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A B S T R A C T   

Sustained attention (SA) is an important cognitive ability that plays a crucial role in successful cognitive control. 
Resting vagally-mediated heart rate variability (vmHRV) has emerged as an informative index of para-
sympathetic nervous system activity and a sensitive correlate of individual differences in cognitive control. 
However, it is unclear how resting vmHRV is associated with individual differences in sustained attention. The 
primary aim of the current study was to assess if resting vmHRV was associated with individual differences in 
performance on a neuropsychological assessment of sustained attention. We further aimed to characterize the 
relationship between resting vmHRV and dispositional factors related to sustained attention, specifically atten-
tional errors in daily life, self-regulation, mindfulness and media-multitasking. Based on previous work, we 
hypothesized higher resting vmHRV would be associated with better sustained attention across task-based and 
self-report measures. We did not find resting vmHRV to be significantly associated with performance measures 
on a task-based assessment of sustained attention. Further, resting vmHRV was not significantly associated with 
attention errors, self-regulation, mindfulness, or media-multitasking. This work stands to expand the current 
understanding between parasympathetic functioning, cognition, and behavior, investigating the unexplored 
domain of sustained attention and related dispositional factors.   

1. Introduction 

Sustained attention (SA) is the ability to maintain focus of attention 
and remain alert over an extended period (Esterman and Rothlein, 
2019). The ability to sustain attention to a relevant task while inhibiting 
task-irrelevant thoughts and distractions is a crucial cognitive ability 
that underlies individual differences in executive functioning (deBet-
tencourt et al., 2019) and memory (Madore et al., 2020). SA also plays a 
significant role in functional outcomes in academics (Steinmayr et al., 
2010), social communication (Bennett Murphy et al., 2007), and driver 
safety (Yanko and Spalek, 2013). The importance of SA to cognitive 

functioning has led to a considerable amount of research on individual 
differences in SA (Esterman and Rothlein, 2019; Fortenbaugh et al., 
2017b). Factors like age (Fortenbaugh et al., 2015), gender (Riley et al., 
2016), neuropsychiatric distress (Esterman et al., 2019; Fortenbaugh 
et al., 2017a), and metabolic health (Wooten et al., 2019) have a 
considerable influence on SA. 

To further understand individual differences in SA, researchers have 
started investigating differentiating aspects in parasympathetic nervous 
system functioning as a potentially influential factor (Siennicka et al., 
2019; Spangler et al., 2018; Williams et al., 2016). Recent evidence 
suggests vagally-mediated heart rate variability (vmHRV) is a reliable 
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proxy for parasympathetic functioning (Shaffer and Ginsberg, 2017). 
High resting vmHRV is a relatively stable measure linked to greater 
cognitive control (Forte et al., 2019). Two theoretical frameworks have 
been instrumental in understanding the link between vmHRV and 
cognitive control: the Neurovisceral Integration Model (Thayer and 
Lane, 2009) and Polyvagal theory (Porges, 2009). The Neurovisceral 
Integration Model proposed resting vmHRV reflects the brain's baseline 
ability to integrate information and provide adaptive regulation that 
allows for flexible behavioral control (Thayer and Lane, 2009). The 
Neurovisceral Integration Model has been foundational in understand-
ing the link between resting vmHRV, cognition, and emotional regula-
tion; inspiring research in the fields of neuropsychology (Forte et al., 
2019), neuropsychiatry (Thayer and Lane, 2000), and neuroimaging 
(Thayer et al., 2012) that have validated and extended the theory. 
Previous work has documented the association between vmHRV and 
selective attention (Park et al., 2013), and the role of vmHRV in 
modulating underlying perceptual processing in attention (Park and 
Thayer, 2014). Recently, several studies have explored the underlying 
relationship between resting vmHRV and the domain of SA specifically. 
Higher resting vmHRV was associated with more consistent perfor-
mance on the D2 test of attention, despite not being associated with 
overall performance (Siennicka et al., 2019). In a study that utilized a 
modified flanker task, higher resting vmHRV was associated with lower 
reaction time variability, a measure of attention stability, after con-
trolling for accuracy and mean reaction time (Williams et al., 2016). In 
another study, higher resting vmHRV was associated with lower reac-
tion time variability on the Stroop task, an assessment of inhibition 
(Spangler et al., 2018). These studies suggest higher resting vmHRV may 
represent a greater baseline ability to sustain attention. Yet, utilizing a 
variety of tasks designed to assess attention and executive functioning, 
not SA directly, limits our ability to fully characterize SA, leaving 
important performance measures unexplored. 

Predating the Neurovisceral Integration Model, Polyvagal theory 
focuses on the evolution of the autonomic nervous system for adaptive 
self-regulation and social communication (Porges, 1972, 2009; Walter 
and Porges, 1976). Notably, the polyvagal theory emphasizes the 
evolutionary benefits to survival of an adaptive autonomic nervous 
system. Polyvagal theory is more controversial than the Neurovisceral 
Integration Model based on the physiological and biological claims 
regarding two distinct brainstem centers with unique evolutionary ori-
gins and roles in parasympathetic control (Berntson et al., 2007). Under 
polyvagal theory, increased vagal influence of the heart is thought to be 
optimal for social functioning, while vagal withdrawal (decline in 
vmHRV during testing relative to rest) is optimal in situations requiring 
a fight-or-flight response. In theorizing the relationship between vmHRV 
and SA, Porges (1992) proposed maintaining a state of SA requires 
significant disruptions to homeostatic mechanisms to mobilize atten-
tional resources. Several studies have demonstrated reduced vagal tone 
during sustained attention, finding that measures of vmHRV are 
uniquely sensitive to SA demands, above and beyond HRV measures 
with both sympathetic and parasympathetic influences (Luque-Casado 
et al., 2016; Mulder and Mulder, 1981). 

Literature is limited and conflicted in characterizing the relationship 
between vagal withdrawal and SA performance in healthy adults. The 
majority of work has focused on the autonomic demands of SA (i.e., 
changes in autonomic functioning during SA) rather than characterizing 
patterns of autonomic functioning associated with optimal SA (Luque- 
Casado et al., 2016; Porges, 1992; Porges and Raskin, 1969; Walter and 
Porges, 1976). Researchers have theorized that minimal vagal with-
drawal during assessments of cognitive control may represent a greater 
ability of the parasympathetic nervous system to respond efficiently to 
task demands (Laborde et al., 2018). Conserving autonomic resources 
during SA may also lead to less severe time-on-task performance dec-
rements, improving overall performance. In contrast, other work sug-
gests moderate vagal withdrawal may benefit cognitive control, 
potentially reflecting essential increases in arousal and mental exertion 

during cognitive stress optimal for task performance (Chin and Kales, 
2019; Marcovitch et al., 2010; Porges et al., 1975). Elucidating the un-
derlying parasympathetic dynamics during optimal SA may be a central 
pillar in advancing the ability of behavioral techniques, medical devices, 
and HRV biofeedback (HRVB) to improve sustained attention in clinical 
and healthy adults. 

The gradual-onset continuous performance task (gradCPT) is a 
validated, computerized measure of sustained attention sensitive to 
deficits in attentional engagement (Esterman et al., 2013). The gradCPT 
characterizes individual differences in sustained attention and within- 
participant fluctuations in attentional states (Esterman et al., 2013). 
Using the gradCPT to characterize sustained attention quantifies 
discrimination ability (d′). This measure utilizes signal detection theory 
to measure a participant's ability to discriminate between targets and 
distractors (Fortenbaugh et al., 2015). D′ is independent of response bias 
compared to commission errors (CEs) and omission errors (OEs) in 
isolation, as CEs and OEs can be influenced by both perceptual sensi-
tivity (d′) and bias (Fortenbaugh et al., 2017b). The gradCPT also 
characterizes the coefficient of variation of RT (CV), also known as RT 
variability, as a measure of attentional stability (Esterman et al., 2013). 
RTs that deviate significantly from the rate of stimulus presentation 
represent reduced attention. Extremely fast RTs and commission errors 
indicate a participant's inability to account for the potential need to 
inhibit responses, which can be characterized as mindless responding. 
On the other hand, extremely slow RTs and omission errors demonstrate 
inefficient processing of visual stimuli in real-time and task disengage-
ment. D′ and CV are highly correlated in this task and represent an 
“ability” factor, as opposed to strategy (Fortenbaugh et al., 2015). This 
ability factor has demonstrated unique neural correlates during optimal 
and sub-optimal attentional states (Yamashita et al., 2021), effects of 
reward (Esterman et al., 2014), and lifespan trajectory (Fortenbaugh 
et al., 2015). Both primary outcome measures of the gradCPT offer 
unique insights into SA beyond mean-based estimates of accuracy. 

