
Estimating trait heritability in highly fecund
species
Sarah W. Davies1,*,+, Samuel V. Scarpino2,*,++, Thanapat Pongwarin1, James
Scott3,4, and Mikhail V. Matz1,+++

1Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
2Santa Fe Institute, Santa Fe, New Mexico, USA
3Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, Texas, USA
4Department of Information, Risk, and Operations Management, The University of Texas at Austin,
Austin, Texas, USA
*these authors contributed equally to this work
+address corespondence regarding experiments to daviessw@gmail.com
++address corespondence regarding statistics to scarpino@santafe.edu
+++address general corespondence to scarpino@santafe.edu

 G3: Genes|Genomes|Genetics Early Online, published on October 4, 2015 as doi:10.1534/g3.115.020701

© The Author(s) 2013. Published by the Genetics Society of America. 



Estimating heritability

Running Title: Estimating heritability

Keywords: Heritability; Non-model organisms; Common Garden; Binary Variable Traits;

Coral Settlement

Corresponding Author Contact:

Mikhail V. Matz
Department of Integrative Biology
The University of Texas at Austin
1 University Station #C0930
Austin, Texas, 78712, USA
matz@utexas.edu
(512) 475-6424

2



Estimating heritability

Abstract1

Increasingly, researchers are interested in estimating the heritability of traits for non-model2

organisms. However, estimating the heritability of these traits presents both experimental and3

statistical challenges, which typically arise from logistical difficulties associated with rearing4

large numbers of families independently in the field, a lack of known pedigree, the need to5

account for group or batch effects, etc. Here we develop both an empirical and computational6

methodology for estimating the narrow-sense heritability of traits for highly fecund species.7

Our experimental approach controls for undesirable culturing effects, while minimizing culture8

numbers, increasing feasibility in the field. Our statistical approach accounts for known issues9

with model-selection by using a permutation test to calculate significance values and includes10

both fitting and power calculation methods. We further demonstrate that even with moderately11

high sample-sizes, the p-values derived from asymptotic properties of the likelihood ratio test12

are overly conservative, thus reducing statistical power. We illustrate our methodology by13

estimating the narrow-sense heritability for larval settlement, a key life-history trait, in the reef-14

building coral Orbicella faveolata. The experimental, statistical and computational methods,15

along with all of the data from this study, are available in the R package multiDimBio.16

Introduction17

Organisms with high fecundity, small propagule size, and limited parental investment, also18

referred to as r-selected species, often exhibit higher levels of nucleotide diversity and/or19

standing genetic variation when compared to k-selected species (Romiguier et al., 2014).20

Many marine species, including fish and invertebrates, exhibit these r-selected life history21

characteristics (Doherty & Fowler, 1994) and indeed have been shown to exhibit high levels of22

genetic diversity (Bay et al., 2004; Davies et al., 2015). However, this high genetic diversity23

does little to predict how a population will respond to environmental perturbations, such24

as those caused by climate change. Instead, the key question is not how much variation is25

present, but what is the heritability of the traits under selection following the perturbation.26
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Estimating heritability

Quantifying narrow-sense heritability, the proportion of phenotypic variance attributable to27

additive genetic effects (Lynch & Walsh, 1998), for non-model organisms presents both28

experimental and statistical challenges. Most experiments aiming to quantify narrow-sense29

heritability involve multi-generational breeding programs and large numbers of crosses with30

many culture replicates to account for “jar effects,” both of which are rarely feasible in31

non-model species.32

Here we present a quantitative genetic methodology for estimating the narrow-sense33

heritability of traits in highly fecund species. The method does not require the onerous34

sampling schemes usually required for these types of experiments. Instead, our approach35

leverages high fecundity by completing independent fertilizations with large quantities of36

eggs equally divided among sires to account for sperm competition (Figure 1). These cultures37

are then mixed into a single bulk culture (common garden) and divided into three replicate38

