
Association and dissociation between detection and discrimination
of objects of expertise: Evidence from visual search

Tal Golan & Shlomo Bentin & Joseph M. DeGutis &

Lynn C. Robertson & Assaf Harel

# Psychonomic Society, Inc. 2013

Abstract Expertise in face recognition is characterized
by high proficiency in distinguishing between individual
faces. However, faces also enjoy an advantage at the
early stage of basic-level detection, as demonstrated by
efficient visual search for faces among nonface objects.
In the present study, we asked (1) whether the face
advantage in detection is a unique signature of face
expertise, or whether it generalizes to other objects of
expertise, and (2) whether expertise in face detection is
intrinsically linked to expertise in face individuation.
We compared how groups with varying degrees of ob-
ject and face expertise (typical adults, developmental
prosopagnosics [DP], and car experts) search for objects
within and outside their domains of expertise (faces,
cars, airplanes, and butterflies) among a variable set of
object distractors. Across all three groups, search

efficiency (indexed by reaction time slopes) was higher
for faces and airplanes than for cars and butterflies.
Notably, the search slope for car targets was consider-
ably shallower in the car experts than in nonexperts.
Although the mean face slope was slightly steeper
among the DPs than in the other two groups, most of
the DPs’ search slopes were well within the normative
range. This pattern of results suggests that expertise in
object detection is indeed associated with expertise at
the subordinate level, that it is not specific to faces, and
that the two types of expertise are distinct facilities. We
discuss the potential role of experience in bridging
between low-level discriminative features and high-
level naturalistic categories.

Keywords Visual search . Face perception . Perceptual
categorization . Developmental prosopagnosia . Perceptual
expertise

Human face perception is a striking example of visual exper-
tise (Tanaka, 2001). Discriminating between and recognizing
individual faces should be a difficult perceptual task, as faces
form a highly homogeneous set of stimuli with a very similar
spatial configuration of parts. Nonetheless, humans are ex-
tremely adept at recognizing individual faces (e.g.,Moscovitch,
Winocur, & Behrmann, 1997; Tanaka, 2001). This remarkable
human skill in individuating faces is achieved through a num-
ber of specialized processing mechanisms, broadly termed
“holistic” (for a review, see Maurer, Grand, & Mondloch,
2002).1 Holistic processing implies the joint processing of the

1 The terms “holistic” and “configural” are notorious in the face percep-
tion literature for their many definitions and associations. In the context of
the present study, we use the terms in their most general, inclusive sense
as defined by Maurer et al. (2002), subsuming first-order configural pro-
cessing, second-order configural processing, and holistic (or integral)
processing.
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constituting parts of the object (including their relative location
and metric distances) and is distinguished from the piecemeal
processing of individual object parts that is more characteristic
of standard object recognition (DeGutis, Wilmer, Mercado, &
Cohan, 2013; Richler, Cheung, & Gauthier, 2011).

Although the hallmark of face expertise is enhanced
within-category discrimination (also known as subordinate
categorization), face recognition also entails a between-
category advantage, that is, faces are more easily categorized
relative to other object categories at the basic-level (i.e., “a
face” relative to “a car”; Anaki & Bentin, 2009; Harel &
Bentin, 2009; Harel, Ullman, Epshtein, & Bentin, 2007). This
advantage is manifest in the categorization of single objects,
as well as in more ecological and computationally demanding
tasks, such as the detection of faces among other objects
(Hershler, Golan, Bentin, & Hochstein, 2010; Hershler &
Hochstein, 2005). However, relative to face individuation,
much less is known about the mechanisms underlying the
basic-level face advantage, in particular how it is related to
within-category face individuation (for discussion, see Harel
& Bentin, 2009). Specifically, the question is whether exper-
tise in detecting faces is part of the greater expertise in face
individuation (for example, by channeling the first-order
feature information for later specialized second order process-
ing), or whether the two aspects of advantageous face
processing are independent perceptual phenomena acquired
simultaneously with increasing experience. Indeed, given the
vast experience that people have with faces, and with face
individuation in particular,2 the question of how the two
manifestations of face expertise (detection and individuation)
relate has implications for the broader field of visual percep-
tion, as they raise the question of how experience with the
same type of visual input results in two putative distinct types
of visual expertise. In other words, does general experience
with faces similarly produce expertise in face detection and
expertise in face individuation? And how independent are the
two types of expertise? Does achieving expert performance in
one type of expertise necessarily enhance performance in the
other? Despite their importance, these questions are quite
difficult to answer since nearly all adults are face experts,
making it almost impossible to study the two types of face
expertise in isolation. Further, given the social and biological
importance of faces (Zebrowitz & Montepare, 2008), the
two manifestations of face expertise may be a unique
characteristic of face processing and may not generalize
to other object categories. In the present study we aim to
untangle these issues, by investigating face expertise from two
complementary perspectives.