To provide a more holistic characterization of the relationship be-
tween vmHRV and sustained attention, it is important to also include 
dispositional factors related to attention in daily life. While assessments 
of sustained attention may be sensitive to individual differences in a 
laboratory setting, it is unclear if performance generalizes to abilities 
and behaviors reliant on SA in daily life. Assessing the relationship be-
tween vmHRV and these dispositional factors may support vmHRV as an 
ecologically valid physiological measure of dispositional SA, immensely 
increasing the potential real-world usability of HRV as an autonomic 
biomarker of SA. Media-multitasking (Madore et al., 2020), mindfulness 
(Petranker and Eastwood, 2021), attentional errors in daily life 
(Rosenberg et al., 2013; Smilek et al., 2010), and self-regulation (Wei 
et al., 2012) have been found to influence or be influenced by sustained 
attention. Specifically, increased levels of media-multitasking are asso-
ciated with deficits in sustained attention and memory (Madore et al., 
2020). Increased media-multitasking is thought to reflect and promote 
shallow engagement and impulsivity (Madore et al., 2020). Increased 
ability to orient and execute behaviors based on goals (self-regulation) 
and a greater general tendency to be aware and attentive to the present 
moment in daily life (mindful attention) have been associated with 
greater attentional control (Gorman and Green, 2016; Liston et al., 
2009; Ophir et al., 2009), and higher resting vmHRV (Reynard et al., 
2011; Shearer et al., 2016). 

Despite the importance of characterizing the role of parasympathetic 
function to dispositional factors of SA in daily life, no study to date has 
explored if there is a relationship between resting vmHRV and self- 
reported media multitasking habits, attentional lapses in daily life, or 
self-regulation. 

1.1. Aims of current study 

We aimed to characterize the relationship between parasympathetic 
functioning and SA using the gradual onset continuous performance task 
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(gradCPT) and self-report dispositional factors related to SA. This is the 
first study to examine vmHRV and SA using the gradCPT, which allowed 
us to utilize a decade of research in clinical and healthy samples to 
contextualize findings in the current study beyond mean-based esti-
mates of reaction time and accuracy. Further, expanding the current 
understanding between vmHRV, SA, and dispositional factors related to 
SA may be an important building block for future research in applied 
human factors and psychophysiology. Specifically, this work aimed to 
functionally identify individuals at greater risk of attentional lapses 
based on a brief assessment of autonomic functioning. Further, this work 
aimed to potentially implicate vmHRV as a measure sensitive to indi-
vidual differences in SA in the lab and in the real world, substantially 
increasing the utility of vmHRV in potential applications of non-invasive 
monitoring and interventions to improve SA. Addressing this knowledge 
gap may help inform future work that aims to improve safety and 
ameliorate occupational hazards in fields in which attentional lapses 
pose a substantial risk, such as military operations, air-traffic control, 
and driving. 

2. Methods 

The present manuscript represents a registered report. Hence, study 
hypotheses and methods were registered prior to collecting, analyzing, 
or interpreting the data. Raw data for this registered reported are posted 
on Open Science Framework at https://osf.io/8cqhv/. 

2.1. Participants 

100 young adults aged 18–28 years old [age (M = 20.6, SD = 3.08), 
57 women] from the Tufts residential community were compensated 
one hour of course credit or $15 for one hour of participation in the 
experiment. Two participants reported to be between 18 and 28 years 
old on our prescreen were excluded from all analyses for being older 
than 28 years old during participation in the study. We subsequently ran 
two more participants to reach our defined sample of 100 participants 
aged 18–28 years old. Participants who reported they had been diag-
nosed with or were taking medication for any cardiopulmonary, psy-
chiatric, or neurological condition were excluded. Participants were also 
excluded for depression, anxiety, and current nicotine use. We instruc-
ted participants to abstain from alcohol consumption and recreational 
drug use for at least 24 h before the study. Participants were also advised 
to consume a light meal 2 h before the experiment. We only recruited 
participants who indicated that they had normal hearing and normal or 
corrected-to-normal vision. Participants read and signed an informed 
consent statement before the beginning of the experimental session and 
were informed about their right to leave the experiment at any time. All 
data were deidentified before data analysis and reporting. The experi-
mental protocol was approved by the Tufts University Instructional 
Review Board (IRB; protocol 00001421) with secondary approvals by 
the U.S. Army DEVCOM Soldier Center Human Research Protection 
Official (HRPO; protocol 21–004) and complied with the ethical stan-
dards laid down in the 1964 Declaration of Helsinki. 

2.2. Gradual-onset continuous performance task 

The gradCPT is a go/no-go continuous performance task designed to 
measure sustained attentional control (Esterman et al., 2013). During 
the 8-minute version of the task, participants viewed a series of gray- 
scale scene images that gradually transition from one to the next 
approximately every 800 ms using linear pixel-by-pixel interpolation. 
The gradCPT required participants to respond via button press to 
frequently occurring city images (90 % of stimuli) and withhold re-
sponses to rare mountain images (10 % of stimuli). In addition to the 
gradual and overlapping nature of the task, the rapid tempo encouraged 
a consistent reaction time (RT), as RTs that are too fast lead to errors of 
commission to rare mountain scenes and RTs that are too slow lead to 

errors of omission to common city scenes, both of which are associated 
with lower accuracy. Data exclusion criteria followed prior protocols; 
specifically, data was discarded for any participant who has a prolonged 
period (30 s or more) without a response, as this indicates noncompli-
ance with task instructions (Fortenbaugh et al., 2015). 

The primary measures of sustained attention ability on the gradCPT 
were discrimination ability (d′) and coefficient of variation in reaction 
time (CV) (Esterman et al., 2013, 2019; Fortenbaugh et al., 2015). Each 
was calculated using custom R (R Core Team, 2000) and Matlab 
(Mathworks) scripts. Specifically, d′ was calculated with signal detection 
analyses to quantify the ability to discriminate between targets/non-
targets independent of response strategy (Macmillian and Creelman, 
1991). Higher d′ is indicative of greater accuracy on the gradCPT. CV, a 
measure of RT variability, was calculated from correct responses to city 
scenes using the standard deviation of RT divided by the mean RT 
(Esterman et al., 2013). Higher CV is associated with poorer sustained 
attention ability (Fortenbaugh et al., 2015). 

2.3. Self-reported questionnaires 

2.3.1. Attention-related cognitive errors scale (ARCES) 
The ARCES (Carriere et al., 2008; Cheyne et al., 2006; Smilek et al., 

2010) assesses real-world errors in routine daily activities caused by 
lapses in sustained attention, drawing significant work from the 
Cognitive Failures Questionnaire (Reason, 1984). The ARCES ques-
tionnaire consists of 12 questions using a Likert scale ranging from (1) 
never to (5) very often. Scores may range from 12 to 60 and was used as 
a continuous measure in all analyses. The ARCES has been demonstrated 
to have excellent psychometric properties and high internal reliability 
(Carriere et al., 2008; Cheyne et al., 2006; Smilek et al., 2010). Previous 
work has demonstrated the self-reported score on ARCES is correlated 
with overall performance on the Sustained Attention to Response Task 
(Smilek et al., 2010). The ARCES has excellent internal consistency (α =
0.90) (Roll et al., 2019). 

2.3.2. Short Form Self-Regulation Questionnaire (SSRQ) 
The SSRQ is a 31-item questionnaire sensitive to individual differ-

ences in one's capacity to regulate goal-oriented behavior (Neal and 
Carey, 2005). Using factor analysis, Neal and Carey found two distinct 
factors, labelled as impulse control and goal setting. Sample items 
included, “I am able to resist temptation”, and “I usually keep track of 
my progress towards my goals”. Participants rate how applicable each 
statement is based on a 5-point Likert scale ranging from (1) strongly 
disagree to (5) strongly agree. The SSRQ has high internal reliability (r 
= 0.87), as well as convergent and discriminant validity (Neal and 
Carey, 2005). 

2.3.3. Media Multitasking Measure – Short (MMM-S) 
The MMM-S is a 9-item measure of media multitasking based on the 

most prevalent media multitasking behaviors in adolescents (Baum-
gartner et al., 2017). The questions on the MMM-S measure four 
different media use activities: listening to music, watching TV, sending 
messages, and using social media sites. For all activities, participants 
report the frequency in which they engage in these activities simulta-
neously. The Cronbach's alpha for the MMM-S has been found to range 
from 0.90 to 0.91, suggesting excellent internal consistency (Baum-
gartner et al., 2017; Sansevere and Ward, 2021). 

2.3.4. Mindful Attention and Awareness Scale (MAAS) 
The MAAS consists of 15 self-report questions that assess the general 

tendency of the participant to be aware and attentive to the present 
moment in daily life (Brown and Ryan, 2003). The MAAS has been 
demonstrated to have excellent test-retest reliability and good internal 
consistency (α = 0.88) (Cheyne et al., 2006). Lower scores on the MAAS 
have been linked to higher levels of social anxiety, psychological dis-
turbances, and rumination (Carlson and Brown, 2005; Kocovski et al., 
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2009). 

