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In the search for brain markers of optimal attentional focus, the mainstream approach has been to first define 

attentional states based on behavioral performance, and to subsequently investigate “neural correlates ” asso- 

ciated with these performance variations. However, this approach constrains the range of contexts in which 

attentional states can be operationalized by relying on overt behavior, and assumes a one-to-one correspondence 

between behavior and brain state. Here, we reversed the logic of these previous studies and sought to identify 

behaviorally-relevant brain states based solely on brain activity, agnostic to behavioral performance. In four in- 

dependent datasets, we found that the same two brain states were dominant during a sustained attention task. 

One state was behaviorally optimal, with higher accuracy and stability, but a greater tendency to mind wan- 

der (State1). The second state was behaviorally suboptimal, with lower accuracy and instability (State2). We 

further demonstrate how these brain states were impacted by motivation and attention-deficit/hyperactivity dis- 

order (ADHD). Individuals with ADHD spent more time in suboptimal State2 and less time in optimal State1 

than healthy controls. Motivation overcame the suboptimal behavior associated with State2. Our study provides 

compelling evidence for the existence of two attentional states from the sole viewpoint of brain activity. 
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. Introduction 

Attention is not constant but fluctuates from moment to mo-

ent between optimal and suboptimal focus ( Esterman and Roth-

ein, 2019 ; Fiebelkorn and Kastner, 2019 ; Fiebelkorn et al., 2018 ;

elfrich et al., 2018 ; Mackworth, 1948 ). The elucidation of the brain

echanisms required to sustain optimal attention is theoretically impor-

ant and translationally relevant ( Chun et al., 2011 ; Fortenbaugh et al.,

017a ; Fortenbaugh et al., 2017b ; Fortenbaugh et al., 2018 ; Huang-

ollock et al., 2012 ; Marchetta et al., 2008 ; Rosenberg et al., 2017 ;

osenberg et al., 2016a ). To understand the neural substrate of sus-

ained attention, two mainstream approaches have been taken. The first

as been to examine differences in brain activity based on attention fluc-

uations in behavioral performance (behavior to brain activity). The sec-

nd approach has been to investigate the relationship between the brain

onnectome and sustained attention ability (behavior to connectome).

ach of these approaches has advanced our understanding of sustained

ttention, but nonetheless has limitations. 
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Using the first approach, a wealth of previous studies dichotomized

ttention fluctuations into optimal and suboptimal states based on

ehavioral performance (stable reaction times or fewer attentional

apses/errors, less mind wandering, and vice versa) and investigated

he differences in brain activity between these behaviorally inferred

ttentional states ( Drummond et al., 2005 ; Esterman et al., 2013 ;

ortenbaugh et al., 2017b ; Fortenbaugh et al., 2018 ; Hilti et al.,

013 ; Hinds et al., 2013 ; Kelly et al., 2008 ; Kessler et al., 2016 ;

ucyi et al., 2017 ; Langner and Eickhoff, 2013 ; Lawrence et al., 2003 ;

eissman et al., 2006 ). Almost all studies have reported contrasting

rain-behavior relationships with brain regions in the default mode

etwork (DMN), dorsal attention network (DAN) and salience network

SAN), which are major intrinsic brain networks ( Laird et al., 2011 ). In

 growing number of studies, optimal performance states were associ-

ted with greater DMN activity, while suboptimal performance states

ere associated with greater DAN and SAN activity ( Esterman et al.,

013 ; Fortenbaugh et al., 2018 ; Kucyi et al., 2016 ; Kucyi et al., 2017 ).

owever, such approaches, which infer mental states based on behav-

or, implicitly assume a one-to-one correspondence between behavior

nd brain state. This constrains the estimated brain state. For example,

uboptimal attention (periods of low accuracy) could result from multi-
pril 2021 
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le distinct causes, such as hyper- or hypo-arousal, external distraction,

r mind wandering ( Esterman and Rothlein, 2019 ). These could be re-

ected in distinct brain states, albeit with similar behavior (e.g., lower

ccuracy). Such brain states could not be detected by relying on accu-

acy alone. Furthermore, these approaches rely on frequent responses

rom participants, which constrains the types of tasks that can be used

o identify attentional states. 

In addition to relating behavioral differences to brain activity,

revious studies have shown relationships between individual differ-

nces in sustained attention ability and the brain’s functional connec-

ome, defined as pairwise temporal correlations between brain regions

 Fortenbaugh et al., 2018 ; Kelly et al., 2008 ; Rosenberg et al., 2017 ;

osenberg et al., 2016a ; Thompson et al., 2013 ). For example, partici-

ants who have stronger anticorrelation between DMN and DAN/SAN

end to perform better ( Fortenbaugh et al., 2018 ; Kelly et al., 2008 ;

ucyi et al., 2020 ; Thompson et al., 2013 ), and connectivity patterns

utside of these networks can also predict individual differences in sus-

ained attention performance ( Rosenberg et al., 2016a ; Rosenberg et al.,

020 ). These findings implicate connectivity within and between func-

ionally different intrinsic brain networks in supporting sustained at-

ention ability across individuals. Recent work has also shown that

ithin-subject attentional fluctuations vary with DAN-DMN connec-

ivity as well as multivoxel information processing-based measures

 Rothlein et al., 2018 ). Nonetheless, whether and how the connectome

cross different intrinsic brain networks supports sustained attention

erformance via the intermediary of brain activity patterns remains un-

lear. 

To address these limitations in the link between brain activity and at-

entional states, we estimated brain states on the sole basis of brain activ-

ty during a sustained attention task, and examined if these brain states

ad reliable and replicable differences in task performance. Although

here are several methods for estimating brain state from brain activity

lone, such as Gaussian mixture modeling and hidden Markov models

 Ezaki et al., 2020 ), we used an energy landscape approach which de-

cribes a brain state as a brain activity pattern based on the brain’s con-

ectome ( Ezaki et al., 2018 ; Ezaki et al., 2017 ; Watanabe et al., 2014a ;

atanabe et al., 2014b ; Watanabe and Rees, 2017 ). The motivation

or the use of the energy landscape analysis was that previous stud-

es have shown that brain activity during multi-stable behaviors can be

escribed as a series of brain states and transitions between different at-

ractors on the energy landscape ( Deco et al., 2009 ; Friston et al., 2012 ;

atanabe et al., 2014b ), and such attractors are constrained by the

rain’s connectome ( Deco et al., 2012 ). In other words, the strength of

onnectivity across brain regions determines the stable brain states (at-

ractors), which are represented as brain activity patterns. Therefore, we

ypothesized that sustained attention fluctuates in concert with brain

ctivity patterns across intrinsic brain networks on the energy landscape

brain states), thereby bridging the inter-relationships between behav-

or, connectome, and brain activity pattern. In particular, we sought to

xamine the relationship between attentional state and brain-state using

his brain-first approach by asking two broad questions: (1) can stable

rain states be identified during a sustained attention task and if so, how

any?, (2) do the identified stable brain states correspond to consistent

ifferences in task performance? 

In addition to examining objective performance differences between

rain states during sustained attention, we replicated and extended

hese analyses to consider other factors that impact sustained attention.

pecifically, suboptimal sustained attention is commonly associated

ith self-reported mind wandering ( Christoff et al., 2009 ; Kucyi et al.,

016 ; Mittner et al., 2016 ). Therefore, using a dataset with intermit-

ent thought probes, we investigated not only differences in behavioral

erformance but also differences in self-reported mind-wandering be-

ween brain states. Additionally, it is frequently observed that indi-
2 
iduals with neuropsychiatric disorders of attention such as attention-

eficit hyperactivity disorder (ADHD) have impaired sustained atten-

ion performance compared to healthy controls ( Castellanos et al.,

006 ; Castellanos and Tannock, 2002 ; Fortenbaugh et al., 2017b ;

auser et al., 2016 ; Huang-Pollock et al., 2012 ; Marchetta et al., 2008 ;

osenberg et al., 2016a ). On the other hand, it is known that extrinsic

otivation improves sustained attention performance ( Esterman et al.,

017a ; Esterman et al., 2014a ; Reteig et al., 2019 ). Using an fMRI

ataset of individuals with ADHD, and another dataset that manipulated

otivation, we examined four possible ways these conditions could im-

act the observed brain states as follows: (1) the factor directly impacts

he nature of the brain state(s) (alters the brain activity pattern of the

rain state), (2) the factor impacts the dwell time in the brain state(s)

3) the factor impacts performance across all brain states equally, (4)

he factor impacts performance differentially in a subset of brain states.

ogether, we examined four datasets to discover and replicate the exis-

ence of behaviorally relevant brain states, described as activity patterns

cross the brain’s networks. Furthermore, by using intermittent thought-

robes we measured self-reported mind-wandering and compared the

egree of mind wandering between brain states. Finally, we considered

ow ADHD and motivation impacts the characteristics of these brain

tates. 