One way to address the challenge of studying the role of
experience in face perception is by studying individuals with
expertise in nonface object categories (e.g., cars). Similar to
face expertise, expertise in visual object recognition is defined
as the enhanced ability to distinguish between exemplars from
a homogeneous object category (Tanaka & Taylor, 1991; Tarr
& Gauthier, 2000), and some evidence supports the use of
holistic processing, albeit generally less than is found with
faces (Diamond & Carey, 1986; Gauthier & Tarr, 2002;
Richler, Wong, & Gauthier, 2011; but see Harel & Bentin,
2013; Robbins & McKone, 2007, for an opposing view). Our
current understanding of how expertise in discriminating ob-
jects impacts expertise in detecting objects is still limited, as
the majority of research on expert object recognition has
focused on within-category discrimination, and not on basic-
level detection of objects of expertise, which emphasizes
generalization across exemplars rather than differentiation
among them (Bukach, Gauthier, & Tarr, 2006; Palmeri,
Wong, & Gauthier, 2004; but see Harel, Ullman, Harari, &
Bentin, 2011). Consequently, studying expertise with nonface
objects allows a test of whether the enhanced advantage seen
in faces is a general manifestation of expertise, or whether it is
a unique characteristic of face perception. Expertise in object
recognition has been demonstrated for many object categories,
including cars (Bukach, Phillips, & Gauthier, 2010; Gauthier,
Skudlarski, Gore, & Anderson, 2000), dogs (Diamond &
Carey, 1986; Robbins & McKone, 2007), birds (Johnson &
Mervis, 1997), (Rhodes, Byatt,Michie, & Puce, 2004), X-rays
(Evans et al., 2011; Harley et al., 2009), and fingerprints
(Busey & Vanderkolk, 2005). In the present study, we chose
to focus on expertise in car recognition, as it is one of the most
extensively studied domains of visual object expertise and has
been shown to have distinct behavioral (Bukach et al., 2010;
Gauthier et al., 2000; Harel & Bentin, 2013; Harel et al., 2011;
Rossion & Curran, 2010) and electrophysiological (Gauthier,
Curran, Curby, & Collins, 2003; Rossion, Collins, Goffaux, &
Curran, 2007) markers, as well as functional (Gauthier et al.,
2000; Harel, Gilaie-Dotan, Malach, & Bentin, 2010; Xu,
2005) and structural (Gilaie-Dotan, Harel, Bentin, Kanai, &
Rees, 2012) neuroimaging markers. Specifically, we examined
whether, as with faces, expertise with cars (i.e., expertise in car
discrimination) is also accompanied by an advantage in
detecting cars among other objects with which the participants
are not experts.We then asked how independent these two types
of expertise are by looking at a case in which face expertise is
missing—namely, in developmental prosopagnosia (DP).

With typically intact low-level vision and normal object
recognition, developmental prosopagnosics (DPs) frequently
fail to identify people by looking at the face, and their ability
to distinguish or match individual faces is impaired (for a
review, see Duchaine & Nakayama, 2006). Like visual object
expertise, developmental prosopagnosia (DP) manifests pri-
marily at the individual exemplar level and therefore provides

2 Please note that, although experience clearly plays a role in face per-
ception, several lines of research have suggested that face perception also
has a strong innate element (Kanwisher, 2010; Sugita, 2008; Wilmer
et al., 2010).
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an opportunity to study how separate within-category face
discrimination is from basic-level face detection. The majority
of DP studies seem to suggest that the absence of one expertise
does not entail the absence of the other, as almost all DPs can
distinguish between faces and nonface control stimuli
(de Gelder & Rouw, 2000; Duchaine, Nieminen-von Wendt,
New, & Kulomäki, 2003; Lee, Duchaine, Wilson, &
Nakayama, 2010; Le Grand et al., 2006). However, when
faces are presented in clutter, DPs were found to be slower,
on average, than control participants in detecting a face among
nonface objects as well as in detecting a two-tone face among
jumbled face-like stimuli (Garrido, Duchaine, & Nakayama,
2008). These findings suggest that difficulties with face de-
tection in DP may exist, but they may be revealed only
by more demanding tasks than simple object recognition,
particularly tasks in which difficulty can be adjusted. This
can be accomplished by employing visual search paradigms,
allowing for a wide range of performance. Note that the
interpretation of the Garrido et al.’s study was limited by the
use a fixed array size that precludes the calculation of search
slopes. Search slopes yield information about performance as
a function of perceptual complexity operationalized by search
array size and are often considered a better measure of per-
ceptual processing than raw reaction times. Reaction times are
affected not only by the requirements of target detection but
also by target processing and response selection (Wolfe &
Horowitz, 2004).

To examine the nature of the basic-level advantage in face
detection, the present work uses visual search methods in two
distinct subpopulations, object experts and DPs, thereby inte-
grating the different approaches outlined above. We aimed to
characterize expertise in face detection by asking two ques-
tions: First, how common is the co-occurrence of expert basic-
level detection and skill in subordinate categorization? Is it
unique to faces or can it also be found when individuals
become experts with a non-face object category (e.g., cars)?
Second, can enhanced basic-level face detection (measured
using visual search slopes) be demonstrated in the absence of
the ability to discriminate individual faces? To answer these two
questions, we studied expertise in face detection expressed in
visual search for faces among object distractors in relation to
two other distinct instances of expertise. In Experiment 1, we
contrasted face expertise with real-world object expertise (car
expertise) to ask whether we see enhanced search performance
for nonface objects of expertise. In Experiment 2, we examined
how DPs, who by definition have not gained expertise with
faces (and hence may be considered “face novices”) search for
faces among nonface object distractors. The underlying ratio-
nale of combining these two distinct groups of experts and
“novices” to study basic-level face detection is that both groups
are defined on the basis of their within-category discrimination
ability, leading to the question of how general the presence or
absence of this ability for basic-level detection might be.

