Biology offers students the opportunity to do library research on a chosen topic in the biological sciences. Students must ask a Biology faculty member familiar with the topic to be their sponsor and submit the application found at www.bu.edu/biology/forms. These courses are often used as preparation for Undergraduate Research in Biology or Honors Research in Biology.

GRADUATE READINGS IN BIOLOGY

Graduate Readings in Biology is offered as part of the BA/MS program. This dual degree program is only open to Biology and specialization majors. Students will receive both Bachelor's of Arts and Master's of Science degrees upon graduation. For more information on the BA/MS program, visit https://www.bu.edu/biology/undergrad/bams/.

GRS BI 701: GRADUATE READINGS IN BIOLOGY

Prereq: consent of instructor, limited to BA/MS students and graduate students in the scholarly paper MS program.

Library research on well-defined subjects determined in consultation with faculty member.

Grading: Individual discussions and/or a paper presentation may be required.

CAS BI 172: READINGS IN BIOLOGY 1

Prereq: freshman standing, consent of instructor (Biology faculty mentor), and approved application.

[2 cr] **Not for Biology major or minor credit.** Library research on a well-defined topic in the biological sciences, chosen in conjunction with a Biology faculty member.

Grading: Individual discussions and/or a paper presentation may be required.

CAS BI 272: READINGS IN BIOLOGY 2

Prereq: sophomore standing, consent of instructor (Biology faculty mentor), and approved application.

[2 cr] **Not for Biology major or minor credit.** Library research on a well-defined topic in the biological sciences, chosen in conjunction with a Biology faculty member.

Grading: Individual discussions and/or a paper presentation may be required.
UNDERGRADUATE RESEARCH IN BMB

Undergraduate Research in Biochemistry and Molecular Biology courses (CAS BB 140 - CAS BB 453) require an application. For more information on research requirements and to apply, visit www.bu.edu/bmb/research. Time commitment is a minimum of 6 hours a week for 2-credit research and 12 hours a week for 4-credit research, not including preparation and evaluation. 4-cr research courses can fulfill an elective for BMB majors. Two semesters of senior-level research can fulfill the Advanced Lab Elective for BMB majors.

CAS BB 140: FIRST YEAR RESEARCH IN BMB 1
Prereq: first year standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. First semester first year laboratory research under the supervision of a BMB faculty mentor. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor.

Grading: Course grade is determined by laboratory performance.

CAS BB 141: FIRST YEAR RESEARCH IN BMB 2
Prereq: first year standing, (BB 140 or UROP semester or equivalent), GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. Second semester first year laboratory research under the supervision of a BMB faculty mentor. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor.

Grading: Course grade is determined by laboratory performance.

CAS BB 240: SOPHOMORE RESEARCH IN BMB 1
Prereq: sophomore standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. First semester sophomore laboratory research under the supervision of a BMB faculty mentor. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor.

Grading: Course grade is determined by laboratory performance.

CAS BB 241: SOPHOMORE RESEARCH IN BMB 2
Prereq: sophomore standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, BB 140 or BB 141 or BB 240 or UROP semester or equivalent, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. Second semester sophomore laboratory research under the supervision of a BMB faculty mentor. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor.

Grading: Course grade is determined by laboratory performance.

CAS BB 340: JUNIOR RESEARCH IN BMB 1 (2 CREDITS)
Prereq: junior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. First semester junior research including the use of research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings required. This course fulfills a single unit in the following BU Hub area: Research and Information Literacy.

Grading: Course grade is determined by laboratory performance.

CAS BB 341: JUNIOR RESEARCH IN BMB 2 (2 CREDITS)
Prereq: junior standing, (BB 340 or BB 350 or 2 semesters of first year (BB 140/141) or sophomore research (BB 240/241) or UROP semester or equivalent), GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. Second semester junior research including the use of research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings required. This course fulfills a single unit in the following BU Hub area: Research and Information Literacy.

Grading: Course grade is determined by laboratory performance.

CAS BB 350: JUNIOR RESEARCH IN BMB 1 (4 CREDITS)
Prereq: junior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

First semester junior research including the use of research literature and active participation at group meetings. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance with oral presentations at group meetings required. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Oral/Signed Communication.