. Materials and methods 

.1. Overview of analyses 

We first demonstrated and validated a novel approach for defining

rain states based on brain activity during a sustained attention task

gnostic to behavioral performance, and compared behavioral perfor-

ance between brain states. Next, we investigated whether these states

nd behavioral differences could be replicated with three independent

atasets. Furthermore, by using intermittent thought-probes, we mea-

ured self-reported mind-wandering and compared the degree of mind

andering between brain states. Finally, we demonstrated the influence

f ADHD and motivation on these states. 

We measured brain activity using functional magnetic resonance

maging (fMRI) during a gradual onset continuous performance task

gradCPT). The gradCPT is a well-validated test of sustained attention,

reviously used to define attentional states based on reaction time vari-

bility fluctuations over time ( Esterman et al., 2013 ; Fortenbaugh et al.,

015 ; Fortenbaugh et al., 2018 ). In order to estimate brain states, we

sed a novel energy landscape analysis. Since attractors in the energy

andscape are local minima in brain activity patterns, a brain activ-

ty pattern can be defined as a brain state in a manner that is ag-

ostic to behavior. Using Dataset 1, we thus examined the observed

umber of brain states during sustained attention, and whether perfor-

ance differed during these distinct brain states. To statistically inves-

igate the difference in behavioral performance between brain states,

e conducted two-tailed t -tests and calculated Hedges’s g as the ef-

ect size ( Bonett, 2009 ; Hedges, 1981 ). We did not control for mul-

iple comparisons for this analysis, because we confirmed its repro-

ucibility by performing the same analysis on all 4 independent datasets.

ext, we provided additional support for these results using an indepen-

ent validation dataset for replication by using Dataset 2. Furthermore,

ith Dataset 2, by using intermittent thought-probes we measured self-

eported mind-wandering and compared the degree of mind wandering

etween brain states. To further replicate and extend these results, we

ased an additional set of experiments on studies that have shown that

ustained attention is improved by motivation ( Esterman et al., 2017a ;

sterman et al., 2014a ; Reteig et al., 2019 ) and impaired in individu-

ls with ADHD ( Fortenbaugh et al., 2017b ; Huang-Pollock et al., 2012 ;

archetta et al., 2008 ; Rosenberg et al., 2017 ; Rosenberg et al., 2016a ).
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Table 1 

Imaging protocols in every dataset. 

Dataset Dataset 1 Dataset 2 Dataset 3 Dataset 4 

Number of participants 16 29 19 16 

MRI scanner MAGNETOM Trio CONNECTOM CONNECTOM MAGNETOM Trio 

Magnetic field strength 3T 3T 3T 3T 

Channels per coil 12 64 64 32 

Scan parameters for functional image 

Field of view (mm) 192 × 192 110 × 110 110 × 110 192 × 192 

Matrix 64 × 64 55 × 55 55 × 55 64 × 64 

Number of slices 33 68 68 33 

Number of volumes 248 for gradCPT 

188 for rsfMRI 

∗ About 490 ∗ About 490 248 

Slice thickness (mm) 3 2 2 3 

TR (ms) 2,000 1,080 1,080 2,000 

TE (ms) 30 30 30 30 

Total scan time (min: 

s) 

8:16 for gradCPT 

6:16 for rsfMRI 

∗ About 8:48 ∗ About 8:48 8:16 

Flip angle (degree) 90 60 60 90 

Gradual onset continuous performance task (gradCPT) 

Task type Original gradCPT gradCPT with thought 

probe 

gradCPT with thought 

probe 

gradCPT with reward 

Inter stimulus interval 

(ms) 

800 1,300 1,300 800 

Number of runs 3 4 4 3–5 

Scan parameters for structural image 

TR (ms) 2,530 2,530 2,530 2,530 

TE (ms) 3.32 1.15 1.15 3.32 

Flip angle (degree) 7° 7° 7° 7°

Field of view (mm) 256 × 256 256 × 256 256 × 256 256 × 256 

In-plane resolution 

(mm 

2 ) 

1.0 1.0 1.0 1.0 

Slice thickness (mm) 1.0 1.0 1.0 1.0 

∗ The number of volumes in Dataset 2 were different across subjects and runs, the mean number of volumes collected per run averaged 490. 
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pecifically, we used Dataset 3, a gradCPT dataset in adults with ADHD,

nd Dataset 4, a gradCPT dataset with and without reward-based moti-

ation to investigate how ADHD and motivation impact the brain states

nd behavioral performance during these states. For our statistical anal-

ses, we applied mixed-effects linear regression models to the dwell time

nd behavioral performance with brain state, the additional factors (mo-

ivation, ADHD), and their interaction as fixed effects, and subject as

 random effect. We tested the fixed effects with t -tests on mixed ef-

ects model. We calculated Cohen’s f 2 for fixed effects as the effect size

 Lorah, 2018 ) . In these analyses with the additional factors, we report

 -values with and without correction for multiple comparisons. Correc-

ions for multiple testing were performed with the false discovery rate

FDR) procedure ( Benjamini and Hochberg, 1995 ; Benjamini and Yeku-

ieli, 2001 , 2005 ) for the number of hypotheses (4 measurements for

otivation and 5 measurements for ADHD). In the following sections,

e first explain the gradCPT task and fMRI analyses that are common

o all datasets, followed by dataset-specific details. 

.2. gradual onset continuous performance task 

The gradCPT contained 10 round, grayscale photographs of moun-

ain scenes and 10 of city scenes. These scenes were randomly presented

ith 10% mountain and 90% city, without allowing the identical scene

o repeat on consecutive trials. Scene images gradually transitioned from

ne to the next, using a linear pixel-by-pixel interpolation, with each

ransition occurring in 800 ms (fast version; Dataset 1 and Dataset 2) or

300 ms (slow version; Dataset 3 and Dataset 4) ( Table 1 ). Participants

ere instructed to press a button for each city scene, and withhold re-

ponses to mountain scenes. Response accuracy was emphasized without

eference to speed. However, given that the next stimulus would replace

he current stimulus in 800/1300 ms, a response deadline was implicit

n the task. 
3 
.2.1. Calculation of reaction time 

Reaction times (RT) were calculated relative to the beginning of each

mage transition, such that an RT of 800/1300 ms (slow vs. fast versions,

ee Table 1 ) indicates a button press at the moment image n was 100%

oherent and not mixed with other images. A shorter RT indicates that

he current scene was still in the process of transitioning from the pre-

ious, and a longer RT indicates that the current scene was in the pro-

ess of transitioning to the subsequent scene. So, for example, an RT of

20/1170 ms would be at the moment of 90% image n and 10% image

 − 1, and so forth. On rare trials with highly deviant RTs (before 70%

oherence of image n and after 40% coherence of image n + 1) or multi-

le button presses, an iterative algorithm maximized correct responses

s follows. The algorithm first assigned unambiguous correct responses,

eaving few ambiguous button presses (presses before 70% coherence

f the current scene and after 40% coherence of the following scene or

ultiple presses occurred on < 5% of trials). Second, ambiguous presses

ere assigned to an adjacent trial if 1 of the 2 had no response. If both

djacent trials had no response, the press was assigned to the closest

rial, unless one was a no-go target, in which case subjects were given

he benefit of the doubt that they correctly omitted. Finally, if there

ere multiple presses that could be assigned to any 1 trial, the fastest

esponse was selected. Slight variations to this algorithm yielded highly

imilar results, as most button presses showed a 1–1 correspondence

ith presented images ( Esterman et al., 2013 ). 