Experiment 1

The goal of this experiment was to test whether the association
between subordinate and basic-level face expertise can be
generalized and is equivalent to other types of object exper-
tise. We compared the efficiency of visual search for four
target categories (faces, airplanes, cars, and butterflies) in a
group of car experts relative to a control group of novice
participants. Participants searched in separate blocks for face,
car, airplane, or butterfly targets among object distractors from
a wide range of object categories. To discourage within-
category processing, all targets were explicitly defined at their
basic level. A specific advantage for car experts in detecting
car targets among object distractors would demonstrate an
influence of expertise on visual search, consistent with the
notion that the face detection advantage reflects the effect of
experience. The search for face targets was expected to be
efficient, in line with previous reports (Hershler et al., 2010;
Hershler & Hochstein, 2005). The other two object target
categories of butterflies and airplanes were used as controls,
and hence were expected to be searched equally less efficient-
ly than faces, since neither of these categories had particular
relevance to the participants.

Method

Participants The car experts were 12 individuals (22–40 years
old,M = 27.5, all males) with self-declared lifelong interest in
cars. They were recruited from among volunteers who
responded to messages posted in car forums on the Internet
and had been selected for a previous study (Harel et al., 2010).
Critically, the experts were selected on the basis of their
performance in a subordinate same–different matching task:
In each trial, candidates had to report whether a pair of
sequentially displayed car images portrayed cars of the same
model (e.g., both Honda Civics) or cars of the same make but
of different models (e.g., a Honda Civic and a Honda Accord).
The specificity of the candidates’ expertise with cars was
verified by an equivalent task with civil airplanes, relative to
the performance of a group of novice participants tested in that
study. The experts were more accurate by far with cars than
were the novices, but no group difference emerged in perfor-
mance accuracy with airplanes (for more details, see Harel
et al., 2010).

The control group consisted of 24 undergraduate students
at the Hebrew University (20–34 years old, M = 24.6; 15
males, nine females). A subset of 12 of the control participants
was matched to the experts for gender and experimental
blocks orders. Since the results derived from this matched
subset were qualitatively indistinguishable from those
derived from the entire control group, we will report the latter
in order to allow for better comparison with the results of
Experiment 2.
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All participants reported normal or corrected-to-normal visual
acuity andwere free of any neurological or psychiatric condition.
They signed an informed consent approved by the Hebrew
University Institutional Review Board. The car experts were
compensated for their participation, and the control participants
received either monetary compensation or course credit.

Stimuli Images from 20 object categories were collected from
the World Wide Web. Four of the categories—faces, butter-
flies, airplanes, and cars—were used as targets (see examples
in Fig. 1).

The 16 categories used as distractors were sofas, fish, dogs,
painted eggs, hats, shirts, apples, flowers, shoes, watches,
potatoes, trousers, wardrobes, jackets, balls, and computer
mice (Fig. 2). We presented 48 different exemplars for each
target category and 32 different exemplars for each distractor
category. All images were converted to grayscale, resized to fit
a square of 100 × 100 pixels, and the background of each
image was removed using Adobe Photoshop. The objects were
edited to a uniform size by equating the size of each object’s
convex hull and were centered in the square using each object’s
center of mass (average coordinates of the nontransparent
pixels). The mean luminance was equated across objects by a
nonlinear point operation. To ensure optimal visibility across
categories, the RMS contrast of each image was enhanced by
clipping the 0.5 % brightest and darkest pixels and remapping
the remaining pixels to the full range. Search arrays were built
from the single object images. Each array comprised 4, 8, 12,
or 16 items with no more than one exemplar of a category. The
items in a display were randomly placed over a 4 × 4 virtual
grid and their exact locations within each grid entry were
jittered by up to 15′ of visual angle. The whole array subtended
a visual angle of 10°, with 2° per item.

Design and procedure The experiment consisted of four
blocks, with a different target category used for each block.
Each block consisted of 192 experimental trials with 48 trials
per display set size (4, 8, 12, or 16 different items), presented
in random order. Across all set sizes, half of the trials included
a target from the predesignated category (“target-present”
condition) and half did not include the target category
(“target-absent” condition). The identity of the distractor cat-
egories, the specific exemplars used and the location of the
images within the display matrix were randomly determined
prior to each trial onset. The specific target exemplars presented

in each display were determined by a pseudorandom “drawing-
without-replacement” method, minimizing repetition.

All 24 possible orders of the four blocks were used across
the 24 control participants, whereas a subset of 12 orders were
used for the 12 car experts (analysis of the block order re-
vealed no significant effects). A training session of eight trials
depicting all Set Size × Target-Present/-Absent conditions
preceded each experimental block.

Participants were seated in front of a 17-in. monitor
positioned at eye level, 80 cm from the participant (a chinrest
was used to ensure constant viewing distance). They were
instructed to press as quickly as possible the “/” key when a
target was detected and the “z” key for its absence. Speed and
accuracy were equally emphasized. Each trial began with a
fixation mark presented for 750 ms. The visual search array
replaced the fixation mark and was exposed until response.
Reaction time was measured from the onset of the display and
stored along with the response type (target present/absent) and
accuracy. An auditory “buzz” feedback was delivered when
the response was incorrect. The fixation mark beginning the
subsequent trial followed the response immediately. Stimu-
lus presentations and data recordings were controlled by E-
Prime software (Psychology Software Tools, 2000).