tanks per dam. Bulk larvae are then sorted according to the trait of interest, which in this39

study is a binary trait (whether or not the larvae underwent metamorphosis in response to40

settlement cue). Single larvae that “succeeded” and “failed” are then individually genotyped41

and their sire assignments are compared to the predicted distribution of sire assignments in42

the original design. This experimental design allows for all sires to be cultured in ‘common43

garden’ conditions, which greatly reduces the number of cultures as compared to standard44

approach where each family would be cultured individually, resulting in a culture number45

of 3x the number of sires. The narrow-sense heritability of these data can be estimated46

using a generalized linear mixed model with a binomial error distribution. However, as we47

discuss below, appropriately determining statistical significance is non-trivial. This method48

of quantifying heritability of binary traits is broadly applicable to many traits of interest49

including–but not limited to–stress tolerance, dispersal potential, and disease susceptibility.50

Furthermore, the framework we have developed–including the statistical methods–can be51

readily adapted to traits with different distributions, e.g. normally distributed phenotypes.52

To demonstrate this methodology, we estimated the heritability of dispersal potential53
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in reef-building coral larvae. The majority of corals–like many other marine invertebrates–54

release gametes into the water annually. These gametes develop into planktonic larvae that55

are dispersed by ocean currents, representing each coral’s only dispersal opportunity (Baird56

et al., 2009). The now pelagic larvae can travel great distances before settling on a reef, but57

once the larva settles, it will remain there for the duration of its life. Therefore, selection for58

dispersal potential is limited to optimizing larval traits, which can be investigated through59

classical quantitative genetics, e.g. Meyer et al. (2009). Specifically, we determined how60

much variation in the early larval responsiveness to settlement cue depends on the genetic61

background of larvae. The experiments were performed on larvae of the hermaphroditic62

mountainous star coral, Orbicella faveolata, which is an important but endangered Caribbean63

reef-building coral. To analyze these data, and estimate the narrow-sense heritability of64

this binary trait, we developed a Monte Carlo method for performing model selection and65

calculating statistical power with generalized linear mixed models. The code and data are66

available in the R package multiDimBio (Scarpino et al., 2014).67

Materials and methods68

Experimental Framework69

Our experimental framework, which is summarized in Figure 1, proceeds in four steps. First,70

we perform crosses between the desired number of parents. Second, all offspring from a single71

dam are reared in the same environment (‘common garden’). Third, offspring are phenotyped72

for the trait of interest and genotyped to determine paternity. Fourth, these data are analyzed73

using random-effects models and a permutation test to determine statistical significance. What74

follows is a detailed description of how to estimate the narrow-sense heritability of coral75

settlement using this framework.76
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Application of the experimental framework to coral settlement77

Crossing design and larval rearing78

One day prior to the annual coral spawn on August 7, 2012, ten independent O. faveolata79

colony fragments (10cm x 10cm) were collected from the East Flower Garden Banks National80

Marine Sanctuary, Gulf of Mexico. Colonies were maintained in flow through conditions81

aboard the vessel and were shaded from direct sunlight. Colonies were at least 10m apart to82

avoid sampling clones, as clones within reefs have been detected in this genus (Severance and83

Karl, 2006; Baums et al., 2010). However, intracolony variation (chimerism) in scleractinian84

corals is very rare (Puill-Stephan et al., 2009), so each sire was assumed to only produce85

sperm of a single genotype. Prior to spawning, at 20:00CDT on August 8, 2012, colonies were86

isolated in individual bins filled with 1µm filtered seawater and were shaded completely. Nine87

colonies spawned at approximately 23:30CDT. From these spawning colonies, we collected88

gamete bundles and separated eggs and sperm with nylon mesh. Each colony was used as an89

independent sire, with no additional sperm/sires included in this study. Samples from each90

sire were preserved in ethanol for genotyping.91

Divers collected gamete bundles directly from three colonies during spawning and eggs92

were separated to serve as maternal material (N=3 dams). Eggs were divided equally among93

fertilization bins (N=9 per dam) and sperm from each sire was added at 0200CDT on August94