.2.2. Calculation of reaction time variability 

Although attentional fluctuations are commonly assessed with ac-

uracy measures, another way in which subtler trial-to-trial varia-

ions have been explored is through the analysis of RT variability

 Esterman et al., 2013 ; MacDonald et al., 2009 ; MacDonald et al., 2006 ).

igh RT variability has been specifically linked to impairments of atten-

ion and executive function in individuals with ADHD ( Castellanos et al.,
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006 ). RT variability was computed from the correct responses in each

un (following z-transformation of RTs within-subject to normalize the

cale of the RT variability), where the value assigned to each trial repre-

ented the absolute deviation of the trial’s RT from the mean RT of the

un. We reasoned that deviant RTs, whether fast or slow, represented re-

uced attention to the task as follows: extremely fast RTs often indicate

remature responding and inattention to the potential need for response

nhibition ( Cheyne et al., 2009 ), while extremely slow RTs might indi-

ate reduced attention to or inefficient processing of the ongoing stream

f visual stimuli, requiring more time to accurately discriminate scenes

 Weissman et al., 2006 ). Values for trials without responses (omission

rrors and correct trials) were interpolated linearly, such that the miss-

ng values were linearly estimated from RTs of the 2 surrounding tri-

ls. A smoothed RT variability time course was computed using a Gaus-

ian kernel of 9 trials (~7 s) full-width at half-maximum (FWHM), thus

ntegrating information from the surrounding 20 trials, or 16 s, via a

eighted average. This choice was based on prior work linking fluc-

uations around this frequency to attentional impairments ( Di Martino

t al., 2008 ). 

.2.3. Calculation of accuracy 

In addition to mean RT and RT variability, we calculated perfor-

ance accuracy (d prime). d prime is an index of accuracy, or per-

eptual sensitivity, that can simultaneously account for hit rate and

alse alarm rate. In this case, a hit indicates correct omission to the

ountain image (correct omission), and a false alarm is a failure to re-

ponse to a city scene (omission error); d prime was calculated as z(hit

ate) − z(false alarm rate). Here z is normal probability density function

n SciPy ( Virtanen et al., 2019 ). 

.3. fMRI analysis 

Imaging protocols are summarized in Table 1 for all datasets. 

.3.1. Preprocessing 

We performed preprocessing of the fMRI data using FM-

IPREP version 1.3.0 ( Esteban et al., 2019 ). Preprocessing

teps included realignment, coregistration, segmentation of T1-

eighted structural images, normalization to Montreal Neuro-

ogical Institute space. For more details of the pipeline, see

ttp://fmriprep.readthedocs.io/en/latest/workflows.html . 

.3.2. fMRI signal extraction from brain networks 

We extracted the time series of blood oxygen level dependent (BOLD)

rom each of 400 regions of interest (ROIs). The 400 ROIs were defined

s 4-mm spheres around the center coordinates that were determined in

he previous studies ( Schaefer et al., 2018 ) ( Fig. 1 a). The BOLD signal

ime courses were extracted with spatial smoothing using an isotropic

aussian kernel of 6 mm full-width at half-maximum from these 400

OIs. 

To remove several sources of spurious variance from the 400 ROIs’

ignal time courses, we used linear regression with eighteen regression

arameters, including six motion parameters, an average signal over the

hole brain, six physiological noise regressors, and five event-related

ask regressors on the BOLD response time course. Six physiological

oise regressors were extracted by applying CompCor ( Behzadi et al.,

007 ). Principal components were estimated for the anatomical Comp-

or (aCompCor). A mask to exclude signals with a cortical origin was ob-

ained by eroding the brain mask and ensuring that it contained subcor-

ical structures only. Six aCompCor components were calculated within

he intersection of the subcortical mask and union of the CSF and WM

asks calculated in T1-weighted image space after their projection to

he native space of functional images in each session. To account for

nd regress out task events (commission error, correct omission, correct

ommission, omission error) and trial-to-trial RT, we estimated BOLD

esponse time courses of each event type by using hemodynamic_models
4 
unction implemented in Nistat ( https://nistats.github.io/ ). To account

or variance and mean differences across run and participant, we stan-

ardized the BOLD signal time course for each ROI (shifted to zero

ean and scaled to unit variance) after noise regression. These ROIs

ere then classified into seven functionally different brain networks

 Schaefer et al., 2018 ) ( Fig. 1 a). For each participant, we then calcu-

ated seven time series that represented the activity of these brain net-

orks ( Fig. 1 b) by averaging BOLD signal time courses in the 400 ROIs

orresponding to those brain networks. Using the voxel-wise network

verage time series instead of the ROI-wise network average produced

early identical patterns of results. 

.3.3. Pairwise maximum entropy model 

We fit the pairwise Maximum entropy model (MEM) to the pre-

rocessed BOLD signals as follows in the same manner as that em-

loyed in previous studies ( Ezaki et al., 2018 ; Ezaki et al., 2017 ;

atanabe et al., 2013 , 2014a ; Watanabe et al., 2014b ; Watanabe and

ees, 2017 ). We used open toolbox so called Energy Landscape Analy-

is Toolkit ( https://sites.google.com/site/ezakitakahiro/software ). For

ach network activity time series, we first binarized the obtained BOLD

ignals with a threshold that was defined as the time-averaged activ-

ty of the network activity. We then concatenated BOLD signals from

ll runs and all participants for each network activity. Previous stud-

es suggest that binarization does not eliminate important information

ontained in originally continuous brain signals ( Watanabe et al., 2013 ,

014a ; Watanabe et al., 2014b ). In this method, the binarized activity 𝜎𝑡 
𝑖 

t network i and discrete time t is either active or inactive ( + 1 or 0). The

ctivity pattern at time t is described by 𝑉 𝑡 = [ 𝜎𝑡 1 , 𝜎
𝑡 
2 , … , 𝜎𝑡 

𝑁 

] T where

 ( = 7) is the number of the networks. The k th brain activity pattern

s described by 𝑉 𝑘 ( 𝑘 = 1 , 2 , … , 2 𝑁 ) . Especially, when the empirical

ctivation of network i , ⟨𝜎𝑖 ⟩ = ( 1∕ 𝑇 ) 
𝑇 ∑
𝑡 =1 

𝜎𝑡 
𝑖 
, and the empirical pairwise

nteraction between networks i and j , ⟨𝜎𝑖 𝜎𝑗 ⟩ = ( 1∕ 𝑇 ) 
𝑇 ∑
𝑡 =1 

𝜎𝑡 
𝑖 
𝜎𝑡 
𝑗 
, where T

s the number of volumes, are estimated from the data, the probabil-

ty distribution of the k th brain activity pattern with the largest en-

ropy is the Boltzmann distribution ( Jaynes, 1957 ). That is, 𝑃 ( 𝑉 𝑘 ) =

 

𝐸( 𝑉 𝑘 ) ∕ 
2 𝑁 ∑
𝑙=1 

𝑒 − 𝐸( 𝑉 𝑙 ) , where 𝐸( 𝑉 𝑘 ) is the energy of activity pattern 𝑉 𝑘 and is

iven by 

 

(
𝑉 𝑘 

)
= − 

𝑁 ∑
𝑖 =1 

ℎ 𝑖 𝜎𝑖 
(
𝑉 𝑘 

)
− 

1 
2 

𝑁 ∑
𝑖 =1 

𝑁 ∑
𝑗 =1 , 𝑗 ≠𝑖 

𝐽 𝑖𝑗 𝜎𝑖 
(
𝑉 𝑘 

)
𝜎𝑗 
(
𝑉 𝑘 

)
. (1)

Here, 𝜎𝑖 ( 𝑉 𝑘 ) represents the binarized activity ( + 1 or 0) at region

 under activity pattern 𝑉 𝑘 . We calculated ℎ 𝑖 and 𝐽 𝑖𝑗 by maximum

ikelihood estimation to adjust the model-based activation of network

 , ⟨𝜎𝑖 ⟩𝑚𝑜𝑑𝑒𝑙 and the model-based pairwise interaction between net-

orks i and j , ⟨𝜎𝑖 𝜎𝑗 ⟩𝑚𝑜𝑑𝑒𝑙 toward the empirical activation of network

 , ⟨𝜎𝑖 ⟩ and the empirical pairwise interaction between networks i and

 , ⟨𝜎𝑖 𝜎𝑗 ⟩, respectively. Here, ⟨𝜎𝑖 ⟩𝑚𝑜𝑑𝑒𝑙 = 

2 𝑁 ∑
𝑙=1 

𝜎𝑖 ( 𝑉 𝑙 ) 𝑃 ( 𝑉 𝑙 ) and ⟨𝜎𝑖 𝜎𝑗 ⟩𝑚𝑜𝑑𝑒𝑙 =
2 𝑁 ∑
=1 

𝜎𝑖 ( 𝑉 𝑙 ) 𝜎𝑗 ( 𝑉 𝑙 ) 𝑃 ( 𝑉 𝑙 ) . Please note that this energy value does not indicate

ny biological energy. It is rather a statistical index that indicates the

ccurrence probability of each brain activity pattern. For instance, ac-

ivity patterns with lower energy values tend to occur more frequently.

f note, in equation (1) the energy of activity pattern 𝑉 𝑘 depends on

 𝑖𝑗 , which is known to represent the anatomical connection between

etworks i and j ( Watanabe et al., 2013 ). That is, the energy of activity

attern 𝑉 𝑘 is based on the connectome across networks. 