Data analysis The reaction time analysis was conducted only
on correct trials (~98 % and ~97 % of the trials for control
participants and car experts, respectively). These trials were
subjected to an absolute (200 to 5,000 ms) reaction time filter
(Wolfe & Myers, 2010). Across all participants, only 16 trials
(less than 0.01 %) were rejected by this filter, with no more
than four trials per participant. For each participant, a search
slope was estimated independently for each target category by
linear regression of reaction times over set size. For the present
purposes, the estimation of search slopes was limited to target-
present trials in order to reduce nonperceptual factors such as
search strategies based on item or feature memory.3 The
resulting slopes were analyzed by repeated measures 2 × 4
ANOVAs with the between-subjects factor Group (two levels:
car experts and controls) and the within-subjects factor Target
Category (four levels: butterfly, car, face, and airplane). Post-hoc

Fig. 1 Examples of stimuli representing each of the four target categories

3 Since the slopes were calculated by regressing reaction times in the
“target-present” trials only, they cannot be considered millisecond/item
estimates, which are probably higher. The “target-absent” data are avail-
able from the corresponding author upon request.
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pair-wise comparisons were conducted using nonparametric
tests, so the impact of potential non-Gaussian distributions
was minimized.

Results

The mean reaction times across conditions (Fig. 3) and the
mean search slopes for each target (Fig. 4) exhibited an overall
comparable performance pattern between car experts and
controls, with the exception of one noticeable car-related
between-group difference. Both groups were most efficient
at searching for faces and slightly less so at searching for
airplanes. However, whereas the controls exhibited seemingly
equally inefficient search for cars and butterflies, car experts
searched for cars with an efficiency almost as high as for
airplanes, leaving butterflies behind as the least efficient target
category (for the distributions of individuals’ performance, see
Fig. 5). These descriptive observations were supported by an
ANOVA of the target-present search slopes, which showed
significant effects of target category [F (3, 102)4 = 41.5,
p < .001, G-GE = .74, η p

2 = .550], group [F (1, 34) =

4.90, p < .05, η p
2 = .126], and critically, a significant

Target Category × Group interaction [F (3, 102) = 7.773,
p < .01, G-GE = .74, η p

2 = .186]. Post-hoc within-group
pair-wise comparisons showed significant search slope
gradients: faces < airplanes < butterflies and cars in con-
trol subjects, whereas in experts no difference emerged
between the slope to cars and airplanes, which were both
steeper than the slope for faces and both shallower than
that for butterflies (p < .05 for all relevant comparisons,
Wilcoxon signed-rank test, Holm–Bonferroni corrected
within each group). The critical planned contrast compar-
ing the car target slope of car experts with the car target
slope of controls was highly significant (Mann–Whitney
test, p < .001), whereas the other between-group, within-
category comparisons were not (ps = .608, .704, and .856 for
faces, airplanes, and butterflies, respectively). To deal with the
potential confound of expertise with participants’ sex, we
repeated the above tests using only a subset of the control
group consisting of 12 male nonexperts and found qualitatively
equivalent results. The present expertise effects are not likely to
reflect speed–accuracy trade-offs, as can be observed in Table 1,
reporting accuracy data broken down by false alarms and hits.
As a further test of the relation between expertise in within-
category discrimination and expertise in detection, we estimat-
ed the correlations between car experts’ level of expertise and
their performance in the between-category visual search task.

4 For the Target Category factor and interactions, the degrees of freedom
were corrected when Mauchly’s test revealed significant deviations from
sphericity, by using the Greenhouse–Geisser epsilon (G-GE); for simplic-
ity, the original values are presented along with the correction factor.

Fig. 2 Example of a “target-absent” display presenting all 16 distractor categories
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The within-category expertise was indexed by the d′ scores in
the car discrimination task (see the “Method” section; due to a
data archiving issue, the d's of two of the 12 experts were not
available for this analysis), and the detection expertise was
measured using the car detection search slopes. A nearly
significant correlation between expert car discrimination and
expert car detection was found, with greater car discrimination
being associated with smaller search slopes (r = –.62,
p < .06). In order to account for nonspecific interindividual
variability in task performance (e.g., some participants are
simply better than others at visual search, regardless of the
target’s category), we also correlated the difference between
car d′ and airplane d′ with the difference between the car search
slope and the airplane search slope, which was found to be
significant (r = –.74, p = .014). These results strongly suggest
that the two types of car expertise are highly related.

The relatively efficient search for airplanes was not a priori
expected. Since this category had no particular experience-
related status, this finding is most probably explained by low-
level diagnostic features. In order to test whether the stimulus
image statistics could account for this finding, we quantified
howwell the images’ Fourier amplitude spectra (see VanRullen,
2006) could distinguish between the target categories and the
distractors. We found that a measure of the Fourier amplitude

spectrum collapsed across orientations predicted the behavioral
results, suggesting that efficient search for airplanes can be
accounted for, at least in part, by low-level image statistics
(see the Appendix for further details).