Grading: Course grade is determined by laboratory performance.
CAS BB 351: JUNIOR RESEARCH IN BMB 2 (4 CREDITS)
Prereq: junior standing, (BB 340 or BB 350 or 2 semesters of first year (BB 140/141) or sophomore research (BB 240/241) or UROP semester or equivalent), GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

Second semester junior research including the use of research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Students expected to attend group meetings and take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Creativity/Innovation.

Grading: Course grade is determined by laboratory performance.

CAS BB 352: JUNIOR RESEARCH IN BMB 3 (4 CREDITS)
Prereq: junior standing, (BB 341 or BB 351 or equivalent), GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

Third semester junior research including the use of the research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required. Students expected to take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Writing-Intensive and Creativity/Innovation.

Grading: Course grade is determined by laboratory performance.

CAS BB 450: SENIOR RESEARCH IN BMB 1
Prereq: senior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

First semester senior research including the use of research literature and active participation at group meetings. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance with oral presentations at group meetings required. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Oral/Signed Communication.

Grading: Course grade is determined by laboratory performance.

CAS BB 451: SENIOR RESEARCH IN BMB 2
Prereq: senior standing, (BB 340 or BB 350 or BB 450 or 2 semesters of first year (BB 140/141) or sophomore research (BB 240/241) or UROP semester or equivalent), GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

Second semester senior research including the use of the research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Students expected to attend group meetings and take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Creativity/Innovation.

Grading: Course grade is determined by laboratory performance.

CAS BB 452: SENIOR RESEARCH IN BMB 3
Prereq: senior standing, (BB 341 or BB 351 or BB 451 or equivalent), GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

Third semester senior research including the use of research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required. Students expected to take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Writing-Intensive and Creativity/Innovation.

Grading: Course grade is determined by laboratory performance.

CAS BB 453: SENIOR RESEARCH IN BMB 4
Prereq: senior standing, (BB 352 or BB 452 or equivalent), GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.
Coreq: CAS BB 497 or BB 498

Fourth semester senior research including the use of research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required.

Grading: Course grade is determined by laboratory performance.
HONORS RESEARCH IN BMB

Honors Research in BMB offers students the ability to participate in two semesters of mentored 4-credit research (CAS BB 401 and 402) and 1-credit research seminars (CAS BB 497 and 498). Students also write and defend an honors thesis on their research. For more information on research requirements and to apply, visit www.bu.edu/bmb/research. Time commitment is a minimum of 12 hours a week, not including preparation and evaluation.

CAS BB 401: HONORS RESEARCH IN BMB

Prereq: senior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.5, consent of instructor (faculty research mentor/sponsor), and approval of application by the BMB Research and Honors Committee.
Coreq: CAS BB 497

First semester of Honors-level undergraduate research in BMB. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. A minimum grade of B+ in this course and in BB 497/498 and BB 401/402 is required to graduate with Honors in BMB. Students must also present a research talk at the BMB Symposium at the end of the spring semester of the academic year. Students will conduct mentored laboratory research with a faculty member of the BMB Program leading to graduation with Honors in BMB. Application through the BMB Program including use of research literature and active participation at group meetings. Oral presentations at group meetings required. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy, Writing-Intensive, and Creativity/Innovation.

Grading: Course grade for both BB 401 and 402 is determined by laboratory performance, oral presentation, written thesis, and defense of the thesis before a committee of three faculty members. Grades for both BB 401 and 402 are determined upon completion of BB 402.

CAS BB 402: HONORS RESEARCH IN BMB

Prereq: senior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.5, consent of instructor (faculty research mentor/sponsor), and approval of application by the BMB Research and Honors Committee.
Coreq: CAS BB 498

Second semester of Honors-level undergraduate research leading to graduation with Honors in BMB (continuation of BB 401). Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. A minimum grade of B+ in this course and in BB 497/498 and BB 401/402 is required to graduate with Honors in BMB. Students must also present a research talk at the BMB symposium at the end of the spring semester of the academic year. Students expected to attend and participate at group meetings and take a lead and make creative contributions to projects ending in writing and defending an original thesis with guidance from their mentor. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy, Writing-Intensive, and Creativity/Innovation.