2.4. Heart rate variability assessment and analyses 

HRV was calculated from the continuous, non-invasive digital HRV 
recording using a Zephyr Bioharness chest strap, with a sampling fre-
quency of 250 Hz. HRV was assessed continuously throughout the 
experiment. Interbeat intervals (IBIs) were processed and analyzed in 
Kubios Premium HRV (version 3.4) using automatic artifact correction 
in which artifacts are detected from dRR series, the time series of dif-
ferences between successive RR intervals (Lipponen and Tarvainen, 
2019). The dRR series allowed robust separation between ectopic and 
misplaced beats from the normal sinus rhythm. Identified artifacts were 
corrected using a cubic spline interpolation. 

The continuous IBIs were subjected to fast Fourier transformation for 
frequency domain measures of LF power (0.04–0.15 Hz) and HF power 
(0.15–0.40 Hz) (Task Force of the European Society, 1996). The 10-min-
ute baseline was manually inspected for artifacts. To minimize the po-
tential influence of acclimation to the study (Laborde et al., 2017), we 
extracted a 5-minute segment during baseline that was closest to the 
cognitive testing period (end of resting baseline) that met the proposed 
artifact threshold of lower than 5 % of the sample (Tarvainen et al., 
2014). Time points used to extract baseline measurements for each 
participant and the percentage of beats corrected were reported for both 
the resting baseline and task-based measurements in data files located in 
our open science foundation data repository (https://osf.io/8cqhv/). 

Our primary measure of vmHRV was the time domain metric RMSSD 
(root mean square of the successive differences between normal heart-
beats; ms2). RMSSD violated the Shapiro-Wilks test of normality (p <
.001) and thus was log transformed (log-RMSSD) in order to reduce 
positive skew and meet assumptions of normality for statistical tests 
(Royston, 1992). Log-RMSSD is considered a marker of vmHRV, largely 
independent of the potential effects of respiration rate. Resting vmHRV 
has been previously demonstrated to be a predictor of individual dif-
ferences in attentional maintenance and performance variability 
(Laborde et al., 2017; Shaffer and Ginsberg, 2017; Siennicka et al., 2019; 
Spangler et al., 2018; Williams et al., 2016). To adhere to standards for 
reporting HRV, we report resting and task-based HRV measures of 
SDNN, LF absolute power (0.04–0.15 Hz), HF absolute power 
(0.15–0.40 Hz), and P50NN (Laborde et al., 2017; Quintana et al., 2016) 
in Table 1. HF/LF is not reported in the current study, considering its 
questionable theoretical understanding and common misinterpretation 
in literature (Goldstein et al., 2011). 

2.5. Sample size calculations 

This is the first study to examine resting vmHRV and sustained 
attention with the gradCPT in healthy younger adults. To conduct our 
power analysis, we relied on effect sizes obtained in adjacent literature, 
as well as conventional statistical literature on effect sizes for hierar-
chical linear regression in behavioral sciences (Cohen, 1988). A power 
analysis was conducted using G*Power software (Cohen, 1988; Faul 
et al., 2007) using the following parameters: Linear multiple regression: 
Fixed model R2 increase, tail(s) = two, effect size f2 = 0.15, alpha =
0.05; power = 0.90, number of tested predictors = 1 [log-RMSSD], Total 
number of predictors = 5 [log-RMSSD, age, gender, BMI, time of day], 
design = linear multiple regression, fixed model, R2 increase, and it 
indicated that 73 participants [noncentrality parameter δ = 10.95, 
Critical t = 3.98, Df = 67, Total sample size = 73, actual power = 0.90] 
were required to detect a medium effect size after accounting for four 
covariates (age, gender, body mass index, time of day). This sample size 
was comparable to three studies relevant to the current work (n = 74, 
Siennicka et al., 2019), (n = 83, Spangler et al., 2018), and (n = 104, 
Williams et al., 2016). To account for potential data-loss due to task non- 
compliance and/or signal artifact, we ran 100 participants through the 
protocol. 

2.6. Procedure 

Participant recruitment was conducted through SONA and 
community-based outreach techniques (posters & word of mouth). 
Twenty-four hours before the experiment, participants were reminded of 
the upcoming study. Participants arrived between the hours of 9:00 and 
17:00 to the experiment. Upon arrival, participants again verified they 
qualified for the study based on the screening criteria and read through 
the informed consent document. If participants did not sign the informed 
consent document, they were released without compensation. If par-
ticipants gave informed consent, we then measured weight and height to 
calculate body mass index and asked participants to complete a brief 
demographics questionnaire of age and gender. After these measure-
ments, we fitted participants with the Zephyr Bioharness, and we asked 
if they needed to use the bathroom (Laborde et al., 2017). We then 
instructed participants to sit in a chair in an upright position, with their 
arms on the keyboard to maximize similarity to the position participants 
were in during subsequent task conditions. We then asked participants 
to quietly sit in this position and fixate on a central cross in the center of 
the screen. After 10 min, we asked participants to take part in the 
cognitive assessment, then subsequently complete questionnaires. The 
order of questionnaires (ARCES, MAAS, SSRQ, MMM-S) was randomized 
to minimize the potential for order and fatigue effects. Participants then 
took off the heart rate monitor, received a study debriefing form and 
compensation for their time and participation in the study (Fig. 1). 

2.7. Registered confirmatory analysis plan 

All data, scripts, and materials are stored on a repository hosted by 
the Center for Open Science at https://osf.io/8cqhv/ to encourage 
transparency and replicability. This includes both the estimated raw 
interbeat interval files for resting and task-based HRV recordings, 
gradCPT processing scripts and data files, survey processing scripts and 
data files, and statistical analysis scripts. 

Details on registered hypotheses, analyses, and interpretations are 
reported in Tables 2–5. Sample-based measures of internal consistency 
[Cronbach's coefficient α (Cronbach, 1951)] were obtained for gradCPT 
(reaction time) and self-reported questionnaires (ARCES, SSRQ, MAAS, 
and MMM-S). 

2.7.1. Outcome neutral criteria analysis plan (registered) 
We conducted three outcome neutral tests (Table 2) to validate 

whether participants exhibit time-on-task performance decrements on 

Table 1 
Resting and task-based measures of heart rate variability.   

RMSSD SDNN LF HF PNN50 

Resting baseline HRV measures 
N  84  84  84  84  84 
Mean  36.72  41.25  1043.47  748.97  16.80 
Median  35.27  39.39  868.37  463.03  13.10 
Standard deviation  19.27  15.79  762.70  950.72  15.92 
Minimum  7.81  13.37  93.29  28.22  0.00 
Maximum  93.27  89.23  4519.31  5656.14  62.45  

Task-based HRV measures 
N  84  84  84  84  84 
Mean  42.82  42.83  986.63  876.71  21.64 
Median  39.07  40.56  698.86  486.11  17.41 
Standard deviation  23.36  17.35  814.38  1315.76  18.18 
Minimum  11.86  15.05  123.70  53.68  0.00 
Maximum  137.62  110.49  5021.94  9128.01  75.65 

Note. HF = high frequency power, HRV = heart rate variability, LF = low fre-
quency power, PNN50 = The proportion of NN50 divided by the total number of 
NN (R-R) intervals, RMSSD = root mean square of the successive differences 
between normal heartbeats, SDNN = standard deviation of interbeat interval 
after artifact removal. 
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the gradCPT (i.e., lower d′ and higher CV during second half of cognitive 
testing compared to first half), and if they exhibit a decrease in log- 
RMSSD during cognitive testing relative to baseline (vagal with-
drawal). Conditional on establishing effects for H1 and H2, we proceeded 
with confirmatory analyses of resting log-RMSSD and measures of SA 
(H4–H9). Conditional on establishing effects for H1, H2, and H3, we 
would have proceeded with regression analyses involving log-RMSSD 

Fig. 1. Proposed study protocol across a 60-minute experimental assessment.  

Table 2 
Registered hypotheses.  

Hypothesis Evaluation methods 

Outcome neutral criteria (resting RMSSD and RMSSD reactivity) 
H1: d′ would be lower on the second half of the gradCPT 

compared to the first  
• t-test  
• Bayes factors t-test 

H2: CV would be higher on the second half of the gradCPT 
compared to the first 

Outcome neutral criteria (RMSSD reactivity only) 
H3: Log-RMSSD would be lower during cognitive testing 

compared to the resting baseline  

Confirmatory analyses 
H4: Resting log-RMSSD would be positively associated 

with d′  
• Sequential linear 

regression  
• Bayesian linear 

regression  
• Structural regression 

H5: Resting log-RMSSD would be negatively associated 
with CV 

H6: Resting log-RMSSD would be negatively associated 
with ARCES total score 

H7: Resting log-RMSSD would be positively associated 
with MAAS total score 

H8: Resting log-RMSSD would be positively associated 
with SSRQ total score 

H9: Resting log-RMSSD would be negatively associated 
with MMM-S total score 

Note. ARCES = attention-related cognitive errors survey; CV = coefficient in 
variation of reaction timed′ = discrimination ability; gradCPT = gradual-onset 
continuous performance task; MAAS = mindful attention awareness scale; 
MMM-S = short media-multitasking measure RMSSD = root mean square of the 
successive differences between normal heartbeats; SSRQ = short self-regulation 
questionnaire. 

Table 3 
Registered regression analyses.  