9, 2012 for a total of 27 fertilization bins. Control self-cross trials verified that self-fertilization95

was not detectable in our samples. After fertilization, at 0800CDT, excess sperm was removed96

by rinsing with nylon mesh, and embryos for each dam across all sires were pooled in one97

common culture. Densities were determined and larvae were stocked into three replicate98

culture vessels at 1 larva per 2ml for a total of nine culture containers (N=3 per dam). Larvae99

were transferred to the University of Texas at Austin on August 10, 2012. Following spawning,100

colony fragments were returned to the reef. All work was completed under the Flower garden101

Banks National Marine Sanctuary permit #FGBNMS-2012-002.102
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Common Garden Settlement Assay103

On August 14, 2012, 6 day old, pre-competent larvae from the three replicate bins for a single104

dam were divided across three settlement assays. Four hundred healthy larvae per culture105

replicate were added to a sterile 800ml container with five conditioned glass slides and finely106

ground, locally collected crustose coralline algae (CCA), a known settlement inducer for this107

coral genus (Davies et al., 2014). Cultures were maintained for three days after which each108

slide was removed and recruits were individually preserved in 96% ethanol, representing109

larvae exhibiting “early” responsiveness to settlement cue. Culture water was changed, new110

slides were added with additional CCA and larvae were maintained until they reached 14 days111

old. All settled larvae on slides were discarded and 50 larvae per culture were individually112

preserved in 96% ethanol. Larvae from the other two dams were not used in these assays due113

to high culture mortality.114

Larval DNA Extraction115

Larval DNA extraction followed a standard phenol-chloroform iso-amyl alcohol extraction116

protocol, see Davies et al. (2013), with modifications to accommodate for the single larva117

instead of bulk adult tissue.118

Parental Genotyping119

Sire genotyping was completed using nine loci from Davies et al. (2014) and four loci from120

Severance et al. (2004) following published protocols. Amplicons were resolved on agarose gel121

to verify amplification and molecular weights were analyzed using the ABI 3130XL capillary122

sequencer. GeneMarker V2.4.0 (Soft Genetics) assessed genotypes and loci representing the123

highest allelic diversities amongst the sires were chosen as larval parentage markers. To ensure124

that each sire was a unique multilocus genotype (MLG) and that the relatedness between sires125

was negligible, we compared the allelic composition of each sire across six microsatellite loci126

(MLG) and calculated the Probability of Identity at each locus in GENALEX v6.5 Peakall &127

Smouse (2006).128
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Table 1. Summary of the six microsatellite loci from Davies et al. (2013) used in paternity
assignment.

Locus Observed (bp) Na Fluorescence
M fav4 375-391 5 FAM
maMS2-5 280-328 20 FAM
maMS8 197-203 3 FAM
M fav6 387-429 11 HEX
M fav7 453-498 9 HEX
maMS2-8 187-205 10 NED

Larval Parentage129

To compensate for the low larval DNA concentrations, 3µl of each single extracted larva130

(unknown concentration) was amplified in a multiplex reaction with six loci from Davies et al.131

(2013) with the following modifications: 1µM of each fluorescent primer pair (N=6) and132

20µL reaction volumes (Table 1). Alleles were called in GeneMarker V2.4.0 and offspring133

parentage was assigned based on presence/absence of sire alleles. Data were formatted into a134

dataframe consisting of the number of early settlers and swimming larvae that were assigned135

to each sire (A-J) from each of three replicate bins (1-3).136

Statistical Methods137

Estimating narrow-sense heritability from binary data138

In principle, estimating narrow-sense heritability for a binomially distributed trait, such as coral139

settlement, is straightforward, see Gilmour et al. (1985); Foulley et al. (1987); Vazquez et al.140