We confirmed whether the pairwise MEM accurately fit to the data

y calculating Pearson’s correlation coefficient between empirical ap-

earance probability and model appearance probability 𝑃 ( 𝑉 𝑘 ) (Supple-

entary Figure 1). Empirical appearance probability of brain activity

http://fmriprep.readthedocs.io/en/latest/workflows.html
https://nistats.github.io/
https://sites.google.com/site/ezakitakahiro/software
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Fig. 1. Procedures of energy landscape analysis. (a) Region of interests (ROIs) from Schaefer atlas ( Schaefer et al., 2018 ). The color indicates functionally different 

brain networks. (b) Blood oxygen level dependent (BOLD) signals of seven functionally different brain networks were calculated as average BOLD signals in the 400 

ROIs corresponding to those brain networks. (c) Hypothetical energy landscape and local minima brain activity pattern and adjacent patterns. Individual brain 

activity patterns are represented as each brain region being active (pink) or inactive (white). (d) Hypothetical time course of brain activation patterns to time course 

of brain state. DMN: default mode network; Lim: limbic; FPN: frontoparietal network; DAN: dorsal attention network; SAN: salience network; SMN: somatomotor 

network; Vis: visual. 
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attern 𝑉 𝑘 is calculated by ( 1∕ 𝑇 ) 
𝑇 ∑
𝑡 =1 

𝑧 𝑡 
𝑘 
, where 𝐳 𝑡 is a K -dimensional

inary variable having a 1-of- K representation in which a particu-

ar element 𝑧 𝑡 
𝑘 

is equal to 1 and all other elements are equal to 0.

he values of 𝑧 𝑡 
𝑘 

therefore satisfy 𝑧 𝑡 
𝑘 

∈ { 0 , 1 } and 
∑
𝑘 

𝑧 𝑡 
𝑘 
= 1 , and we

ee that there are K ( = 2 𝑁 ) possible brain activity patterns for the

ector 𝐳 𝑡 at time t according to which element is nonzero. In non-

echnical terms, this confirms whether the model successfully fit the

ata. 

b  

5 
.3.4. Energy landscape analysis (Definition of brain state) 

We calculated the energy landscape as done in the previous stud-

es ( Ezaki et al., 2018 ; Ezaki et al., 2017 ; Watanabe et al., 2014b ;

atanabe and Rees, 2017 ). The energy landscape is defined as a graph

f brain activity patterns 𝑉 𝑘 with the corresponding energy 𝐸( 𝑉 𝑘 ) . Two

ctivity patterns are regarded as adjacent in the graph if they take the

pposite binary activity at just one brain region. We first exhaustively

earched for local energy minima, whose energy value is smaller than

hose of all the N adjacent patterns ( Fig. 1 c). We then summarized all

rain activity patterns into local minimum brain states. The number of
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rain states (local minimum brain states) is determined in a data-driven

anner. We first selected a starting brain activity pattern i among the

 

𝑁 brain activity patterns. Then, if any of its neighbor patterns has a

maller value of energy than pattern i , we moved to the neighbor pat-

ern with the smallest energy value. Otherwise, we did not move, which

mplied that pattern i was a local minimum. We repeated this procedure

ntil arriving at a local minimum. The starting pattern i was regarded

o belong to the local minimum brain state that was finally reached. We

stimated the corresponding local minimum brain state for all brain ac-

ivity patterns, so that we could estimate the time series of brain states

rom the time series of brain activity patterns ( Fig. 1 d). 

.3.5. Calculation of dwell time in a brain state 

A percentage of dwell time in each brain state 𝑆 𝑘 ′ is calculated by

00 × ( 1∕ 𝑇 ′) 
𝑇 ′∑
𝑡 =1 

𝑠 𝑡 
𝑘 ′

for each participant, where 𝑇 ′ is the number of vol-

mes in each participant and 𝑠 𝑡 
𝑘 ′

is an element of the vector 𝐬 𝑡 which

s a 𝐾 

′-dimensional binary variable having a 1-of- 𝐾 

′ representation of

rain states at time t . Here, 𝐾 

′ is the number of brain states. A particular

lement 𝑠 𝑡 
𝑘 ′

is equal to 1 and all other elements are equal to 0 so that

e see which brain state a participant is in at time t according to which

lement is nonzero. 

.4. Dataset 1 (gradCPT dataset) 

We examined the observed number of brain states during the grad-

PT and resting state, and whether performance differed during these

istinct brain states. In order to investigate whether local minimum

rain states were identical during gradCPT and resting state, energy

andscape analysis was performed separately. 

.4.1. Participants and task paradigm 

Sixteen participants (6 males, ages 18–34 years, mean age = 24.1

ears) performed the gradCPT during fMRI. Subjects completed the

hree 8 min gradCPT runs and one 6 min resting-state fMRI. The data

sed in this study and portions of the methods have been published

 Esterman et al., 2013 ), but the current analyses and results have not

een published elsewhere. All participants were right-handed, with nor-

al or corrected-to-normal vision and no reported history of major med-

cal illness, head trauma, neurological, or psychiatric disorder. The study

as approved by the VA Boston Healthcare System IRB, and written con-

ent was obtained from all participants. 

.4.2. Brain behavior relationship analysis 

If brain activity during gradCPT can be described as transitions be-

ween behaviorally different attentional states ( Esterman et al., 2013 )

 Fig. 1 d), such states should correspond to stable brain states which

ave local energy minima. After defining local minimum brain activ-

ty patterns as brain states, all participants had a brain state transition

ime series and a behavioral time series. Thus, we calculated behavioral

erformance during each brain state. We shifted the time labels of the

rain states backwards by 5 seconds to account for the hemodynamic

esponse lag. 

.5. Dataset 2 (gradCPT with thought probe dataset) 

We attempted to replicate the results in Dataset 1 using an indepen-

ent dataset. Furthermore, in this dataset we measured self-reported

ind-wandering by using intermittent thought-probes and compared

he degree of mind wandering between brain states. 

.5.1. Participants and Task paradigm 

Twenty-nine participants (13 males, ages 21–36 years, mean

ge = 26.4 years) performed the long inter-stimulus interval (ISI) grad-

PT (1300 ms compared to 800 ms in the Dataset 1) during fMRI. Sub-

ects completed four long-ISI gradCPT runs with intermittent thought-

robes. The data used in this study and portions of the methods have
6 
een published ( Kucyi et al., 2016 ), but the current analyses and results

ave not been published elsewhere. Subjects were screened by phone

nd at an initial visit before the day of neuroimaging, where subjects

ere also trained on performing the long-ISI gradCPT. Exclusion crite-

ia were as follows: current mood, psychotic, anxiety (excluding simple

hobias) or ADHD, current use of psychotropic medication, full-scale

Q less than 80, neurological disorders, sensorimotor handicaps, cur-

ent alcohol or substance abuse/dependence, and claustrophobia. The

tudy was approved by the Partners Human Research Institutional Re-

iew Board, and written consent was obtained from all participants. 

Participants performed the gradCPT, modified here to include

hought-probes. Thought-probes appeared pseudo-randomly every 44–

0 s (three possible block durations of 44, 52, and 60 s). Rather than

radually transitioning into another scene image, the last scene before

he thought-probe faded into a scrambled image (to give subjects a sim-

lar amount of time to respond as in other trials). Upon the thought-

robe, a question was displayed: “To what degree was your focus just

n the task or on something else? ” A continuous scale appeared be-

ow the question text with far-right and far-left anchors of “only task ”

nd “only else ”, respectively. Subjects pressed buttons with their mid-

le and ring fingers to move the scale left and right, respectively, and

ith their thumb to enter their response. Responses were recorded on

 graded scale of integers (not visible to the subjects) ranging from 0

only task) to 100 (only else). A second self-paced question screen about

eta-awareness of task-related focus ( “To what degree were you aware

f where your focus was? ”) appeared after the thought-probe, but re-

ponses for this second question were not included in the present analy-

es. The gradCPT immediately resumed after subjects entered their ques-

ion responses (except for the last thought-probe in the run). Scanning

as manually stopped after each gradCPT thought-probe run. 

.5.2. Brain behavior relationship analysis 

We applied the identical analysis procedure as in Dataset 1 (see 2.4.3

rain behavior relationship analysis ). Since mind-wandering was mea-

ured intermittently, we estimated the time series of mind-wandering

y performing linear interpolation, so that we could calculate mind-

andering during each brain state. 