Previous studies showed that the face detection advantage
over other categories is higher in the visual field periphery
than in the parafovea (Hershler et al., 2010). Therefore, we
calculated the slopes separately for trials on which the targets
appeared in the four central locations and for those on which
the targets appeared in the 12 more peripheral locations
(Fig. 6). The search slopes were analyzed by repeated mea-
sures ANOVAs with Target Location (central or peripheral)
and Target Category as within-subjects factors and Group as a
between-subjects factor. This analysis showed that the main
effect of target location was significant [F (1, 34) = 42.226,
p < .001, ηp

2 = .554], with slopes being steeper for peripheral
than for central targets. This main effect was modulated by an
interaction with category [F(3, 102) = 4.328, p < .05, G-GE =
0.7, ηp

2 = .113].We also found a significant Category ×Group
interaction [F (3, 102) = 5.302, p < .01, G-GE = 0.7,
ηp

2 = .135] and a trend toward a Location × Category × Group
interaction [F (3, 102) = 3.038, p = .057, G-GE = 0.7,
ηp

2 = .082]. Subsequent Location × Group ANOVAs sepa-
rately within each target category found significant location
effects within all of the target categories (p < .05). A signif-
icant interaction of car expertise with target location was
shown for car targets [F(1, 34) = 6.230, p < .05, ηp

2 = .155]
but not for the other categories (p > .3). Comparisons of car
search slopes between the experts and controls within each
target location showed a highly significant advantage
(shallower slopes) for experts in detecting car targets located
in the periphery (Mann–Whitney test, p < .001) and a weaker,
but still significant, advantage for experts in detecting car
targets located centrally (Mann–Whitney test, p = .049). This
finding seems to indicate that the detection advantage for objects
of expertise is evident both for centrally and peripherally
displayed targets, but it is significantly more accentuated
in the periphery.
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Experiment 2

In this experiment, we compared the visual search efficiency
of DPs with that of typical participants. In a way, DPs can be
viewed as “face novices”: They have a partial or complete
deficit of the representation of individual human face identities
(e.g., Palermo, Rivolta, Wilson, & Jeffery, 2011) that in typical
individuals facilitates their superb subordinate categorization
ability. It is not evident, however, that DPs have problems in

face detection. As we reviewed above, some studies have
suggested that the distinction between faces and nonface con-
trol stimuli (e.g. scrambled faces) is within the normative range
in DPs (e.g., Le Grand et al., 2006), although it might be slower
than normal, particularly when the face is presented among
distractors (Garrido et al., 2008). In this sense, the relation
between the DPs and controls was analogous to the relation
between controls (who were defined as car novices) and car
experts when viewing cars, and provided an opportunity to
compare the processing of faces with that of objects. Thus,
having observed an association in car experts between expertise
in detection and expertise in subordinate categorization, we
next asked how tightly related these two types of expertise
might be by testing DPs. Examining the difference between
car novices and experts may lead to the conclusion that the two
types of expertise are highly related, as the car novices—who
lacked the ability to distinguish between similar car models—
detected cars less efficiently than did the car experts, who were
defined by their superior within-category discrimination. Sim-
ilarly, one might predict that DPs, who are deficient in their
ability to distinguish between faces, would detect faces less
efficiently than controls (considered face experts). In other
words, if the face detection advantage in typical individuals is
inseparable from their expertise in face individuation (i.e.,
expertise in detection is not independent of expertise
in discrimination), DPs, who lack this facility, should display
considerable deficiency in face detection, as well.

Method

Participants The DP group included 12 individuals (Table 2).
They all had normal or corrected-to-normal vision, had
never been diagnosed with neurological or neuropsychiatric
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Fig. 5 Individual participant search slopes for correct target-present
trials, ordered from shallow to steep within each target category. Note
that, whereas performance in the two groups is evenly distributed for

faces, airplanes, and butterflies, in the car category the majority of the car
experts occupy the lower end of the distribution, representing their greater
search efficiency for car targets relative to controls

Table 1 Mean hit and false alarm rates for the control and car expert
groups

Target Set Size Controls Car Experts

Hit Rate False Alarm
Rate

Hit Rate False Alarm
Rate

Faces 4 .98 .01 .99 .02

8 .98 .01 .97 .01

12 .99 .01 .97 .02

16 .98 .01 .96 .01

Airplanes 4 .98 .01 .97 .01

8 .99 .01 .98 .01

12 .96 .00 .97 .01

16 .97 .01 .96 .01

Cars 4 .97 .01 .97 .01

8 .94 .01 .97 .01

12 .94 .00 .95 .00

16 .91 .01 .93 .02

Butterflies 4 .98 .01 .97 .01

8 .96 .01 .92 .01

12 .94 .00 .90 .01

16 .93 .01 .90 .02
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disorders or autistic spectrum disorder (possible borderline
cases of autism were screened using the Autism Spectrum
Quotient Questionnaire of Baron-Cohen, Wheelwright, Skin-
ner, Martin, & Clubley, 2001, and excluded if they scored
>32). All participants gave informed consent in compliance
with the Institutional Review Board of the VA Boston
Healthcare System. To be considered a DP, each participant
had to report a significant lifelong history of facial recognition
deficits and answer “yes” to the following series of questions
about everyday face recognition: (1) Do you find it hard to
recognize someone you just met?, (2) Do you have difficulty
recognizing casual acquaintances out of context?, (3) When you
meet someone, do you pretend to recognize them until their
identity is revealed?, (4) Do you have trouble recognizing people
when they are in uniform?, (5) Do you find it hard to keep track
of characters in TV shows andmovies?, (6) Do you have trouble
visualizing the faces of family and close friends?, (7) When
trying to find an acquaintance, do you have trouble if they are
in a room full of people?, and (8) Do you have trouble recog-
nizing a close friend or family member in a photograph?