(2009); Biscarini et al. (2014, 2015). The desired quantity is the among-sire variance, denoted141

as τ2, which can be estimated using a generalized linear mixed model with a binomial error142

distribution. Although this a departure from the standard threshold approach for estimating the143

heritability of binomial traits, it is now fairly common in the quantitative genetics literature,144

see Foulley et al. (1987) and Vazquez et al. (2009).145

Suppose we have binary observations yi j ∈ {0,1} where i index units (sires) and j indexes

observations within units. The model is simple Bernoulli sampling, parameterized by log
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odds:

P(yi j = 1) =
1

1+ exp(−ψi j)
. (1)

We will assume that the log odds have a sire-level random effect:

ψi j = α +βi , βi ∼ N(0,τ2) .

Thus we have a simple binary logit model with a single random effect. A standard result146

on logit models is that we can represent the outcomes yi j as thresholded versions of an latent147

continuous quantity zi j (Holmes et al., 2006):148

yi j =

 1 if zi j ≥ 0,

0 if zi j < 0.

zi j = α +βi + εi j ,

where εi j follows a standard logistic distribution. Note this non-standard form of latent-149

threshold model, wherein the errors εi j are logistic rather than normally distributed. Upon150

integrating out the zi j’s (which are often referred to as latent or data-augmentation variables),151

we recover exactly the logistic regression model of Equation (1) with a sire-level random152

effect.153

In light of this, we can interpret narrow-sense heritability in terms of the ratio of predictable

to total variation in our logistic random-effects model. This is often referred to as Bayesian

R2, by analogy with the classical coefficient of determination in a regression model:

R2 =
var(βi)

var(zi j)
=

var(βi)

var(βi)+var(εi j)
=

τ2

τ2 +π2/3
,

exploiting the facts that the βi and εi j are independent and that the variance of the standard154

logistic distribution is π2/3. The above equation for the Bayesian R2 is the narrow-sense155
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heritability for the animal model. Therefore, the among-sire variance can be transformed156

into an approximation of narrow-sense heritability under the sire model by multiplying the157

Bayesian R2 by four, see Foulley et al. (1987) and Vazquez et al. (2009) for a more detailed158

derivation and Lynch & Walsh (1998) for a discussion of the assumptions this approximation159

relies on.160

However, under this model, determining whether statistical support exists for an among-161

sire variance greater than zero remains a challenge. Traditionally, an approach to the problem162

would be to fit two models, one where τ2, the among-sire variance, is a free parameter and163

one where it is constrained to zero. These models can then be compared, and model selection164

performed, using a likelihood ratio test, or in this case the difference in each model’s deviance,165

which is equivalent to a likelihood ratio test for nested models. Although, critically, this166

is a special kind of likelihood ratio test because the null hypothesis resides on the edge of167

the parameter space. The large sample reference distribution for this type of test is usually168

considered to be a 50% mixture of a point of mass at zero and a χ2(1) (Self & Liang, 1987).169

However there is still substantial debate in the literature about what mixture should be used –170

e.g., Crainiceanu et al. (2003) – and it is not clear whether any of these mixtures are valid null171

distributions for finite sample sizes.172

Instead, our approach is to construct a permutation-based method for calculating a p value173

for the likelihood ratio test and performing model selection. This test is simple to implement,174

as it only involves randomly shuffling the identity of each offspring’s sire a large number of175

times (say, 500) and re-fitting the random-effects model to each shuffled data set. This avoids176

making assumptions about the asymptotic distribution of the test statistic that may fail to hold177

for finite sample sizes.178

Monte Carlo simulation for the likelihood ratio test179

Our simulations assume a fixed probability of settlement, psettle, to be equal across all sires, in180

this case psettle = 0.285 (the global mean), and simulate 1,000 data sets where the number of181

offspring for each sire in each of three bins is drawn from a negative binomial distribution182
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with µ = 4.63 and size = µ2/(
√