.6. Dataset 3 (ADHD gradCPT dataset) 

We investigated how ADHD impacts the character of the brain states

activity patterns and frequency of these states) and behavioral perfor-

ance during these states. 

.6.1. Participants and task paradigm 

Nineteen adults with ADHD (8 males, ages 18–34 years, mean

ge = 24 years) also performed the gradCPT during fMRI data collec-

ion. The task paradigm was completely same as in Dataset 2 (see 2.5.1

articipants and Task paradigm ). The study was approved by the Partners

uman Research Institutional Review Board, and written consent was

btained from all participants. 

.6.2. Brain behavior relationship analysis 

We investigated the effect of ADHD. We applied the identical analysis

rocedure as in Dataset 2 (see 2.5.3 Brain behavior relationship analysis )

o this ADHD dataset. For statistical analysis, we applied a mixed-effects

inear regression model to dwell time and behavioral performance with

rain state, ADHD (compared to healthy control [HC]), and their inter-

ctions, as fixed effects, and subject as a random effect. We used the re-

ults of the HCs from Dataset 2 as a comparison, because task paradigms

ere identical. 

.7. Dataset 4 (gradCPT with reward dataset) 

We investigated how motivation impacted the character of the brain

tates (activity patterns and frequency of these states) and behavioral

erformance during these states. 
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.7.1. Participants and task paradigm 

Sixteen participants (10 males, ages = 19–29, mean age = 22 years)

ompleted three to five 8-min runs of the gradCPT (13 participants com-

leted five runs, 2 completed four runs, and 1 completed three runs) dur-

ng fMRI. The data used in this study and portions of the methods have

een published ( Esterman et al., 2017a ), but the current analyses and

esults have not been published elsewhere. Fourteen participants were

ight-handed and all were considered healthy, had normal or corrected-

o-normal vision, and no reported history of major illness, head trauma,

r neurological/psychiatric disorders. All were screened to confirm no

etallic implants or history of claustrophobia. Drug/medication use was

ot explicitly assessed. The study protocol was approved by the VA

oston Healthcare System Institutional Review Board, and all partici-

ants gave written informed consent. 

In this dataset, each 8-min task run was divided into alternating

-min rewarded (motivated) and unrewarded (unmotivated) blocks,

hich were differentiated by a continuous color border (green for re-

arded; blue for unrewarded). To have the background colors be more

ntuitive and avoid confusion, “green ” was chosen for rewarded blocks

n all participants rather than counterbalancing green and blue colors.

his yielded 4 min of each block-type per run. Similar to our previous

tudy ( Esterman et al., 2014a ), participants earned $0.01 for correctly

ressing to city scenes and $0.10 for correctly withholding a response

o mountain scenes during rewarded blocks. However, if a participant

ailed to press to a city scene, they would lose $0.01, and if a partic-

pant incorrectly pressed to a mountain scene, they would lose $0.10.

uring the unrewarded blocks, no money could be gained or lost. These

dentical reward contingencies were shown to produce reliable improve-

ents in accuracy and RT variability in a study with 54 participants

 Esterman et al., 2014a ), and in previously published work with this

ata ( Esterman et al., 2017a ), thus a priori , we were certain the payoff

atrix successfully modulated sustained attention performance. 

.7.2. Brain behavior relationship analysis 

First, we aimed to replicate the previous results, using the unmoti-

ated blocks only, as previous datasets included no extrinsic motivation.

ext, we investigated how reward-induced motivation affects perfor-

ance and brain states. Each 8 min task run was divided into alternat-

ng 1 min motivated (rewarded) and unmotivated (unrewarded) blocks

ielding 4 min of each block-type per run. To investigate whether stable

rain states differ between motivated and unmotivated blocks, we di-

ided all BOLD signals during this task into rewarded and unrewarded

locks and concatenated BOLD signals from all participants for each

lock. We then conducted the energy landscape analysis separately in

ach block type and investigated the stable brain states. We then cal-

ulated behavioral performance during each brain state for each block

ype separately. We shifted the time labels of the brain states backwards

y 5 s to account for the hemodynamic response. For statistical analy-

is, we applied a mixed-effects linear regression model to dwell time and

ehavioral performance with brain state, reward/nonreward, and their

nteraction as fixed effects, and subject as a random effect. 

. Results 

.1. Local energy minimum brain states during gradual onset continuous 

erformance task (Dataset 1) 

First, we confirmed the pairwise MEM accurately fit the data (Sup-

lementary Figure 1). This result indicates that estimation of energy

n each brain activity pattern was accurate. Next, based on this MEM,

wo local minimum brain states were identified during the gradCPT and

esting state. Fig.2 a (left) shows the brain activity patterns in the 7 net-

orks for the 2 local minimum brain states and Fig. 2 a (right) shows

he percentage of dwell time for each state during the gradCPT. One

tate (State1) was characterized as activation of the DMN and limbic

etworks, and the other state (State2) was characterized as activation
7 
f frontoparietal network (FPN), DAN, SAN, somato-motor (SMN) and

isual networks. Fig. 2 b (left) shows the brain activity patterns in the 7

etworks for the 2 local minimum brain states and Fig. 2 b (right) shows

he percentage of dwell time for each state during resting state. The first

tate (State1) was characterized as activation of DMN, FPN, and limbic

etworks and the other state (State2) was characterized as activation of

AN, SAN, SMN and visual networks. We found that participants spent

ore time in State2 during gradCPT than in State1 and more time in

tate1 during rest than in State2 (gradCPT: t 15 = 2.17, P = 0.046, effect

ize (Hedges’s g ) = 0.54; rest: t 15 = 3.92, P = 0.0014, effect size (Hedges’s

 ) = 0.98, paired t -test for dwell time in State1 and State2). 

Only the FPN activation was different between states during the

radCPT and during rest. Although we found 2 local minimum brain

tates in both the gradCPT and rest, activation of the FPN differed. We

onsider whether this difference is meaningful in a follow up analysis

 3.4 Follow up analysis of FPN in brain states ). Furthermore, we investi-

ated the dwell time of individual activity patterns in each brain state.

e found that the local minimum brain activity pattern had the longest

r 2 nd longest dwell time in both brain states (Supplementary Figure 2).

We confirmed two dominant brain states were robust to choice of

OIs (Supplementary Figures 3) ( Power et al., 2011 ; Schaefer et al.,

018 ). For example, when we used the Power’s 264 ROIs categorized by

4 networks and conducted the identical procedure (see 2.3 fMRI anal-

sis ), we found six local minimum brain states and two of them were

ominant during the gradCPT (the percentages of dwell time in both

rain states were over 40%) (Supplementary Fig. 3). We found these

wo dominant states were similar to the brain states using Schaefer’s

tlas. One state was characterized as activation of the DMN, memory

etrieval network, and “uncertain ” and was similar to State1 in Schae-

er’s atlas. The other state was characterized as activation of cerebellar,

ingulo-opecular, DAN, FPN, SAN, SMN, subcortical, ventral attention,

nd visual networks and was similar to State2 in Schaefer’s atlas. Fur-

hermore, in the current analysis we calculated 7 network time series

y averaging BOLD signal time courses at the ROI-level following the

rocedure in previous work ( Watanabe and Rees, 2017 ). We also cal-

ulated the 7 network time series by averaging the BOLD signal time

ourses for the voxel level. The results were almost identical as those in

he main text. These results indicate that fluctuations of brain activity

an be described as dynamic transitions between two dominant brain

tates. 

We then examined behavioral differences in performance between

tate1 and State2. We focused on variables commonly used to assess

he optimality of sustained attention, including reaction time variabil-

ty, reaction time, and accuracy (d prime) as measures of performance.

e found that d prime was significantly higher during State1 than dur-

ng State2 (paired t -test. Reaction time variability: t 15 = 1.55, P = 0.14,

ffect size (Hedges’s g ) = 0.39; Mean reaction time: t 15 = 1.26, P = 0.23,

ffect size (Hedges’s g ) = 0.31; d prime: t 15 = 3.24, P = 0.0055, effect

ize (Hedges’s g ) = 0.81, two-sided without correction for multiple com-

arisons) ( Fig. 2 c–e). This result indicates that participants maintained

ore accurate performance during State1 than those during State2. Fur-

hermore, we confirmed that the behavioral differences in performances

etween the states were robust to our choice of ROIs (Supplementary

igure 3). 