Grading: Course grade is determined by laboratory performance, oral presentation, written thesis, and defense of the thesis before a committee of BMB faculty members. Grades for both BB 401 and 402 are determined upon completion of BB 402.

CAS BB 498: HONORS RESEARCH IN BMB SEMINAR 2

Prereq: For students currently enrolled in the Honors BMB Program or BB 453 in the spring semester.
Coreq: CAS BB 402 or BB 453 in the spring semester.

[1 cr] A one-credit continuation of BB 497 for students enrolled in Honors Research in BMB (BB 402) or BB 453 in the spring. Students learn and present digitally produced descriptions of their research and prepare their theses for defense under the guidance of the Research and Honors Committee and present at the BMB Symposium at the end of the semester. A minimum grade of B+ in this course and in BB 497 and BB 401/402 is required to graduate with Honors in BMB. This course fulfills a single unit in the following BU Hub areas: Digital/Multimedia Expression.

Grading: Attendance and participation.

GRADUATE RESEARCH IN BMB

Graduate Research in BMB is offered as part of the BA/MA program. This dual-degree program is only open to BMB majors and earns students a Bachelor’s degree in BMB and a Master’s degree in Biotechnology. For more information on the BA/MA program, visit www.bu.edu/bmb/bama-bulletin.

CAS BB 592: GRADUATE RESEARCH IN BIOCHEMISTRY AND MOLECULAR BIOLOGY

Prereq: Admission to the BA/MA Program.

Laboratory research conducted under the supervision of a BMB faculty sponsor. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Minimum of 15 hours per week in the lab, culminating in submission to the BMB Director of a written progress report and research outline for CAS BB 592. This course fulfills a single unit in the following Hub areas: Digital/Multimedia Expression and Creativity/Innovation

Grading: Course grade is determined by laboratory performance.

Electives for the BMB major can be found in other sections of the Course Directory.

A list of courses accepted toward the BMB major can be found in the Bulletin at www.bu.edu/bmb/bulletin.
INDEX