Additionally, each participant had to score 1.7 standard
deviations worse than the healthy control mean on the Cam-
bridge Face Memory Test (CFMT; Duchaine & Nakayama,
2006) or the Cambridge Face Perception Test (CFPT;Duchaine,
Germine, & Nakayama, 2007). In addition to the detailed
questionnaire, and considering that the CFMT and CFPT have
some small amount of measurement error, we thought this to be
a reasonable cutoff to identify DPs. Table 2 presents demo-
graphic details about the DPs and their performance on the
relevant clinical diagnostic tests.

The controls were the same 24-participant group reported
in Experiment 1. The experimental design and procedures
were the same as in Experiment 1, with the exception of using
only eight block orders for the DP participants (an analysis of
block order revealed no significant effects). Since the control
data had already been statistically tested in Experiment 1, only
effects within the DP group and the differences between the
DP and control groups will be reported and discussed.

Stimuli, design, and procedure The exact same stimuli and
paradigm were used as in Experiment 1, with participants
searching in separate blocks for face, car, airplane, or butterfly
targets among object distractors from 16 categories.

Results

As is evident in Fig. 7, the reaction time pattern observed in
the DP group was fairly similar to the pattern observed in the
control group. A Group × Target category ANOVA of the
search slopes (Fig. 8) supported this observation, showing no
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Fig. 6 Mean search slopes for correct target-present trials for the four central target locations versus the 12 peripheral target locations. Error bars
indicate 1 SE

Table 2 Demographic and diagnostic results of the developmental
prosopagnosic (DP) participants

Participant Age Gender CFMT*† CFPT*

323 25 F 44 (–1.87) 70 (–2.73)

434 33 F 44 (–1.76) 68 (–2.57)

437 58 M 39 (–2.39) 68 (–2.57)

101 28 F 39 (–2.39) 58 (–1.75)

630 43 F 47 (–1.50) 78 (–3.39)

737 56 F 40 (–2.27) 58 (–1.75)

762 23 F 36 (–2.77) 68 (–2.57)

781 43 M 41 (–2.14) 60 (–1.91)

973 30 F 47 (–1.50) 58 (–1.75)

1024 25 M 37 (–2.64) 60 (–1.91)

1101 52 M 37 (–2.64) 68 (–2.57)

1226 53 M 41 (–2.14) 70 (–2.73)

Mean 39.1 41.0 65.3

SD 13.3 3.8 6.4

* For the Cambridge Face Memory Test (CFMT) and Cambridge Face
Perception Test (CFPT), the raw scores are shown, with z scores in
parentheses. †The bolded CFMT scores were from an alternate version
of the CFMT with a slightly higher mean among the controls than the
standard CFMT (mean alternate = 58.8, mean original = 57.9). This
alternate form was used because these DPs were part of a training study
in which they received the original CFMT after training.
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main effect of group [F(1, 34) < 1] and no Group × Category
interaction [F (3, 102) < 1]. Thus, by and large, we observed
no overall significant differences between DPs and controls in
detection efficiency for different object categories. It should
be noted that directly testing the simple-effect prediction of
higher search slopes in DPs than in controls showed that the
mean target-present search slopes of the DP group were less
efficient (9.00 ms) than those of controls (5.58 ms; Mann–
Whitney test, p < .05). However, visual inspection of the
individual search slopes (Fig. 9) revealed that although the
DPs as a group were slightly less efficient at detecting faces
among distractors, their individual performance was highly
variable, with most DPs exhibiting face search slopes within
the normal range spanned by the control group. This normal
expertise in detection was dissociated from expertise in face
discrimination, as revealed by a statistically nonsignificant
correlation between face search slopes and the CFMT scores
(r = –.35, p < .255). Furthermore, splitting the DPs on the
basis of their face recognition performance (assessed by the
median score in the CFMT) did not affect the present results.
Accuracy data broken down by false alarms and hits (Table 3)
provided no evidence of speed–accuracy trade-offs.

Since the DP participants were, on average, older than the
control group, we also analyzed the potential contribution of
age to the observed differences between groups. As is shown
in Fig. 10, this analysis demonstrated no significant correla-
tion between the individual slopes in the face target conditions
with age, either for the DPs [r (10) = –.24, p = .45] or for
controls [r (22) = .11, p = .62].

In order to assess whether the face disadvantage of DPs
was more pronounced at the periphery (as was the car advan-
tage of car experts), we repeated the calculation of separate
search slopes for central and peripheral targets (Fig. 11). The
face slopes were analyzed in a Target Location × Group
ANOVA. A tendency toward a Location × Group interaction
[F (1, 34) = 3.460, p = .072, ηp

2 = .092] was further investi-
gated by comparing the face slopes between the two groups.
This analysis showed a trend toward a DP-related efficiency
deficit when the face targets were presented in the periphery
(Mann–Whitney test, p = .062), but not when they were
central (p = .908).

Discussion

The aim of the present study was to elucidate the nature of the
relation between expertise in within-category recognition and
expertise in between category object detection. To achieve this
aim, we focused on the one of the best examples of visual
expertise, face expertise. Specifically, we aimed to character-
ize the basic-level advantage in face detection by asking two
questions. First, is the co-occurrence of basic-level detection
skill and subordinate categorization skill found in faces a
general characteristic of expertise or is it a unique property
of faces? Second, if a general association exists between the
two types of expertise, how strong is this association? Specif-
ically, can enhanced basic-level face detection exist indepen-
dently of the ability to discriminate individual faces? To
answer these questions, we investigated how car experts and
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DPs, two distinct groups defined by improved or reduced
performance, respectively, in within-category object recogni-
tion, would perform in a between-category object detection
task—namely, in a visual search paradigm using real-world
naturalistic objects.