.2. Replication and investigation of mind wandering (Dataset 2) 

Next, we attempted to replicate the results in Dataset 1 using an

ndependent dataset (Dataset 2) and investigate whether the degree of

ind wandering differed between brain states. First, we confirmed the

airwise MEM accurately fit to the data (Supplementary Figure 1). This

esult indicates that estimation of energy in each brain activity pattern

as accurate. Again, we found two local minimum brain states in this

ndependent gradCPT dataset ( Fig. 3 a). Generally consistent with the

revious dataset, one state was characterized as activation of DMN, FPN,

nd limbic networks (State1) and the other state was characterized as
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Fig. 2. Energetically stable brain states and behavioral performance during these states. (a) Stable brain states during gradual onset continuous performance 

task (gradCPT). Individual state is represented by an activity pattern in which each brain region is active (blue and red) or inactive (white). Bar graph shows the 

percentage of dwell time during gradCPT in each individual state. Blue bar shows State1 and red bar shows State2. Each scatter shows each participant. Brain images 

indicate brain activation in each brain state. (b) Stable brain states during rest. Bar graph shows percentage of dwell time during rest in each individual state. Brain 

images indicates brain activation in both brain states. (c–e) Behavioral performance in each brain state during gradCPT. (c) Reaction time variability. (d) Mean 

reaction time. (e) Accuracy (d prime). Each scatter shows each participant and lines connect the same participant. ∗ ∗ P < 0.01. DMN: default mode network; Lim: 

limbic; FPN: frontoparietal network; DAN: dorsal attention network; SAN: salience network; SMN: somatomotor network; Vis: visual. 
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ctivation of DAN, SAN, SMN and visual networks (State2). We found

hat participants spend more time in State1 than in State2 ( t 28 = 3.30,

 = 0.0026, effect size (Hedges’s g ) = 0.61, paired t -test for dwell time

n State1 and State2, data shown in Fig 4 b [HC]). 

Furthermore, we found that behavioral performance was signifi-

antly different between State1 and State2, such that performance in

tate1 was more accurate, as well as faster and less variable (paired
8 
 -test. Reaction time variability: t 28 = 5.01, P = 2 . 7 × 10 −5 , effect size

Hedges’s g ) = 0.93; Mean reaction time: t 28 = 5.90, P = 2 . 4 × 10 −6 , ef-

ect size (Hedges’s g ) = 1.09; d prime: t 28 = 4.60, P = 8 . 3 × 10 −5 , ef-

ect size (Hedges’s g ) = 0.85, two-sided without correction for multi-

le comparisons; Fig. 3 b-d). Despite better performance, the degree of

ind wandering was higher in State1 (Mind wandering score: t 28 = 4.31,

 = 0.00018, effect size (Hedges’s g ) = 0.80; Fig. 3 e). Although we found
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Fig. 3. Replication and mind wandering difference between brain states. (a) Stable brain states during gradual onset continuous performance task (gradCPT). 

Individual state is represented by an activity pattern in which each brain region is active (blue and red) or inactive (white). Brain images indicate brain activation in 

each brain state. (b–e) Behavioral performance in each brain states during the gradCPT. (b) Reaction time variability. (c) Mean reaction time. (d) Accuracy (d prime). 

(e) Mind wandering score. Each scatter shows each participant and lines connect the same participant. ∗ ∗ ∗ P < 0.001, ∗ ∗ ∗ ∗ P < 10 −4 , ∗ ∗ ∗ ∗ ∗ P < 10 −5 . DMN: default mode 

network; Lim: limbic; FPN: frontoparietal network; DAN: dorsal attention network; SAN: salience network; SMN: somatomotor network; Vis: visual. 

Fig. 4. Effect of ADHD on dwell time and behavioral performance. (a) Stable brain states during gradual onset continuous performance task (gradCPT). The 

individual state is represented by an activity pattern in which each brain region is active (blue and red) or inactive (white). Brain images indicate brain activation in 

each brain state. (b) Percentage of dwell time in each brain state during gradCPT. (c–f) Behavioral performance in each brain state during the gradCPT. (c) Reaction 

time variability. (d) Mean reaction time. (e) Accuracy (d prime). (f) Mind wandering score. Filled bar graph shows the results in healthy control and edge bar graph 

shows the results in ADHD. Each scatter shows each participant. ∗ P < 0.05, ∗ P < 0.01, ∗ ∗ ∗ P < 0.001, ∗ ∗ ∗ ∗ P < 10 −4 , ∗ ∗ ∗ ∗ ∗ P < 10 −5 . DMN: default mode network; Lim: 

limbic; FPN: frontoparietal network; DAN: dorsal attention network; SAN: salience network; SMN: somatomotor network; Vis: visual; HC: healthy control; ADHD: 

attention-deficit hyperactivity disorder 
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early the same 2 local minimum brain states in this dataset compared

o Dataset 1 during the gradCPT, activation of FPN was found in State1

whereas FPN activation was associated with State2 in Dataset 1 during

he gradCPT). We further consider this difference in a follow up analyses

 3.4 Follow up analysis of FPN in brain states ). 

.3. Investigating the influence of additional cognitive and clinical factors 

Next, we investigated how ADHD and motivation affected sustained

ttention and the characteristics of these brain states. There are four
9 
ossibilities for the impact of these factors: (1) the factor directly im-

acts the nature of the brain state(s) (alters the brain activity pattern of

rain state), (2) the factor impacts the dwell time in the brain state(s),

3) the factor impacts performance across both brain states equally, (4)

he factor impacts performance differentially in one brain state. 

.3.1. Influence of ADHD (Dataset 3) 

First, we confirmed the pairwise MEM accurately fit the data (Sup-

lementary Figure 1). This result indicates that the estimation of energy

n each brain activity pattern was accurate. We again found two dom-
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A  
nant brain states even in the ADHD dataset ( Fig. 4 a). One state was

haracterized as activation of DMN, FPN, and limbic networks (State1)

nd the other state was characterized as activation of DAN, SAN, SMN

nd visual networks (State2). 

We replicated the difference in behavioral performance during

tate1 and State2 in the ADHD dataset, demonstrating more accu-

ate, as well as faster and less variable reaction times in State1 com-

ared to State2 (paired t -test. Reaction time variability: t 18 = 5.50,

 = 3 . 2 × 10 −5 , effect size (Hedges’s g ) = 1.26; Mean reaction time:

 18 = 4.61, P = 0.0022, effect size (Hedges’s g ) = 1.06; d prime: t 18 = 2.26,

 = 0.037, effect size (Hedges’s g ) = 0.52, two-sided without correction

or multiple comparisons). However, we did not find significant differ-

nce in the mind wandering score between states ( t 18 = 1.23, P = 0.24,

ffect size (Hedges’s g ) = 0.28, two-sided without correction for multiple

omparisons). 

Using Dataset 2 (HC controls) acs a comparison group, we investi-

ated the interaction effect between group (HC and ADHD) and brain

tate. We found a significant interaction for dwell time and d prime

Mixed effects model interaction effects between brain state and group:

well time: t 92 = 6.75, P = 1 . 02 × 10 −9 , P FDR = 5 . 10 × 10 −9 , effect size

Cohen’s f 2 ) = 0.47; d prime: t 92 = 2.15, P = 0.036, P FDR = 0.089, effect

ize (Cohen’s f 2 ) = 0.11, t -test on mixed effects model) ( Fig. 4 ). On the

ne hand, HCs spend significantly more time in State1 than in State2

paired t -test. t 28 = 3.30, P = 0.0026, effect size (Hedges’s g ) = 1.23).

n the other hand, individuals with ADHD spend significantly more

ime in State2 than in State1 (paired t -test. t 18 = 3.31, P = 0.0039, ef-

ect size (Hedges’s g ) = 0.76). The interaction effect (state x group) for

 prime indicates that while both groups show accuracy differences be-

ween State1 and State2, this effect is muted in participants with ADHD

 Fig. 4 e). Of note, the interaction effect for d prime must be interpreted

ith caution, because it is not significant ( P = 0.089) after correction

or multiple comparisons. 

.3.2. Influence of motivation (Dataset 4) 

First, we confirmed the pairwise MEM accurately fit to the data (Sup-

lementary Figure 1) in both blocks. This result indicates that estimation

f energy in each brain activity pattern was accurate. As found in pre-

ious analyses, same two dominant brain states were observed for both

lock types ( Fig. 5 a). One state was characterized as activation of DMN,

PN, and limbic networks (State1) and the other state was characterized

s activation of DAN, SAN, SMN and visual networks (State2). 