CAS

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
<td>Undergraduate Research in BMB</td>
<td>20-21</td>
</tr>
<tr>
<td>BB</td>
<td>Honors Research in BMB</td>
<td>22</td>
</tr>
<tr>
<td>BB</td>
<td>Honors Research in BMB Seminar 2</td>
<td>22</td>
</tr>
<tr>
<td>BB</td>
<td>Graduate Research in BMB</td>
<td>22</td>
</tr>
<tr>
<td>BI</td>
<td>Biology 2</td>
<td>2</td>
</tr>
<tr>
<td>BI</td>
<td>Human Infectious Diseases</td>
<td>2</td>
</tr>
<tr>
<td>BI</td>
<td>Biology 2 with ISE Lab</td>
<td>2</td>
</tr>
<tr>
<td>BI</td>
<td>Undergraduate Research in Biology</td>
<td>16-18</td>
</tr>
<tr>
<td>BI</td>
<td>Readings in Biology</td>
<td>19</td>
</tr>
<tr>
<td>BI</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BI</td>
<td>Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BI</td>
<td>Human Anatomy</td>
<td>11</td>
</tr>
<tr>
<td>BI</td>
<td>Intensive Genetics</td>
<td>4</td>
</tr>
<tr>
<td>BI</td>
<td>Behavioral Biology</td>
<td>8</td>
</tr>
<tr>
<td>BI</td>
<td>Marine Biology</td>
<td>8</td>
</tr>
<tr>
<td>BI</td>
<td>Fundamentals of Biology 2</td>
<td>4</td>
</tr>
<tr>
<td>BI</td>
<td>Vertebrate Zoology</td>
<td>8</td>
</tr>
<tr>
<td>BI</td>
<td>Ecology</td>
<td>8</td>
</tr>
<tr>
<td>BI</td>
<td>Biology of Global Change</td>
<td>9</td>
</tr>
<tr>
<td>BI</td>
<td>Systems Physiology</td>
<td>11</td>
</tr>
<tr>
<td>BI</td>
<td>Principles of Neuroscience</td>
<td>11</td>
</tr>
<tr>
<td>BI</td>
<td>Neurotoxins in Biology, Medicine, Agriculture, and War</td>
<td>12</td>
</tr>
<tr>
<td>BI</td>
<td>Immunology</td>
<td>4</td>
</tr>
<tr>
<td>BI</td>
<td>Honors Research in Biology</td>
<td>18</td>
</tr>
<tr>
<td>BI</td>
<td>Microbiome: Our Intimate Relationship with Microorganisms</td>
<td>4</td>
</tr>
<tr>
<td>BI</td>
<td>Microbial Ecology</td>
<td>9</td>
</tr>
<tr>
<td>BI</td>
<td>Biochemistry 2</td>
<td>5</td>
</tr>
<tr>
<td>BI</td>
<td>Marine Biogeochemistry</td>
<td>9</td>
</tr>
<tr>
<td>BI</td>
<td>Neuroscience Design Lab</td>
<td>12</td>
</tr>
<tr>
<td>BI</td>
<td>Urban Ecology</td>
<td>9</td>
</tr>
<tr>
<td>BI</td>
<td>Molecular Biology of the Neuron</td>
<td>5, 12</td>
</tr>
<tr>
<td>BI</td>
<td>Honors Research in Biology Seminar 1</td>
<td>18</td>
</tr>
<tr>
<td>BI</td>
<td>Honors Research in Biology Seminar 2</td>
<td>18</td>
</tr>
<tr>
<td>BI</td>
<td>Advanced Evolutionary Analysis</td>
<td>10</td>
</tr>
<tr>
<td>BI</td>
<td>Institutional Racism in Health & Science</td>
<td>5</td>
</tr>
<tr>
<td>BI</td>
<td>Theoretical Evo. Ecology</td>
<td>10</td>
</tr>
<tr>
<td>BI</td>
<td>Sensory Neurobiology</td>
<td>12</td>
</tr>
<tr>
<td>BB</td>
<td>Molecular Biology Lab</td>
<td>5</td>
</tr>
<tr>
<td>BI</td>
<td>Biology of Neurodegenerative Diseases</td>
<td>13</td>
</tr>
<tr>
<td>BI</td>
<td>Biochemistry Lab 2</td>
<td>6</td>
</tr>
<tr>
<td>BI</td>
<td>Marine Genomics</td>
<td>10</td>
</tr>
<tr>
<td>BI</td>
<td>Molecular Biology 2</td>
<td>6</td>
</tr>
</tbody>
</table>

CAS (cont.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>Functional Genomics</td>
<td>6</td>
</tr>
<tr>
<td>BI</td>
<td>Carcinogenesis</td>
<td>7</td>
</tr>
<tr>
<td>BB</td>
<td>Graduate Research in BMB</td>
<td>22</td>
</tr>
<tr>
<td>BI</td>
<td>Topics in Biology: Quantitative Microbiology</td>
<td>7</td>
</tr>
<tr>
<td>BI</td>
<td>Master's Research in Biology</td>
<td>19</td>
</tr>
<tr>
<td>BI</td>
<td>Physiology of the Synapse</td>
<td>13</td>
</tr>
</tbody>
</table>

MET

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>Biology 2</td>
<td>14</td>
</tr>
<tr>
<td>BI</td>
<td>Genetics</td>
<td>14</td>
</tr>
<tr>
<td>BI</td>
<td>Human Anatomy</td>
<td>14</td>
</tr>
<tr>
<td>BI</td>
<td>Ecology</td>
<td>14</td>
</tr>
<tr>
<td>BI</td>
<td>Systems Physiology</td>
<td>15</td>
</tr>
<tr>
<td>BI</td>
<td>Neurobiology of Consciousness and Evolution of Language</td>
<td>15</td>
</tr>
</tbody>
</table>

GRS

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>Graduate Readings in Biology</td>
<td>19</td>
</tr>
</tbody>
</table>

"BI 701 Graduate Readings in Biology"