Purpose Approach Independent 
measures 

Dependent measures Number of tests Covariates 

Registered: Association between 
resting vmHRV and 
dependent measures 

Sequential linear regression and 
Bayes factors regressions with and 
without covariates 

Resting log- 
RMSSD 

GradCPT Performance (d′, 
CV) 
Dispositional Surveys 
(ARCES, SSRQ, MMM-S, 
MAAS) 

6 (1 per dependent measure) 
with FDR correction for multiple 
comparisons 

Age, Gender, 
BMI, Time of day 

Note. ARCES = attention-related cognitive errors survey; BMI = body mass index. CV = coefficient in variation of reaction time; d′ = discrimination ability; GradCPT =
gradual-onset continuous performance task; MAAS = mindful attention awareness scale; MMM-S = short media-multitasking measure; log-RMSSD = log-transformed 
root mean square of the successive differences between normal heartbeats; SSRQ = short self-regulation questionnaire; vmHRV = vagally-mediated heart rate 
variability. 

Table 4 
Proposed guidelines for interpretation of linear regression findings.  

Independent predictors Support for hypothesis 

p-value interpretation 

p > .05a Failure to reject the null hypothesis 
p < .05a Rejection of the null hypothesis  

a Before FDR correction for multiple comparisons. 

Table 5 
Proposed guidelines for interpretation of Bayes factors findings (Jeffreys, 1961).  

BF10 Interpretation of findings 

<0.01 Decisive evidence for null hypothesis 
0.01–0.03 Very strong evidence for null hypothesis 
0.03–0.10 Strong evidence for null hypothesis 
0.10–0.33 Substantial evidence for null hypothesis 
0.33–1 Anecdotal evidence for null hypothesis 
1 No evidence 
1–3 Anecdotal evidence for alternative hypothesis 
3–10 Substantial evidence for alternative hypothesis 
10–30 Strong evidence for alternative hypothesis 
30–100 Very strong evidence for alternative hypothesis 
>100 Decisive evidence for alternative hypothesis 

Note. BF10 represents evidence in favor of the alternative hypothesis. 
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reactivity. Based on our findings, H1 and H2 were supported, but not H3. 
Thus, we only performed confirmatory analyses of resting log-RMSSD 
and measures of SA (H4–H9) and further excluded log-RMSSD reac-
tivity from the planned structural regression. 

2.7.2. Regression analysis plan (registered) 
To assess the relationship between resting vmHRV and sustained 

attention, we conducted sequential linear regressions and Bayesian 
linear regressions (Tables 2–4) predicting d′ (discrimination ability), CV 
(reaction time variability); as well as the total scores from the ARCES, 
SSRQ, MAAS and average score from MMM-S. 

The first step in the models included log-RMSSD of the 5-minute 
baseline period. The second step included important characteristics 
known to impact vmHRV; age (continuous, in years), gender (factorial, 
entered as 0 = male, 1 = female), body mass index (BMI; continuous, kg/ 
m2) (Koenig et al., 2014; Koenig and Thayer, 2016; Thayer et al., 2012), 
and time of day of assessment (continuous, coded as 0 = 9 AM–12 PM, 1 
= 12:01 PM–3 PM, 2 = 3:01 PM–5:00 PM). The Benjamini and Hochberg 
(1995) method of false discover rate (FDR) correction was used for an-
alyses of resting vmHRV to correct for multiple comparisons. FDR 
correction attempts to account for the expected proportion of false dis-
coveries among the rejected hypotheses (Benjamini and Hochberg, 
1995). Analyses of vagal reactivity (Δ RMSSD from baseline to task) 
were excluded to due to an increase in log-RMSSD from rest to task (H3). 
We used Bayes factors to complement the traditional null hypothesis 
testing approach in the current study. Which allowed us to evaluate 
evidence for an alternative hypothesis, relative to a null hypothesis 
(Table 5). Analyses of Bayes factors were conducted in JASP (JASP 
Team, 2022). The prior for Bayesian t-tests was based on the default 
JASP Cauchy distribution of 0.707. Bayes factor robustness checks for 
Bayesian t-tests were used to calculate Bayes factors for a range of priors 
and are reported in Supplemental Tables S1–S3. The fit of the data under 
the null distribution was compared to the fit under the alternative hy-
pothesis. Tables 7–8 report the regression coefficients, the standard 
error of the unstandardized regression coefficients, standardized 
regression coefficients and p-values for all variables (age, gender, BMI, 
time of day and log-RMSSD) across all linear regression models. For 
Bayesian linear regression models (Supplemental Tables S3–S8), we 
reported the posterior probability of each model (P(M|data)), relative 
predictive adequacy of the given model compared to the best fitting 
model (BF10), variance accounted for in the outcome variable by the 
predictor (R2), and the inclusion Bayes factor (posterior inclusion odds / 
the prior inclusion odds; BFinclusion). Bayesian linear regressions used the 
default JZS prior of r = 0.354 for hypothesis testing. 

2.7.3. Structural equation modeling analysis plan (registered) 
We conducted structural regressions in Mplus version 8.10 (Muthén 

and Muthén, 2017) in which we assessed to what extent resting log- 
RMSSD predicted individual differences in lab-based and dispositional 
measures of SA. Specifically, we assessed two competing models that 
assumed different latent variable structures and factor loadings for 
dependent measures. Both models 1 and 2 account for age, sex, BMI, and 
time of day as covariates. Model 1 included log-RMSSD predicting two 
distinct latent variables reflecting laboratory-based SA (d′ and CV) and 
dispositional SA (ARCES, SSRQ, MMM-S, and MAAS). Model 2 included 
log-RMSSD predicting one latent variable of SA (d′, CV, ARCES, SSRQ, 
MMM-S, and MAAS). Testing these models offered several complements 
to the sequential linear regression and Bayes factors approaches listed 
above. First, the models allowed us to include multiple dependent var-
iables in the same model, reducing the risk of false positives from 
multiple comparisons and the risk of false negatives when using 
multiple-comparison correction. Second, models 1 and 2 allowed us to 
understand the latent variable structures that represented SA in the 
current experiment. Based on current literature, it is unclear if assess-
ments in the lab would be related to behaviors in daily life. Testing 
which model is most appropriate for the data informed us to whether a 

unifying framework of SA (i.e., lab-based and dispositional measures 
represent overall SA), or a two distinct factor framework (i.e., laboratory 
measures of SA are distinctly different than dispositional measures of 
SA) was more appropriate. We report global measures of model fit across 
multiple indices (Chi-square Goodness of Fit, root mean square error of 
approximation (RMSEA), standardized root means square residual 
(SRMR), comparative fit index (CFI), and local model fit (standardized 
residuals for covariances)). Interpretations for model performance can 
be found in Table 6. Standardized and unstandardized Beta values were 
reported for all paths indicated in models 1 and 2. Standardized and 
unstandardized latent factor loadings (factor loadings, intercepts, and 
residual variances) were reported for models 1 and 2 as well. We also 
reported the distribution and scedasticity of residuals of the model 
prediction to ensure assumptions were met. 

2.8. Data cleaning 

Participants who failed to respond for 30 s or longer during cognitive 
testing were excluded from analysis for task non-compliance. Partici-
pants who perform two standard deviations below the mean for d` and 
CV were excluded from analysis for poor task-adherence. These criteria 
led to no participants being excluded from the study. Dependent mea-
sures of d′, CV, attentional errors in daily life, mindfulness, media 
multitasking and self-regulation were assessed for normality using the 
Shapiro-Wilks test of normality (p < .05) (Royston, 1992). Based on a 
violation of normality, the dependent variable for attentional errors in 
daily life was log-transformed in order to reduce positive skew and meet 
assumptions of normality for statistical tests. 

2.9. Deviations from registration 

Although we did our best to ensure that we followed our registered 
plan, there were several minor deviations from the Stage 1 manuscript. 
First, we utilized the Zephyr Bioharness 3 chest belt instead of the Polar 
H10 heart rate sensor due to difficulties pairing the Polar H10 heart rate 
sensor with our Bluetooth precision timing system. We contacted the 
manufacturer (Polar Electro Oy, Kempele, Finland) but were not pro-
vided a solution for the issue. Second, we omitted participant in-
structions regarding excessive exercise, regular sleep-wake cycle, and 
caffeine consumption due to an oversight error in the participant 
recruitment system. This has been listed as a limitation for the current 
study. We also attempted to address caffeine consumption in post-hoc 
exploratory analyses assessing the relationship between resting log- 
RMSSD and measures of SA within a sub-sample of participants who 
report to not consume caffeine habitually. Third, gender was included in 

Table 6 
Proposed guidelines for interpretation of structural regression findings.  