We first verified whether the relationship between brain states and

ehavior could be replicated when using only unmotivated block data,

kin to previous analyses (all without reward). Note that the unmoti-

ated block data are not identical to other datasets because the unmo-

ivated blocks might be actively de-motivated by the presence of the

otivated blocks. However, we successfully replicated the difference

n performance between states (paired t -test. Reaction time variability:

 15 = 4.62, P = 0.00033, effect size (Hedges’s g ) = 1.15; Mean reaction

ime: t 15 = 5.25, P = 9 . 8 × 10 −5 , effect size (Hedges’s g ) = 1.31; d prime:

 15 = 4.43, P = 0.00049, effect size (Hedges’s g ) = 1.11, two-sided with-

ut correction for multiple comparisons) ( Fig. 5 pale color). 

We then investigated whether there were significant interactions

etween brain state and motivation for dwell time and behavioral

erformance. We found a significant interaction effect for dwell time

s well as d prime (Mixed effects model interaction effect between

rain state and motivation: Dwell time: t 60 = 4.59, P = 2 . 0 × 10 −5 ,
 FDR = 7 . 9 × 10 −5 , effect size (Cohen’s f 2 ) = 0.33; d prime: t 60 = 2.16,

 = 0.035, P FDR = 0.069, effect size (Cohen’s f 2 ) = 0.11, t -test on mixed

ffects model) ( Fig. 5 ). We found that participants spend more time in

tate2 during motivated blocks and less time in State1 during unmo-

ivated blocks ( t 15 = 2.90, P = 0.011, effect size (Hedges’s g ) = 0.72,

aired t -test for dwell time in State1 between unmotivated and moti-

ated blocks). Although we found a significant difference in d prime

etween brain states during the unmotivated blocks, we did not find

ignificant differences in d prime during motivated blocks (Unmotivated
10 
lock: t 15 = 4.43, P = 0.00049, effect size (Hedges’s g ) = 1.11, Motivated

lock: t 15 = 1.14, P = 0.27, effect size (Hedges’s g ) = 0.28). This indicates

hat while motivation increased dwell time in State2, it overcame the

ecreased accuracy associated with State2. Of note, the interaction ef-

ect for d prime (accuracy) must be interpreted with caution, because it

s not significant ( P = 0.069) after correction for multiple comparisons.

.4. Follow up analysis of FPN in brain states 

In Dataset 1, FPN was inactive in State1 and active in State2 during

he gradCPT. For resting state and the other 3 datasets, FPN was active

n State1 and not State2. Nevertheless, state composition and behav-

oral correlates were quite similar across all datasets. To better evaluate

he discrepant FPN results, we compared the energy value between the

djacent states with and without active FPN across all datasets and we

id not find any significant difference (paired t -test. State1: t 5 = 1.92,

 = 0.11, effect size (Hedges’s g) = 0.77; State2: t 5 = 0.49, P = 0.64,

ffect size (Hedges’s g) = 0.20; Supplementary Fig. 4). This result in-

icates that the local minima, and thus stable brain State1 and State2

ere agnostic to the activation of FPN. 

Furthermore, a recent study identified two distinct subsystems

ithin the FPN. FPN A exhibited stronger connectivity with the

MN than the DAN, whereas FPN B exhibited the opposite pattern

 Dixon et al., 2018 ). Thus, we then split the FPN into FPN A and FPN B 

sing Yeo’s 17 network ( Schaefer et al., 2018 ) and applied the energy

andscape analysis to Dataset 1 and Dataset 2 again. As a result, we

ound the exact same two brain states in both datasets with FPN A as-

igned to State1 and FPN B assigned to State2. Supplementary Figure

 shows the brain map of FPN A and FPN B , and the difference in be-

avioral performance between brain states in Dataset 2. These results

ndicate that FPN’s subsystem, FPN A , is active in State1, and FPN B is

ctive in State2. That is, the discrepant FPN results could be explained

y subsystems of the FPN. 

. Discussion 

In the present study, we repeatedly demonstrated the ability to detect

ehaviorally-relevant brain states, on the basis of brain activity alone,

gnostic to behavior. Specifically, we consistently observed two dom-

nant brain states during sustained attention in all four datasets. One

tate was consistently characterized by activation of DMN and limbic

etworks (State1), and the other state was consistently characterized by

ctivation of DAN, SAN, SMN and visual networks (State2). During the

ormer state, reaction time variability was lower, reaction times were

aster, and accuracy was higher, but degree of mind wandering was also

igher. During the latter state, reaction time variability was higher, re-

ction time was slower, and accuracy was lower, but degree of mind

andering was lower. We replicated these results in multiple indepen-

ent datasets, indicating that State1 was objectively behaviorally op-

imal and State2 was behaviorally suboptimal. Furthermore, we found

hat ADHD altered the dwell time by decreasing the time spent in opti-

al State1 and by increasing the time spent in suboptimal State2 rela-

ive to healthy controls. ADHD also reduced the impact of brain state on

ccuracy. Finally, we revealed the impact of motivation, which altered

he brain states’ characteristics by overcoming the suboptimal nature of

tate2, as well as increasing the dwell time spent in that state. 

Our results provided evidence that it is possible to define attentional

tates independently from behavior. This enabled us to estimate sub-

ects’ attentional states from brain activity without requiring overt re-

ponses from subjects. Since it is relatively difficult to get frequent and

ontinuous behavior from many naturalistic tasks, as well as from some

atient populations, our attentional states defined by brain activity en-

ance the ability to track hidden states of attention and could help better

eveal neurobiological mechanisms underlying disorders of attention.

lthough we found the same brain states even during resting state, our
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Fig. 5. Effect of motivation on dwell time and behavioral performance. (a) Stable brain states during gradual onset continuous performance task (gradCPT). 

Individual states are represented by an activity pattern in which each brain region is active (blue and red) or inactive (white). Brain images indicate brain activation 

in each brain state. (b) Percentage of dwell time in each brain state during gradCPT. (c–e) Behavioral performance in each brain state during gradCPT. (c) Reaction 

time variability. (d) Mean reaction time. (e) Accuracy (d prime). Dark color bar graph shows the results in motivated block and pale color bar graphs shows the 

results in unmotivated block. Each scatter shows each participant. ∗ P < 0.05, ∗ P < 0.01, ∗ ∗ ∗ P < 0.001, ∗ ∗ ∗ ∗ P < 10 −4 . DMN: default mode network; Lim: limbic; FPN: 

frontoparietal network; DAN: dorsal attention network; SAN: salience network; SMN: somatomotor network; Vis: visual. 
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urrent results are heavily reliant on a specific task (gradCPT). The gen-

ralization of our results to the other cognitive tasks is an open question.

otably, a previous study identified a whole-brain network architecture

resent across dozens of task states that was highly similar to the rest-

ng state network architecture ( Cole et al., 2014 ). Together, these data

uggest that observed brain states could generalize to other cognitive

asks and conditions. Even if the brain states are consistently present,

erformance differences between states may differ for other cognitive

asks. 

In this study, behavioral performance was consistently better (lower

eaction time variability and higher accuracy) during the state char-

cterized as activation of DMN and limbic networks than during the

tate characterized as activation of DAN, SAN, SMN and visual net-

orks. It is interesting to note that these two brain activity patterns are

imilar to what a previous study has called the dual intertwined rings

rchitecture ( Mesmoudi et al., 2013 ). This “dual intertwined architec-

ure ” suggests that the one ring similar to our State2 performs real-time

ultimodal integration of sensorimotor information whereas the other

ing similar to our State1 performs multi-temporal integration. Further-

ore, this brain activity pattern is consistent with several other studies

rom our lab and others demonstrating DMN activity associated with

esponse stability and high accuracy, and DAN/SAN associated with re-

ponse instability and low accuracy, when states were defined behav-

orally ( Esterman et al., 2013 ; Esterman et al., 2017a ; Esterman et al.,

014b ; Fortenbaugh et al., 2018 ; Kucyi et al., 2017 ). Previously, we

ave referred to periods of response stability as “in-the-zone ” states

nd periods of response instability as “out-of-the-zone ” states and have

haracterized brain differences between these states ( Esterman et al.,

013 ; Esterman et al., 2017a ; Esterman et al., 2014b ; Kucyi et al., 2016 ;

osenberg et al., 2013 ; Rothlein et al., 2018 ). As “in the zone ” state

ay reflect automated, and more efficient visual information process-

ng ( Esterman et al., 2014b ; Rothlein et al., 2018 ; Vatansever et al.,

017 ), the brain state associated with better performance identified in

his study may have captured this experience. On the other hand, since

MN activity can typically represents “off-task ” thoughts and is related
11 
o mind wandering ( Mason et al., 2007 ), DMN activity can also have a