12.63−µ), again these are the empirically observed values183

across sires. The resulting 1,000 data sets have the same structure as the observed data, but the184

only among sire variability comes from sampling, the true τ2 = 0. For each simulated data set,185

we calculated the likelihood-ratio test statistic. This provides a Monte Carlo approximation to186

the true sampling distribution of the test statistic under the null.187

Power analysis188

With any novel experimental design, it is desirable to construct a method for estimating its189

statistical power. Using the Monte Carlo approach designed to calculate p-values for likelihood190

ratio tests, we can simulate data sets with an arbitrary number of sires, number and variance in191

offspring, among-sires variance, and number of bins. By repeatedly simulating data sets using192

fixed combinations of these parameters, the statistical power is simply the fraction of times we193

correctly reject the null hypothesis. Similarly, the false positive rate is the fraction of times we194

falsely reject the null hypothesis.195

Implementation196

All code and data developed for this study are available in the R package multiDimBio (Scarpino197

et al., 2014). The statistical models were fit using the R packages stats in R version 3.2.1 (R198

Core Team, 2015) and lme4 version 1.1-8 (Bates et al., 2015).199

Results200

Sire Independence201

Each sire was determined to be a unique multilocus genotype (MLG) across the six microsatel-202

lite loci indicating that no clones were collected (Table 2). In order to ensure that each sire203

could be considered independent, we calculated the Probability of Identity at each locus and204

found that these probabilities ranged from 3.2E-01 for a single locus down to 2.0E-06 when205

all six loci are considered and therefore each sire was considered independent.206
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Table 2. Summary of paternity assignment results. Values are the microsatellite lengths for
each of six loci from Davies et al. (2014).

Locus 1 Locus 2 Locus 3 Locus 4 Locus 5 Locus 6
Sire MaMS8 MaMS8.1 Sev5 Sev5.1 Mfav4 Mfav4.1 Mfav6 Mfav6.1 Mfav7 Mfav7.1 Sev8 Sev8.1

A 200 200 280 322 379 379 391 391 453 465 190 196
B 200 203 292 322 379 379 389 391 471 486 187 190
C 200 200 283 313 375 375 419 429 453 471 190 193
D 197 200 301 322 375 379 423 423 465 486 190 196
E 200 200 283 316 375 391 389 389 453 474 190 193
F 197 197 307 313 375 375 391 391 462 471 190 202
G 197 200 301 328 379 379 391 391 474 474 193 205
H 197 200 280 307 383 383 389 389 453 453 190 193
1J 197 200 280 313 379 379 389 389 477 498 193 193

Parentage207

Larvae that amplified at > 2 loci were considered successful amplifications. A total number208

of 55 recruits (binary successes) were collected and of these 47 were amplified and 37 were209

assigned parentage. A total number of 129 swimming larvae (binary failures) were extracted210

and of these 112 amplified successfully and 81 were assigned parentage.211

Monte Carlo simulation for the likelihood ratio test212

To test whether the procedure proposed in this study provided any benefits over the traditional213

approach to performing a likelihood ratio test, we first simulated the true sampling distribution214

of the likelihood ratio statistic under the null hypothesis. This was accomplished by repeatedly215

simulating data from a model where the true among-sire variance (τ2) was zero. The cumula-216

tive distribution function (CDF) of this random variable is shown as a black curve (actual null)217

in Figure 3. We then calculated two approximations to this sampling distribution; these CDFs218

are also plotted in Figure 3. First, the red curve (theoretical null) shows a mixture distribution219

of a point mass at 0 (with probability 0.5) and χ2(1) random variable (with probability 0.5).220