Model-fit criteria Acceptable 
level 

Interpretation 

Global model-fit criteria 
Chi-square Tabled x2 

value 
Compares obtained x2 value with 
tabled value for given df (p > .05) 
indicates good model fit 

Standardized root-mean 
square residual (SRMR) 

<0.08 Value <0.05 indicates a good model 
fit while values of 0.05 to 0.08 are 
considered an adequate fit 

Root-mean-square of 
approximation (RMSEA) 

0.05 to 0.08 Value of 0.05 to 0.08 indicate close 
fit 

Comparative fit index (CFI) >0.95 Values above 0.95 are considered a 
good fit, with values closer to 1 
better model fit  

Local model-fit criteria 
Standardized residuals for 

covariances (individual 
variables) 

<|2| Values less than |2| suggest good 
local fit for individual variables  
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analyses as a covariate instead of sex. Gender was the intended covariate 
of interest during registration to account for HRV differences across 
gender (Voss et al., 2015), but was erroneously written as sex in the 
original stage 1 submission. 

3. Results 

3.1. Measures of reliability and internal consistency (registered) 

Measures of Cronbach's alpha (internal consistency) were the 
following for survey-based measures: Attention-related cognitive errors 
scale (ARCES, α = 0.84), Mindful Attention and Awareness Scale (MAAS, 
α = 0.86), Media Multitasking Measure – Short (MMM-S, α = 0.85), and 
Short Form Self-Regulation Questionnaire (SSRQ, α = 0.89). Mean re-
action time across quartiles of gradCPT performance exhibited an in-
ternal consistency of α = 0.93. 

3.2. Outcome neutral criteria (registered) 

Based on H1 and H2, we hypothesized participants would exhibit 
time-on-task performance decrements on the gradCPT (i.e., lower d′ and 
higher CV during second half of cognitive testing compared to first half) 
(Table 2). In line with our prediction, paired frequentist and Bayesian t- 
tests revealed participants exhibited significantly lower d′ (t(99) = 5.30, 
p < .001, BF10 = 19,051), and higher CV (t(99) = − 5.17, p < .001, BF10 
= 11,243) during the second half of cognitive testing compared to the 
first half. Based on H3, we hypothesized participants would exhibit a 
decline in log-RMSSD from resting baseline to task (vagal withdrawal). 
Contrary to our prediction, paired frequentist and Bayesian t-tests 
revealed participants' log-RMSSD increased from rest to task (t(77) =
− 5.10, p < .001, BF10 = 6660). We then performed confirmatory ana-
lyses of resting log-RMSSD and measures of SA (H4–H9) but further 
excluded exploratory vagal withdrawal from the registered frequentist, 
Bayesian, and structural regressions as outcome neutral hypothesis H3 
was not supported. 

3.3. Frequentist and Bayesian linear regression analyses (registered) 

3.3.1. Task-based regression analyses 
For the regression model predicting discrimination ability (d′), we 

entered resting log-RMSSD into model one. Resting log-RMSSD (β =
− 0.08, p = .45) did not account for a statistically significant amount of 
variance in d′ (R2 = 0.01, F(1, 82) = 0.58, p = .45). Age, gender, BMI, 
and time of day were entered in model two. After accounting for cova-
riates, resting log-RMSSD (β = − 0.09, p = .41) was still not significantly 

associated with d′ (Table 7). Similarly, resting log-RMSSD was not 
associated with d′ in any of the Bayesian regression models (P(M|data) 
= 0.04, BF10 = 0.29, R2 = 0.01, BFinclusion = 0.16; Supplemental Table 
S4). 

For the regression model predicting reaction time variability (CV), 
we entered resting log-RMSSD into model one. Resting log-RMSSD (β =
− 0.03, p = .77) did not account for a statistically significant amount of 
variance in CV (R2 = 0.00, F(1, 82) = 0.09, p = .77). Age, gender, BMI, 
and time of day were entered into model two. After accounting for 
covariates, resting log-RMSSD (β = − 0.06, p = .58) was still not asso-
ciated with CV (Table 7). Similarly, resting log-RMSSD was not signifi-
cantly associated with CV in any of the Bayesian regression models (P 
(M|data) = 0.01, BF10 = 0.23, R2 = 0.00, BFinclusion = 0.55, Supplemental 
Table S5). We did find significant gender differences in CV after FDR 
correction, in which women exhibited greater reaction time variability 
compared to men (β = 0.59, p < .01, pFDR = .04; P(M|data) = 0.14, BF10 
= 4.53, R2 = 0.08, BFinclusion = 3.46). 

3.3.2. Dispositional survey-based regression analyses 
For the regression model predicting attentional errors in daily life 

(ARCES), we entered resting log-RMSSD into model one. Resting log- 
RMSSD (β = 0.08, p = .50) did not account for a statistically signifi-
cant amount of variance in ARCES (R2 = 0.01, F(1, 82) = 0.47, p = .50). 
Age, gender, BMI, and time of day were entered into model two. After 
accounting for covariates, resting log-RMSSD (β = 0.04, p = .71) was still 
not associated with ARCES (Table 8). Similarly, log-RMSSD was not 
significantly associated with ARCES in any Bayesian regression models 
(P(M|data) = 0.01, BF10 = 0.28, R2 = 0.01, BFinclusion = 0.37, Supple-
mental Table S6). We did find significant gender differences in ARCES 
after FDR correction, in which women reported greater attentional er-
rors in daily life compared to men (β = 0.53, p = .02, pFDR < .05; P(M| 
data) = 0.12, BF10 = 2.55, R2 = 0.06, BFinclusion = 1.75). 

For the regression model predicting self-regulation (SSRQ), we 
entered resting log-RMSSD into model one. Resting log-RMSSD (β =
− 0.00, p = .97) did not account for a statistically significant amount of 
variance in SSRQ (R2 = 0.00, F(1, 82) = 0.00, p = .97). Age, gender, BMI, 
and time of day were entered into model two. After accounting for 
covariates, resting log-RMSSD (β = − 0.01, p = .94) was not associated 
with SSRQ (Table 8). Similarly, resting log-RMSSD was not significantly 
associated with SSRQ in any Bayesian regression models (P(M|data) =
0.01, BF10 = 0.04, R2 = 0.00, BFinclusion = 0.26, Supplemental Table S7). 

For the regression model predicting media multitasking (MMM-S), 
we entered resting log-RMSSD into model one. Resting log-RMSSD (β =
0.06, p = .61) did not account for a statistically significant amount of 
variance in MMM-S (R2 = 0.00, F(1, 82) = 0.26, p = .61). Age, gender, 
BMI, and time of day were entered into model two. After accounting for 
covariates, resting log-RMSSD (β = 0.02, p = .83) was still not associated 
with MMM-S (Table 8). Similarly, resting log-RMSSD was not signifi-
cantly associated with MMM-S in any Bayesian regression models (P(M| 
data) = 0.03, BF10 = 0.26, R2 = 0.00, BFinclusion = 0.18, Supplemental 
Table S8). 

Finally, we entered resting log-RMSSD into model one of the 
regression predicting mindfulness (MAAS). Resting log-RMSSD (β =
0.04, p = .70) did not account for a statistically significant amount of 
variance in MAAS (R2 = 0.00, F(1, 81) = 0.15, p = .70). Age, gender, 
BMI, and time of day were entered into model two. After accounting for 
covariates, resting log-RMSSD (β = 0.07, p = .56) was still not associated 
with MAAS (Table 8). Similarly, resting log-RMSSD was not significantly 
associated with MAAS in any Bayesian regression models (P(M|data) =
0.03, BF10 = 0.24, R2 = 0.00, BFinclusion = 0.13, Supplemental Table S9). 

3.4. Structural regression analyses (registered) 

3.4.1. Model 1 
Visual inspection of residuals of the model prediction suggested as-

sumptions of normality and scedasticity were met. The global model fit 

Table 7 
Regression summary table testing the potential association of baseline log- 
transformed RMSSD and task-based sustained attention.  

Variable D′ CV 

B SE(B) β B SE(B) β 

Log-RMSSD − 0.13 0.16 − 0.09 − 0.01 0.01 − 0.06 
Age 0.04 0.03 0.16 − 0.00 0.00 − 0.23 
Gender − 0.07 0.17 − 0.09 0.03 0.01 0.58* 
BMI − 0.02 0.02 − 0.19 0.00 0.00 0.21 
Time of Day − 0.03 0.12 − 0.03 0.00 0.01 0.03 
Model 1 fit R2 = 0.01, F(1, 82) = 0.58, p =

.45 
R2 = 0.00, F(1, 82) = 0.09, p =
.77 

Model 2 fit R2 = 0.05, F(5, 78) = 0.81, p =
.55 

R2 = 0.15, F(5, 78) = 2.76, p =
.02 

Note. pFDR < .05* indicates significance after false discovery rate correction 
(FDR). B = effect size, β = standardized effect size, BMI = body mass index, CV 
= reaction time variability, D′ = discrimination ability, log-RMSSD = log- 
transformed root mean square of the successive differences between normal 
heartbeats, SE(B) = standard deviation for effect size, time of day = time of day 
of cognitive assessment. 
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indices suggested adequate to good model fit [CFI = 0.93; SRMR = 0.07; 
RMSEA = 0.07 (0.00, 0.12); x2(28) = 38.35, p = .09]. For local model fit, 
all standardized residuals for covariances were < |2|, suggesting good 
local model fit for variables with the exceptions of SSRQ by MMM-S 
(2.72) and SSRQ by age (2.54). Similar to our initial regression ana-
lyses, resting log-RMSSD was not associated with task-based (B = 0.06, 
SE(B) = 0.06, β = 0.09, p = .31) or dispositional (B = − 0.00, SE(B) =
0.03, β = − 0.01, p = .95) latent factors of sustained attention (SA). Age 
was also not associated with task-based (B = 0.02, SE(B) = 0.02, β =
0.13, p = .40) or dispositional SA (B = − 0.01, SE(B) = 0.01, β = − 0.20, p 
= .17). Gender was not associated with task-based (B = − 0.17, SE(B) =
0.15. β = − 0.22, p = .28), but was associated with dispositional SA (B =
0.08, SE(B) = 0.04, β = 0.29, p = .03) in which men exhibited a higher 
factor score representing better self-reported sustained attention 
compared to women. BMI was not associated with task-based (B =
− 0.01, SE(B) = 0.01, β = − 0.10, p = .45) or dispositional SA (B = − 0.00, 
SE(B) = 0.00, β = − 0.03, p = .84). Finally, time of day of assessment 
given was not associated with task-based (B = − 0.00, SE(B) = 0.03, β =

− 0.00, p = .95) or dispositional SA (B = − 0.01, SE(B) = 0.02, β = − 0.05, 
p = .70). 