Three key findings were revealed by the present study.
First, car experts were much better than controls in detecting

cars, showing considerably shallower search slopes, yet steeper
than those of faces, which were efficiently detected and similar
to controls. Second, whereas the DPs, as a group, were signif-
icantly worse than the controls in detecting faces, with search
efficiency comparable to their search rate for airplanes, they
were still better than with the other target categories (cars or
butterflies). Indeed, the majority of DPs exhibited normative
face detection performance. Finally, an unpredicted finding of
the present studywas unexpected search efficiency for airplanes,
a target category with which none of the groups was expert, but
one that contained spectral properties (different from those of
the other categories) that could be used by low-level visual
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Fig. 9 Individual participant search slopes for correct target-present trials, ordered from shallow to steep within each target-category. Labels denoting
individual developmental prosopagnosic (DP) participants (see Table 2) are listed below their corresponding data points

Table 3 Mean hit and false alarm rates for the developmental
prosopagnosic group

Target Set Size Hit Rate False Alarm Rate

Faces 4 .98 .02

8 .98 .00

12 .97 .01

16 .94 .01

Airplanes 4 .97 .02

8 .97 .02

12 .97 .01

16 .94 .01

Cars 4 .94 .01

8 .92 .00

12 .88 .00

16 .88 .03

Butterflies 4 .97 .01

8 .91 .01

12 .93 .01

16 .86 .01
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Fig. 10 Individual face search slopes for correct target-present trials as
function of age. Labels denoting individual developmental prosopagnosic
(DP) participants (see Table 2) are listed next to their corresponding data
points. No evidence was apparent of significant correlations between age
and search slope within the groups (p = .62 for controls, p = .45 for DPs)

Atten Percept Psychophys



mechanisms. For all groups, airplane targets produced nearly as
efficient search as did human faces.

Together, these findings suggest that expertise in visual
recognition is not specific to within-category discrimination
and may generalize to basic-level object detection. Notably,
the association between the two types of expertise is seen not
only for faces, but also for other objects of expertise. This
association suggests that the basic-level advantage for faces is
not unique to face perception, but reflects a general effect of
experience. Whereas these two expressions of expertise are
closely linked, they are nonetheless independent, as is evidenced
by a preserved basic-level face advantage (i.e., normative search
performance for faces) in DPs, who by definition lack the
expertise needed to individuate faces. In other words, one
instance of expertise can exist without the other. Finally, the
findings of the present study are not only relevant for visual
expertise, but they also highlight the interactive nature of visual
search for real-world objects, integrating categorical specializa-
tion and low-level, stimulus-driven processing.

Previous studies of expertise in object recognition have
shown that expertise is highly specific to task (Harel et al.,
2010; Wong, Folstein, & Gauthier, 2012) and stimulus
(Bukach et al., 2010; Diamond & Carey, 1986; Tanaka,
Curran, & Sheinberg, 2005). Task, in particular, plays a central
role in constraining the neural and behavioral manifestations
of visual expertise. For example, training participants to per-
form two different tasks on identical artificial stimuli results in
separate cortical representations: Whereas a combination of
orientation discrimination with a visual search task elicited
activations primarily in early retinotopic visual cortex, a naming
task elicited activations in various category-selective regions in
high-level visual cortex (Wong et al., 2012). Given these distinct
task-dependent manifestations of visual expertise, it is not self-
evident how experience with a particular task, such as face
individuation, might facilitate a totally different task, such as
visual search, or whether the lack of face individuation expertise
might reduce visual search efficiency. Furthermore, it has been
suggested that the human expertise with faces can generalize to
other objects of expertise if they share the same characteristics

for processing (Bukach et al., 2006; but see McKone,
Kanwisher, & Duchaine, 2007). Thus, cars and faces may tap
the same neural and perceptual mechanisms in car experts, since
both of these categories are homogeneous and involve holistic
processing, which emerges following extensive training in
subordinate categorization (Bukach et al., 2010; Gauthier
et al., 2003; Rossion & Curran, 2010). However, if the shared
process in face and car expertise is subordinate categorization
supported by holistic processing, it is not obvious why a basic-
level detection advantage would also emerge in car expertise.
What is shared, then, by basic-level expertise with faces and
basic-level expertise with nonface objects?

One factor common to the different types of basic-level
expertise is the increased level of engagement that experts
have with their category of expertise (Harel et al., 2010).
Unlike experts trained in the laboratory, real-world voluntarily
acquired expertise is the result of increased interest that experts
have in their category of expertise, and therefore they are more
likely to allocate covert and overt attention toward these objects
in daily life (for a similar conclusion using an object fragment
detection paradigm, see Harel et al., 2011). The suggestion that
both face expertise and object expertise affect the deployment
of attention is consistent with the observation that faces selec-
tively affect the allocation of attention, demonstrated in a
multitude of experimental paradigms, including the attentional
blink (Awh et al., 2004; Landau & Bentin, 2008), change
blindness (Ro, Russell, & Lavie, 2001; but see Palermo &
Rhodes, 2003, for a different interpretation), and inattentional
blindness (Devue, Laloyaux, Feyers, Theeuwes, & Brédart,
2009). In line with this proposal, a recent study showed that
car distractors selectively hindered visual search for faces in car
experts (McGugin, McKeeff, Tong, & Gauthier, 2011). This
finding suggests that at least a partial overlap might exist
between the top-downmechanisms that facilitate face detection
and the mechanisms that are involved with processing of
nonface objects of expertise.