This is the asymptotic approximation to the true null used in the traditional likelihood-ratio test221

of a variance component in a mixed-effects model. Second, the dotted grey curve (permutation222

null) shows the estimated null distribution obtained by running the permutation test on a single223

simulated data set. The permutation null is clearly a better approximation to the actual null224

than is the theoretical null, whose distribution is shifted to the right. This fact suggests that–at225
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least for data sets similar to ours–the asymptotic approximation is too conservative, and will226

therefore lead to reduced power at a specified false-positive rate.227

Statistics228

Using the described experimental design and statistical methods, we were unable to detect229

a significant random effect of sire, although there was a trend in overall variation in early230

settlement among sires (Figure 2). However, by bootstrapping the data, we were able to231

obtain an estimated τ2 of approximately 0.176 (0.42 standard deviation), corresponding to a232

narrow-sense heritability of around 0.2 (95% CI 0.0 - 1.0). Considering the number of sires233

used and offspring sampled in our study, the true narrow-sense heritability would have to234

be well above 0.6 to achieve 80% power (Figure 4a). Nevertheless, this experimental set up235

should be sufficiently powered to correctly fail to reject the null hypothesis if in fact the true236

among sire variance was zero (Figure 4b).237

Power analysis238

Power analysis results suggest that increasing the number of sires is the most effective239

mechanism to increase statistical power. Unfortunately, for heritabilities less then 0.4, very240

large numbers of sires will be required. The intuition is that substantial amounts of variability241

between sires is expected just due to sampling alone, and therefore statistical support for a242

non-zero heritability requires large sample sizes. Despite the lack of statistical power, this243

approach does have the desirable property of low false positive rates. For example, even with244

nine sires, we expect to have a nearly 90% chance of failing to reject the null hypothesis on245

data sets simulated with an among-sire variance equal to zero (Figure 4b). Lastly, if sequencing246

additional offspring is an option, statistical power can be improved (Figure 5).247

Discussion248

In this paper, we present an experimental and statistical methodology for estimating the249

heritability of traits in non-model, highly fecund organisms. We applied this approach250
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to determine whether settlement is a heritable trait in the reef-building coral O. faveolata.251

Although we did not find statistical support for a non-zero, heritability in this trait, a power252

analysis suggests we lacked a sufficient number of individuals. Our computational method253

includes code for fitting model parameters, performing model selection using a permutation254

test, and calculating the expected statistical power for proposed or completed studies. The255

power calculation method is especially important for studies requiring animal care and use256

approval and/or those with complex or expensive collection demands.257

Previous work suggests that heritable variation exists for a variety of traits across many258

marine organisms (Foo et al., 2012; Johnson et al., 2010; Kelly et al., 2013; Lobon et al., 2011;259

McKenzie et al., 2011; Parsons, 1997), including corals (Kenkel et al., 2011; Meyer et al.,260

2009). These studies have found significant heritability for nearly every trait measured in261

corals (Kenkel et al., 2011; Meyer et al., 2009, 2011; Carlon et al., 2011), but see Csaszar et al.262

(2010). In fact, one study specifically quantified the additive genetic variance in settlement263

rates of the Pacific reef-building coral Acropora millepora and found h2 = 0.49, however no264

variance around this mean was estimated (Meyer et al., 2009). It would not be surprising265

from an evolutionary standpoint if an ecologically important life-history trait such as larval266

settlement was heritable in other coral species, such as O. faveoalta. However, in this study267

we were unable to detect heritable variation, likely due to insufficient numbers of individuals.268

There is a rich quantitative genetics literature on estimating the heritability of binomial269

traits dating back to Wright (1917) and Fisher (1918); however, the first use of Generalized270

Linear Models fit to observed presence/absence data is from Gilmour et al. (1985), with key271

future contributions from Foulley et al. (1987) and Vazquez et al. (2009). These methods were272

originally developed for agricultural breeders, where fewer constraints exist on the number of273

families used to estimate the heritability–for example the viability of poultry (Robertson &274