Standardized latent factor loadings are presented in Fig. 2. Consid-
ering factor loadings and residual variances, d′ and CV exhibited a weak 
loading to the latent task-based SA variable, while ARCES, MAAS, SSRQ, 
and MMMS all exhibited excellent loading to the dispositional SA latent 
factor (Table 9). 

3.4.2. Model 2 
Visual inspection of residuals of the model prediction suggested as-

sumptions of normality and scedasticity were met. The global model fit 
indices all suggest poor model fit [CFI = 0.41; SRMR = 0.17; RMSEA =
0.18 (0.15, 0.22); x2(34) = 125.98, p < .001]. For local model fit, several 
standardized residuals for covariances were > |2|, suggesting poor local 
model fit for several variables. Specifically, standardized residuals for 
covariances for gender by ARCES, ARCES by MMM-S, age by SSRQ, and 
CV by SSRQ were between |2| and |3|. Standardized residuals for co-
variances for SSRQ by MAAS were between |3| and |4|, whereas ARCES 

Table 8 
Regression summary table testing the potential association of baseline log-transformed RMSSD and self-reported measures of dispositional sustain attention.  

Variable ARCES SSRQ MMM-S MAAS 

B SE(B) β B SE(B) β B SE(B) β B SE(B) β 

Log-RMSSD 0.01 0.04 0.04 − 0.24 2.98 − 0.01 0.03 0.13 0.02 1.43 2.42 0.07 
Age − 0.01 0.01 − 0.19 1.43 0.55 0.32+ 0.00 0.02 0.01 0.23 0.45 0.07 
Gender 0.10 0.04 0.53* − 3.40 3.20 − 0.23 0.26 0.14 0.42 − 4.21 2.62 − 0.37 
BMI − 0.00 0.00 − 0.10 − 0.07 0.28 − 0.03 0.01 0.01 0.10 0.01 0.23 0.01 
Time of day − 0.01 0.03 − 0.05 0.33 2.23 0.02 0.00 0.10 0.00 0.73 1.82 0.05 
Model 1 fit R2 = 0.01, F(1, 82) = 0.47, p = .50 R2 = 0.00, F(1, 82) = 0.00, p = .97 R2 = 0.00, F(1, 82) = 0.26, p = .61 R2 = 0.00, F(1, 81) = 0.15, p = .70 
Model 2 fit R2 = 0.12, F(5, 78) = 2.13 p = .07 R2 = 0.10, F(5, 78) = 1.75, p = .13 R2 = 0.06, F(5, 78) = 1.01, p = .42 R2 = 0.04, F(5, 77) = 0.60, p = .70 

Note. pFDR < .05* indicates significance after false discovery rate correction (FDR), p < .05+ indicates significance before false discovery rate correction (FDR). ARCES 
= log-transformed attention related cognitive errors scale, B = effect size, β = standardized effect size, BMI = body mass index, log-RMSSD = log-transformed root 
mean square of the successive differences between normal heartbeats, MAAS = Mindful Attention Awareness Scale, MMM-S = media multitasking- short form, SE(B) =
standard deviation for effect size, SSRQ = short self-regulation questionnaire, time of day = time of day of cognitive assessment. 

Fig. 2. Dual factor sustained attention structural regression. 
Note: p < .05*, p < .01** denote significant standardized betas and standardized factor loadings. ARCES = log-transformed attention related cognitive errors scale, 
BMI = body mass index, CV = reaction time variability, d′ = discrimination ability, log-RMSSD = log-transformed resting root mean square of the successive dif-
ferences between normal heartbeats, MAAS = Mindful Attention Awareness Scale, MMM-S = media multitasking- short form, SA = sustained attention latent factor, 
SSRQ = short self-regulation questionnaire. 

T. Wooten et al.                                                                                                                                                                                                                                 



International Journal of Psychophysiology 197 (2024) 112298

9

by SSRQ, ARCES by MAAS, and MAAS by MMM-S were between |4| and 
|5|. Similar to our initial regression analyses, resting log-RMSSD was not 
associated with SA (B = 0.04, SE(B) = 0.06, β = 0.07, p = .50). Age was 
not associated with SA (B = 0.01, SE(B) = 0.02, β = 0.12, p = .51). 
Gender was not associated with SA (B = − 0.11, SE(B) = 0.16, β = − 0.18, 
p = .49). BMI was not associated with SA (B = − 0.00, SE(B) = 0.01, β =
− 0.08, p = .57). Finally, time of day of assessment was not associated 
with SA (B = − 0.00, SE(B) = 0.02, β = − 0.00, p = .96). 

Standardized latent factor loadings are presented in Fig. 3. D′, CV, 
ARCES, MAAS, SSRQ, and MMMS (Table 10) exhibited weak factor 
loadings to the latent unitary SA variable. 

3.5. Exploratory analyses (non-registered) 

In addition to our registered analyses, we conducted exploratory 
analyses to better characterize our findings. Specifically, we assessed 
vagal withdrawal during cognitive testing (log-RMSSD during the first 
half of cognitive testing – log-RMSSD during the second half of cognitive 
testing) in response to the unexpected finding of increased vmHRV from 
rest to task. Vagal withdrawal during cognitive testing would indicate 

autonomic demands in response to sustaining attention throughout the 
task (Luque-Casado et al., 2016), despite not finding vagal withdrawal 
during cognitive testing relative to rest. Second, we attempted to assess 
the potential relationship between resting log-RMSSD and measures of 
sustained attention in participants who reported to not habitually 
consume caffeine. This analysis aimed to account for the lack of in-
structions given to participants to abstain from consuming stimulating 
beverages on the day of cognitive testing by restricting regression ana-
lyses to participants that were least likely to have consumed caffeine 
before study participation (n = 47). 

3.5.1. Investigating vagal withdrawal experienced during cognitive task 
performance 

We conducted paired frequentist and Bayesian t-tests to examine the 
effect of time on task (first 4 min compared to last 4 min of cognitive 
testing) on vmHRV. The results showed a significant main effect of time 
(t(82) = 3.04, p = .003, BF10 = 8.45) in which participants exhibited 
greater log-RMSSD during the first half of the task compared to the 
second half. 

Table 9 
Unstandardized and standardized model results for the latent variables in structural regression (dual factor).  

Item Unstandardized model Standardized model 

Factor loadings Intercepts Residual variances Factor loadings Intercepts Residual variances 

ARCES 1.00  3.62  0.01 0.77**  19.38  0.41 
SSRQ − 62.88**  101.77  133.76 − 0.62**  6.93  0.62 
MMM-S 2.23**  2.75  0.29 0.51**  4.40  0.74 
MAAS − 62.09**  44.05  51.50 − 0.78**  3.85  0.39 
Variance (SA trait) 0.02   0.89   
D′ 1.00  2.76  0.44 0.49*  3.63  0.76 
CV − 0.18  0.25  − 0.00 − 1.42**  5.27  − 1.02 
Variance (SA task) 0.13   0.93   

Note: p < .05*, p < .01** denote significant factor loading, ARCES = log-transformed attention related cognitive errors scale, CV = reaction time variability, D′ =
discrimination ability, MAAS = Mindful Attention Awareness Scale, MMM-S = media multitasking- short form, SA = sustained attention, SSRQ = short self-regulation 
questionnaire. 