egative impact on performance ( Hinds et al., 2013 ; Weissman et al.,

006 ). However, previous studies showed that such relationships are

ighly complex, such that spontaneous DMN activity can be simultane-

usly related to both mind wandering and stable “in the zone ” perfor-

ance ( Kucyi et al., 2016 ). This result indicates that there are multi-

le possible cognitive processes/operations associated with DMN activ-

ty. Consistent with this idea, our results found that the degree of mind

andering was significantly higher during the more optimal DMN state

han the other state, suggesting that the difference in behavioral perfor-

ance between the two dominant states could be due to largely distinct

echanisms from mind wandering. Regarding the contribution of FPN,

 recent study identified two distinct subsystems within the FPN. FPN A 

xhibited stronger connectivity with the DMN than the DAN, whereas

PN B exhibited the opposite pattern ( Dixon et al., 2018 ). In our brain

tates, subsystem FPN A was assigned to State1 where DMN is active,

nd subsystem FPN B was assigned to State2 where DAN is active. Previ-

us studies indicate that FPN relates to both executive control/attention

etworks (State2) ( Gratton et al., 2018 ; Spreng et al., 2013 ), as well

s mind wandering/DMN (State1) ( Fox et al., 2015 ; Stawarczyk and

’Argembeau, 2015 ), and that the differences in these roles may be due

o differences in the FPN subsystems. 

Many previous studies have examined differences in brain activ-

ty when behavioral performance was better or worse, without con-

idering the connectome ( Esterman et al., 2013 ; Hinds et al., 2013 ;

hompson et al., 2013 ; Weissman et al., 2006 ). Studies have also ex-

mined the relationship between individual differences in the connec-

ome between functionally different intrinsic brain networks and sus-

ained attention performance, without considering the brain activity

attern ( Kelly et al., 2008 ; Rosenberg et al., 2016a ; Rothlein et al., 2018 ;

hompson et al., 2013 ). Recent work has also shown that within-subject

ttentional fluctuations vary with DAN-DMN connectivity as well as

ultivoxel information processing-based measures involving those net-

orks ( Rothlein et al., 2018 ). However, whether and how the connec-

ome relates to sustained attention through the intermediary of their
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rain activity has remained unclear ( Mill et al., 2017 ). Our energy land-

cape model clarified this relationship, as it indicates that brain activity

uring sustained attention tasks can be described as a series of stays and

ransitions between two dominant attractors (brain states) with different

ttentional performance on the energy landscape, and such attractors

re constrained by the brain’s intrinsic connectome. 

We found that individuals with ADHD spent less time in the opti-

al brain state associated with better performance (low reaction time

ariability and high accuracy) than healthy controls. While several rela-

ionships between brain states and behavioral performance were com-

arable across groups, individuals with ADHD had lower accuracy and

igher mind wandering scores regardless of the brain state ( Fig. 4 e and

). This result indicates that the difference in spent time in the optimal

rain state may partially explain the neural mechanism of attentional

eficits in ADHD, in that an optimal and efficient brain state may be less

energetically ” stable. Furthermore, the interaction effect between state

nd dprime indicates that individuals with ADHD may show a muted

ositive impact of the optimal state on performance (or alternatively a

maller negative impact of the suboptimal state) than in HCs. 

Our results also showed that although participants spend more time

n the brain state associated with worse performance (high RT variabil-

ty and low accuracy) during motivated blocks, motivation simultane-

usly partially overcame the negative impact of this state on perfor-

ance. This disparate result may be explained by the difference be-

ween proactive and reactive activation of DAN (and SAN), such that

roactive engagement of the goal-oriented DAN may support better per-

ormance, but reactive activation of this network may represent a re-

ponse to errors or periods of struggle and thus less efficient engage-

ent ( Esterman et al., 2017a ). Interestingly, our results showed that

otivation improves d-prime but does not decrease RT variability in

he suboptimal state. This suggests that motivation affects cognitive per-

ormance via different neural mechanisms (e.g. via effects on the vi-

ual system rather than the motor system). These results indicate that

t is possible to consider State2 to be a cognitively effortful state, and

hat reward increased the cognitive effort and partially overcame the

egative effects of this brain state on performance. Conversely, this re-

ult also shows that reward did not increase spend time in the brain

tate associated with more automated information processing (State1).

ccording to a previous study, the automated information processing

ould be achieved by learning via such mechanisms as repeating tasks

 Vatansever et al., 2017 ). Therefore, future work could investigate the

ncrease of time spent in State1 related to automated information pro-

essing by examining learning and repeated task practice. From the view

oint of information processing between brain regions, our previous

tudy showed the effects of motivation on information processing were

rthogonal to intrinsic fluctuations of attention, such that there was in-

reased communication of stimulus information between the DAN and

MN during the motivated block ( Rothlein et al., 2018 ). Furthermore,

nother study suggests that motivation may help improve task perfor-

ance by reducing the depth of mind wandering, while also providing

nsulation from the negative effects of mind wandering, when it does

ccur ( Brosowsky et al., 2020 ). Further study is needed to clarify the

ffect of motivation. For example, it may be possible to more specifi-

ally explore how neural measures of information processing change in

ifferent brain states as compared to motivational states, in conjunction

ith other factors such as mind wandering and arousal, which could

ediate the effects of motivation ( Esterman and Rothlein, 2019 ). 

The energy landscape created in this study is a type of generative

odel. Generative models enable us to simulate a transition of brain

tate when brain networks change (e.g. simulation of drug or connectiv-

ty neurofeedback effect) or activity of specific brain regions are inhib-

ted or activated (e.g. simulation of brain stimulation)( Esterman et al.,

017b ; Rosenberg et al., 2016b ; Yamashita et al., 2017 ). Therefore, in

uture studies it may be possible to determine optimal targets for neu-

ofeedback and brain stimulation to efficiently remediate and improve

ustained attention ability by using our model to optimally change brain
12 
tates online ( deBettencourt et al., 2015 ; deBettencourt et al., 2019 ;

sterman et al., 2017b ; Yamashita et al., 2017 ). 

Although it was not predetermined, we found only two brain states.

herefore, our results are consistent with a one-to-one correspondence

etween behavior and brain state, as had been “predetermined ” by the

nalytic approach in previous studies (dichotomizing behavioral states

nd examining neural correlates). A limitation of our study is the coarse

epresentation of brain states required for the energy landscape analy-

is. First, since the brain regions used in the current study are network

evel, it may be possible to define the brain state more flexibly by using

ner parcellations. Second, although we assumed that brain networks

hemselves are stable, the brain networks themselves could change dy-

amically. Recent work suggested a relationship between dynamic func-

ional connectivity and attentional states, thus networks themselves may

econfigure with attentional fluctuations ( Fong et al., 2019 ; Kucyi et al.,

017 ). Third, since energy landscape analysis requires the binarization

f brain activity into active or inactive, the information about the degree

f intensity in brain activation is lost. To overcome these limitations,

ovel unsupervised learning techniques, based on Bayesian switching

inear dynamical systems (BSDS), can provide an integrated framework

or identifying latent brain states and dynamic brain connectivity dur-

ng cognitive tasks ( Taghia et al., 2018 ) more flexibly. Finally, we did

ot consider what information is processed between brain regions. Re-

ently developed tools to investigate how information transfer between

rain regions may allow us to go beyond an assessment of functional

onnectivity ( Anzellotti and Coutanche, 2018 ; Rothlein et al., 2018 ). In

he future, such advanced techniques could be used to investigate brain

tates that take into account dynamic functional connectivity and infor-

ation processing between brain regions, which may further specify the

elationship between brain states and cognition. 

. Conclusion 

In summary, our study is the first to provide evidence for two atten-

ional states from the sole viewpoint of brain activity, one behaviorally

ptimal, the other suboptimal. Additionally, our study shows that these

rain states are reflected in activity patterns across functionally different

rain networks, linking activity and connectivity to sustained attention.

ur results revealed that individuals with ADHD spend more time in the

uboptimal brain state and less time in the optimal brain state than do

Cs. Furthermore, our results suggest that motivation increases cogni-

ive effort and partially overcomes the negative effect of the suboptimal

rain state on performance. We believe this approach has wide ranging

mplications for neurocognitive and clinical models of attention, and

an set a new methodological and theoretical trajectory for a wealth of

uture studies. 
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