Lerner, 1949), common genetic disorders of Holstein cows (Uribe et al., 1995) and root vigor275

in sugar beets (Biscarini et al., 2014, 2015). Uribe et al. (1995) estimated sire and residual276

variance components using REML modeling of 7416 paternal half-sib cows and found that277
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heritability of common diseases in cows ranged from 0 to 0.28. These sorts of numbers are278

unreasonable to sample in natural populations of corals since parentage is rarely known unless279

controlled crosses are completed and then the costs associated with genotyping thousands of280

individuals are prohibitive.281

A pair of recent papers by Biscarini et al. (2014 and 2015) developed a cross-validation282

based algorithm for selecting single nucleotide polymorphisms that maximally classified sugar283

beets into high and low root vigor. Therefore, our principle contribution is in terms of model284

selection, in the form of a permutation test to determine whether statistical support exists for a285

non-zero narrow-sense heritability, and the methods application to non-model organisms. In286

such organisms, where breeding, collection, and/or budgetary constraints may exist, such a287

model-selection procedure is essential.288

Our approach has three important caveats. First, as stated in the methods section, one289

cannot disentangle additive variation due to sire from dam-specific sire effects under the sire290

model Lynch & Walsh (1998). Therefore, conservatively, heritability estimates using our291

approach should be considered estimates of broad-sense heritability. Second, our methods292

are somewhat lacking in statistical power. For heritabilities thought to be typical of studies293

in non-model organisms, well more than 50 individuals may need to be typed across 9 sires,294

see Figures 4a and 5. However, our methods perform very well with respect to minimizing295

the type-I error rate, see Figure 4b. Lastly, as stated in the methods, the accepted approach–296

based on mixtures of chi-squared distributions–has even less statistical power and was a poor297

approximation to our observed null distribution. Future work should focus on adapting existing298

methods and developing new methods to allow for smaller sample sizes. This effort is meant299

to be a project that will grow and develop organically; therefore, we welcome suggestions and300

contributions and plan regular updates to the statistical methods.301
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Figure 1. Diagram representing the design of the common garden experiment. First,
independent fertilizations are completed for each sire and dam (in this case only one dam and
nine sires are used). Second, equal quantities of fertilized embryos are pooled into one single
common garden tank. This common garden is the split into three replicate tanks (N=400
larvae per tank). Settlement slides are added to each experimental tank and after 4 days the
settled larvae are collected and individually preserved. Larvae were then left for an additional
10 days and settled larvae were removed every few days. N=50 larvae that remained
swimming after 14 days were collected and individually preserved for genotyping, to compare
their parentage to the parentage of the early-settling larvae.
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Figure 2. Proportion of settled (successes) and swimming (failures) larvae belonging to each
sire. The total number of genotyped larvae assigning to each sire is indicated at the top of
each bar.
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Figure 3. The cumulative distribution functions for the actual (black solid), permutation
(gray dashed), and theoretical (red dashed) nulls are compared. The permutation null is a
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This suggests that asymptotic approximation to the true null distribution is inappropriate for
our data set.
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Figure 4. Power analysis for a varying number of sires. The offspring number was fixed, at
µ = 4.63 and size = µ2/(

√
12.63−µ) respectively, and the number of sires was varied

between 9 and 20. In panel a., the power to reject the null hypothesis of h2 = 0 is plotted as a
function of narrow-sense heritability (h2), where the true value of h2 > 0. In panel b., the
power to fail-to-reject the null hypothesis when the true value of h2 was equal to zero is
plotted for varying numbers of sires.
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Figure 5. Power analysis for a varying number of offspring. The mean number of offspring
genotyped per sire, µ , was varied between 4 and 20, while the size parameter for the negative
binomial distribution was µ2/(

√
µ(12.63/4.63)−µ). The number of sires was fixed at 9.

The power to reject the null hypothesis of h2 = 0 is plotted as a function of narrow-sense
heritability (h2), where the true value of h2 > 0.
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