Fig. 3. Single factor sustained attention structural regression. 
Note: ARCES = Log-transformed attention related cognitive errors scale, CV = reaction time variability, D′ = discrimination ability, Log-RMSSD = Log-transformed 
resting root mean square of the successive differences between normal heartbeats, MAAS = Mindful Attention Awareness Scale (MAAS), MMM-S = media multi-
tasking- short form, SA = sustained attention latent factor, SSRQ = short self-regulation questionnaire. 
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3.5.2. Investigating resting vmHRV and sustained attention among 
participants who report drinking less than one caffeinated beverage 
habitually 

To assess the potential influence of caffeine use among our sample, a 
subgroup analysis was conducted with repeated sequential linear re-
gressions with resting log-RMSSD and covariates predicting d′, CV, 
ARCES, SSRQ, MMM-S, and MAAS scores in participants who reported 
consuming less than one caffeinated beverage habitually. 

For the regression model predicting discrimination ability (d′), we 
entered resting log-RMSSD into model one. Resting log-RMSSD (β =
− 0.29, p = .07) did not account for a statistically significant amount of 
variance in d′ (R2 = 0.08, F(1, 39) = 3.48, p = .07). Age, gender, BMI, 
and time of day were entered in model two. After accounting for cova-
riates, resting log-RMSSD (β = − 0.33, p = .03, pFDR = .19) was not 
associated with d′ (Table 11) after FDR correction. 

For the regression model predicting reaction time variability (CV), 
we entered resting log-RMSSD into model one. Resting log-RMSSD (β =
0.04, p = .80) did not account for a statistically significant amount of 
variance in CV (R2 = 0.00, F(1, 39) = 0.07, p = .80). Age, gender, BMI, 
and time of day were entered into model two. After accounting for 
covariates, resting log-RMSSD (β = 0.10, p = .49) was not associated 
with CV (Table 11). We did find a significant association between resting 
log-RMSSD and BMI after FDR correction, in which higher BMI was 
associated with greater reaction time variability (β = 0.49, p < .01, pFDR 
< .05). 

For the regression model predicting attentional errors in daily life 
(ARCES), we entered resting log-RMSSD into model one. Resting log- 
RMSSD (β = − 0.05, p = .77) did not account for a statistically signifi-
cant amount of variance in ARCES (R2 = 0.00, F(1, 39) = 0.09, p = .77). 

Age, gender, BMI, and time of day were entered into model two. After 
accounting for covariates, and resting log-RMSSD (β = − 0.02, p = .91) 
was not associated with ARCES (Table 12). 

For the regression model predicting self-regulation (SSRQ), we 
entered the resting log-RMSSD into model one. Resting log-RMSSD (β =
− 0.03, p = .84) did not account for a statistically significant amount of 
variance in SSRQ (R2 = 0.00, F(1, 39) = 0.04, p = .84). Age, gender, BMI, 
and time of day were entered in the model two. After accounting for 
covariates, resting log-RMSSD (β = − 0.06, p = .71) was not associated 
with SSRQ (Table 12). 

For the regression model predicting media multitasking (MMM-S), 
we entered resting log-RMSSD into model one. Resting log-RMSSD (β =
− 0.08, p = .60) did not account for a statistically significant amount of 
variance in MMM-S (R2 = 0.01, F(1, 39) = 0.27, p = .60). Age, gender, 
BMI, and time of day were entered into model two. After accounting for 
covariates, resting log-RMSSD (β = − 0.07, p = .65) was not associated 
with MMM-S (Table 12). 

Finally, we entered the resting log-RMSSD into model one of the 
regression predicting mindfulness (MAAS). Resting log-RMSSD (β =
0.15, p = .36) did not account for a statistically significant amount of 
variance in MAAS (R2 = 0.02, F(1, 39) = 0.87, p = .36). Age, gender, 
BMI, and time of day were entered into model two. After accounting for 
covariates, resting log-RMSSD (β = 0.14, p = .40) was not associated 
with MAAS (Table 12). 

4. Discussion 

In this study, we investigated the relationship between resting 
vmHRV and sustained attention in the laboratory using a neuropsy-
chological assessment and daily life using self-report questionnaires. To 
assess the validity of the gradual-onset continuous performance task 
(gradCPT), we compared performance measures for the first half of 
testing to the second half of testing (H1 and H2). Next, we aimed to assess 
if participants exhibited a decline in vmHRV during cognitive testing 
relative to resting baseline (vagal withdrawal) to validate autonomic 
demands of the gradCPT (H3). Finally, we conducted frequentist, 
Bayesian, and structural regression analyses predicting task-based (H4 
and H5) and dispositional measures of sustained attention (H6 - H9). 

When assessing time-on-task decrements on the gradCPT using our 
primary outcome measures of discrimination ability (d′) reaction time 
variability (CV), we found significant time-on-task performance decre-
ments, demonstrated by a decline in discrimination ability (d′) and an 
increase in reaction time variability (CV). This is consistent with pre-
vious work demonstrating a reliable decline in performance as a func-
tion of time on task (Esterman et al., 2013; Esterman et al., 2014). 

Contrary to our expectations, vagally mediated heart rate variability 
(vmHRV) was significantly higher during cognitive testing than the 
resting baseline (H3). This finding is inconsistent with previous work 
that has found that participants exhibit vagal withdrawal during 
cognitively demanding tasks relative to resting baseline (Manser et al., 
2021). Several factors may play a role in this unexpected finding. First, 
the self-regulatory effort necessary to complete the gradCPT may have 

Table 10 
Unstandardized and standardized model results for the latent variables in structural regression (single factor).  

Item Unstandardized model Standardized model 

Factor loadings Intercepts Residual variances Factor loadings Intercepts Residual variances 

D′  1.00  2.80  0.49  0.40  3.69  0.84 
CV  − 0.26  0.26  − 0.00  − 1.70  5.49  − 1.89 
ARCES  − 0.00  3.45  0.04  − 0.01  18.46  1.00 
SSRQ  − 5.63  113.79  212.64  − 0.12  7.75  0.99 
MMM-S  − 0.03  2.37  0.39  − 0.02  3.80  1.00 
MAAS  2.15  54.19  130.81  0.06  4.73  1.00 
Variance (SA)  0.09    0.95   

Note: ARCES = Log-transformed attention related cognitive errors scale, CV = reaction time variability, D′ = discrimination ability, MAAS = Mindful Attention 
Awareness Scale, MMM-S = media multitasking- short form, SA = sustained attention latent factor, SSRQ = short self-regulation questionnaire. 

Table 11 
Regression summary table for the association of resting log-transformed RMSSD 
and task-based sustained attention within participants who do not habitually 
consume caffeine.  

Variable D′ CV 

B SE(B) β B SE(B) β 

Log-RMSSD − 0.47 0.21 − 0.33+ 0.01 0.01 0.10 
Age 0.08 0.05 0.28 − 0.01 0.00 − 0.42+

Gender − 0.06 0.24 − 0.08 0.02 0.01 0.37 
BMI − 0.04 0.02 − 0.39+ 0.00 0.00 0.49* 
Time of Day − 0.20 0.16 − 0.19 0.01 0.01 0.10 
Model 1 fit R2 = 0.08, F(1, 39) = 3.48, p =

.07 
R2 = 0.00, F(1, 39) = 0.07, p =
.80 

Model 2 fit R2 = 0.25, F(5, 35) = 2.38, p =
.06 

R2 = 0.26, F(5, 35) = 2.41, p =
.06 

Note. pFDR < .05* indicates significance after false discovery rate correction 
(FDR), p < .05+ indicates significance before false discovery rate correction 
(FDR), B = effect size, β = standardized effect size, BMI = body mass index, CV 
= reaction time variability, D′ = discrimination ability, Log-RMSSD = log- 
transformed root mean square of the successive differences between normal 
heartbeats, SE(B) = standard deviation for effect size; time of day = time of day 
of cognitive assessment. 
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increased vmHRV during task completion relative to rest. This theory is 
consistent with previous studies in which participants exhibit increased 
vmHRV when practicing behavioral regulation (Butler et al., 2006; 
Denson et al., 2011; Segerstrom and Nes, 2007). Second, the gradCPT 
stimuli consist of neutral grayscale city and mountain scenes, which 
participants most likely perceived as non-threatening. Previous work 
suggests that threatening and emotional stimuli decrease vmHRV to a 
greater extent than neutral stimuli (Van Der Ploeg et al., 2017). Gray-
scale imagery has also been found to increase vmHRV when used as a 
cue during cognitive assessment, while red imagery significantly 
decreased vmHRV (Elliot et al., 2011). Finally, we told participants 
encouraging instructions during task practice and familiarization (i.e., 
the task was intended to be a challenge and to try their best) to 
encourage task compliance. This ultimately led to excellent task 
compliance, but these instructions may have contributed to a calming 
and non-threatening environment for participants. The exploratory 
analysis did confirm that participants exhibited a significant decrease in 
vmHRV during the second half of the gradCPT compared to the first half. 
This suggests that participants did experience vagal withdrawal during 
the task despite the lack of vagal withdrawal relative to baseline. This is 
consistent with previous work finding that changes in vmHRV are sen-
sitive to sustained attentional demands (Luque-Casado et al., 2016). 

After validating our cognitive assessment (H1 and H2) and exploring 
changes in vmHRV from rest to task (H3), we then conducted our linear 
regression analyses predicting task-based (H4 and H5) and dispositional 
self-report measures of sustained attention (H6–H9). Counter to our 
predictions, we did not find evidence to support an association between 
resting vmHRV and d′ (H4) or CV (H5) across frequentist and Bayesian 
linear regressions. Further, we did not find evidence to support an as-
sociation between resting vmHRV and dispositional factors related to 
sustained attention, specifically self-reported attention errors (H6), 
mindfulness (H7), self-regulation (H8), or media-multitasking (H9). 
Findings were consistent with and without the inclusion of covariates 
accounting for age, gender, BMI, and time of day of assessment. Findings 
were also consistent in exploratory analyses of frequentist linear re-
gressions predicting task-based and dispositional measures of SA con-
ducted in a sub-group of participants who reported not consuming 
caffeine habitually. 

Using structural equation models, we found that resting vmHRV was 
not a significant predictor of a unitary latent variable representing task- 
based and dispositional factors related to sustained attention (H4–H9). 
Resting vmHRV was also not a significant predictor of task-based (H4, 
H5) or dispositional (H6–H9) latent measures of sustained attention in 
our two-factor model of sustained attention. Global and local model fit 
indices were very poor for the unitary model of SA, while the two-factor 
model separating task-based and survey-based measures exhibited good 
model fit. This suggests that task-based and survey-based measures were 
independent in our sample. 

Our hypothesis linking between resting vmHRV and sustained 
attention relied heavily on the neurovisceral integration model (Thayer 

and Lane, 2009) and previous behavioral studies in a similar sample 
(Siennicka et al., 2019; Spangler et al., 2018; Williams et al., 2016). The 
neurovisceral integration model has been the theoretical pillar for 
studies linking resting vmHRV to executive functioning (Forte et al., 
2019), an ability closely tied to sustained attention (Fisher and Kloos, 
2016). There is considerable evidence across neuroimaging and neuro-
pharmacology studies linking resting vmHRV to activity in the pre-
frontal cortex, the brain regions most closely linked to executive 
function (Matusik et al., 2023; Thayer et al., 2012; Thayer and Lane, 
2009). While prefrontal function is integral to successful SA, previous 
work has found several additional brain regions to play a crucial role in 
individual differences in SA that have not been implicated in previous 
work with vmHRV (Fortenbaugh et al., 2018; Langner and Eickhoff, 
2013; Matusik et al., 2023; Mitko et al., 2019). Neural correlates of SA 
not implicated in neuroimaging studies of vmHRV include the intra-
parietal sulcus, temporal-parietal junction, intraparietal sulci, middle 
occipital gyrus, temporal occipital junction, posterior cingulate cortex 
(PCC), the left lateral parietal cortex, and the visual cortex (Fortenbaugh 
et al., 2018; Langner and Eickhoff, 2013; Matusik et al., 2023; Mitko 
et al., 2019). Further, previous work suggests the neural correlates of 
vmHRV appear predominantly localized spatially in the prefrontal cor-
tex (Matusik et al., 2023), while SA relies on complex networks of brain 
regions across the brain (Fortenbaugh et al., 2018; Mitko et al., 2019). 
The utilization and coordination of diverse brain regions in sustained 
attention may limit the applicability of neurovisceral integration to 
sustained attention more than previously thought. 

The performance-based studies utilized in our justification for a link 
between task-based SA and resting vmHRV (H4 and H5) demonstrated an 
association between higher resting vmHRV with fewer attentional lapses 
(Spangler et al., 2018), better attentional maintenance (Siennicka et al., 
2019), and a more consistent reaction time on an attention task (Wil-
liams et al., 2016). One key difference with previous work is our use of a 
validated measure of sustained attention in the current study. Previous 
studies found compelling evidence of a link between resting vmHRV and 
aspects of sustained performance derived from tasks designed to mea-
sure inhibitory control (Spangler et al., 2018), selective attention (Wil-
liams et al., 2016), visual scanning, and processing (Siennicka et al., 
2019). These differences in task characteristics may play a pivotal role in 
the discrepancy between previous performance-based findings and the 
current study. 

Our hypotheses linking resting vmHRV and self-reported factors 
related to sustained attention in daily life (H6 - H9) were based on pre-
vious studies demonstrating a relationship between higher resting 
vmHRV and better behavioral regulation (Holzman and Bridgett, 2017; 
Thayer and Lane, 2000, 2009). In the current study, we utilized self- 
report measures to assess abilities related to both sustained attention 
and, more broadly, behavioral regulation, specifically attentional errors, 
mindfulness, media multi-tasking, and self-regulation. The reliance on 
self-report questionnaires is a critical difference between the current 
work and previous studies that primarily relied on cross-sectional lab- 

Table 12 
Regression summary table for the association of resting log-transformed RMSSD and dispositional sustain attention within participants who do not habitually consume 
caffeine.  

Variable ARCES SSRQ MMM-S MAAS 

B SE(B) β B SE(B) β B SE(B) β B SE(B) β 

Log-RMSSD − 0.01 0.05 − 0.02 − 1.53 4.01 − 0.06 − 0.08 0.17 − 0.07 2.39 2.78 0.14 
Age − 0.01 0.01 − 0.21 0.80 0.98 0.16 0.01 0.04 0.02 − 0.10 0.68 − 0.03 
Gender 0.09 0.06 0.53 − 7.53 4.71 − 0.52 0.06 0.20 0.11 − 1.77 3.26 − 0.18 
BMI − 0.00 0.00 − 0.08 − 0.00 0.34 − 0.00 0.02 0.01 0.25 − 0.08 0.24 − 0.06 
Time of Day 0.03 0.04 0.12 − 3.54 3.10 − 0.19 0.13 0.13 0.17 − 2.41 2.14 − 0.19 
Model 1 fit R2 = 0.00, F(1, 39) = 0.09, p = .77 R2 = 0.00, F(1, 39) = 0.04, p = .84 R2 = 0.01, F(1, 39) = 0.27, p = .60 R2 = 0.02, F(1, 39) = 0.87, p = .36 
Model 2 fit R2 = 0.15, F(5, 35) = 1.20, p = .33 R2 = 0.13, F(5, 35) = 1.05, p = .40 R2 = 0.10, F(5, 35) = 0.80, p = .56 R2 = 0.07, F(5, 35) = 0.52, p = .76 

Note. ARCES = log-transformed attention related cognitive errors scale, B = effect size, β = standardized effect size, BMI = body mass index, log-RMSSD = log- 
transformed root mean square of the successive differences between normal heartbeats, MAAS = Mindful Attention Awareness Scale, MMM-S = media multitasking- 
short form, SE(B) = standard deviation for effect size, SSRQ = short self-regulation questionnaire, time of day = time of day of cognitive assessment. 
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based paradigms that require behavioral regulation (Holzman and 
Bridgett, 2017), as well as intervention studies aimed to increase 
vmHRV and improve behavioral regulation with breathing and mind-
fulness techniques (Burg and Wolf, 2012; Lehrer, 2022). The self-report 
questionnaires may have captured perceptions of abilities related to 
sustaining attention rather than quantifying actual function in daily 
living. This would be consistent with previous work that suggests the 
perception of cognitive abilities does not correlate with objective 
cognitive ability in healthy adults (Buchanan, 2016). 

This study has several limitations. First, we did not give participants 
instructions regarding caffeine and exercise abstention the day of the 
study, factors that may situationally alter resting vmHRV values 
(Quintana et al., 2016). However, when we restricted analyses to a 
subset of participants who reported abstaining from caffeine, the lack of 
association between vmHRV and SA performance persisted. Future work 
should consider guidelines and screening criteria established in previous 
work (Quintana et al., 2016). Second, the study was conducted with 
young adults, and its findings may not generalize to middle-aged or 
older adults. This is because age moderates the relationship between 
vmHRV and behavioral regulation, such that the association becomes 
stronger with older age (Holzman and Bridgett, 2017). Third, we relied 
on self-report measures of attentional errors, self-regulation, media- 
multitasking, and mindfulness. Previous work suggests that self-report 
measures of behavioral regulation are more closely linked to personal-
ity traits rather than objective function (Buchanan, 2016). 

5. Conclusion 

This is the first study to assess the association between resting 
vmHRV and a validated measure of sustained attention. This is also the 
first study to assess the association between resting vmHRV and self- 
report measures related to dispositional sustained attention (i.e., 
attentional errors, self-regulation, media multi-tasking, and mindful-
ness) in a comprehensive fashion. These self-report measures assess as-
pects of behavioral control closely linked to resting vmHRV through 
neurovisceral integration (Thayer and Lane, 2009). Our null findings 
regarding resting vmHRV, task-based sustained attention, self-report 
measures of attentional errors, self-regulation, media multi-tasking, 
and mindfulness are novel and important to the field. Previous work 
has found publication status to be a significant moderator in the rela-
tionship between resting vmHRV and behavioral regulation studies 
(Holzman and Bridgett, 2017), following a troubling trend found across 
psychological sciences known as “the file drawer effect,” in which null 
results are primarily rejected by journals in favor of positive findings 
(Wagner, 2022). Future studies are warranted to replicate the current 
work. 
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