As we discussed above, the present findings strongly sug-
gest that expert car detection and (expert) face detection utilize
similar top-down attentional mechanisms. Nonetheless, it is
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Fig. 11 Mean search slopes for correct target-present trials, for the four central target locations versus the 12 peripheral target locations. Error bars
indicate 1 SE
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important to note that expert car detection and face detection
differ in at least one critical aspect: the time course of devel-
opment. Infants preferentially direct their attention to faces (or
face-like stimuli) within minutes after birth (for a review, see
Mondloch, Le Grand, & Maurer, 2010), and monkeys raised
in a lab without any exposure to faces showed a strong
preference for faces over other objects (Sugita, 2008). In
contrast, real-world expertise with objects such as cars de-
velops over many years of practice and training. This dramatic
difference in the time courses of acquisition of expertise in
detection might imply that expert car detection utilizes differ-
ent mechanisms, relative to face detection (note that this is
independent of the question of the innate bias for faces). This
possibility resonates with the distinction made by Harel et al.
(2010) between natural expertise (i.e., with faces) and acquired
expertise (i.e., with objects). Whereas the former is likely to be
automatic, stimulus-driven, and effortless, the latter is consid-
ered a controlled and intentional process reflecting the direct
interest and engagement of the observer (Harel et al., 2010).
Nonetheless, car expertise has been shown to be highly related
to face processing, as has particularly been demonstrated in
event-related potential studies of the N170 component
(Gauthier et al., 2003; Harel & Bentin, 2007; Rossion et al.,
2007). Notably, the N170 component has been suggested to
reflect the early perceptual stage, at which faces are detected in
the visual field and submitted to further face-characteristic anal-
ysis (Bentin, Golland, Flevaris, Robertson, & Moscovitch,
2006), and addition training studies have shown that the N170
reflects nonspecific effects of expertise, such as the expert’s
interest. Thus, expert car detection is clearly related to expert
face detection, but the nature of the relations between them has
yet to be determined.

The finding of an advantage of car experts in detecting cars
is consistent with the notion that expertise in within-category
discrimination is associated with an advantage in the detection
of objects of expertise (see also Hershler & Hochstein, 2009).
However, the normative face detection performance of many
of the tested DPs suggests that expertise in between-category
detection is independent from expertise in within-category
recognition. Thus, visual expertise can be composed of at least
two task-specific components: one dealing with the detection
of category members, and the other with within-category
discrimination (Wong et al., 2012). Accordingly, the associa-
tion between these two modes of expertise observed in car
experts should not necessarily be attributed to a common
perceptual process (e.g., holistic processing of homogeneous
objects) and may reflect the operation of multiple processes,
including attention and memory. In the case of DPs, the
preserved expertise in face detection might stem from the
utilization of low-level features for attentional guidance to-
ward faces. Such features might render faces an easy target
category, even for a participant who has no subordinate
expertise with faces. The fact that the disadvantage of DPs

with faces tends to bemore conspicuous at the periphery of the
visual field supports this interpretation, as such low-level
features are arguably more difficult to resolve in the periphery,
relative to the center of the visual field. The present findings
support the idea that expertise in basic-level categorization
involves knowledge of the particular diagnostic features, and
then selectively attending to these features, culminating in a
better utilization of the existing discriminative information
and a more efficient search (Biederman & Shiffrar, 1987;
Goldstone, 1998). Finally, this interpretation is also compati-
ble with the results of Garrido et al. (2008), who reported a
small deficit for DPs relative to controls in the detection of
face photographs, but a larger deficit in the detection of two-
tone faces, which may carry less low-level discriminative
information. It should also be noted that, whereas research
on attention to faces in DPs is scarce, some studies have
suggested that DPs show little difficulty in allocating their
attention to faces or face features in the visual field (in
contrast, e.g., to individuals with autism spectrum disorder,
who avoid fixating faces or certain face features under natural
viewing conditions; see, e.g., Klin, Jones, Schultz, Volkmar, &
Cohen, 2002), which arguably allows them later to utilize
diagnostic low-level features for further processing (DeGutis,
Cohan, Mercado, Wilmer, & Nakayama, 2012; Kimchi,
Behrmann, Avidan, & Amishav, 2012).

An alternative account of the advantage of faces in visual
search is that faces are efficiently detected simply because of
the unique presence of discriminative low-level stimulus prop-
erties, such as their Fourier amplitude spectra (VanRullen,
2006; but see Hershler & Hochstein, 2006). Relatedly, the
efficient search for airplanes, a category that had no a-priori
behavioral significance for the participants, suggests that
nonface categories can be detected as well by utilizing dis-
criminative low-level features (see also Cave & Batty, 2006).
Can a constellation of such low-level features explain the
pattern of results demonstrated by the controls in the present
study, showing efficient search for faces and airplanes, and
inefficient search for cars and butterflies? Our computational
analysis of the stimuli (see the Appendix) revealed that both
faces and airplanes displayed highly informative Fourier am-
plitude spectra. Interestingly, unconstrained utilization of the-
se features predicted equally highly efficient search for all four
target categories (see Fig. 12a). Indeed, only by further
restricting the feature set (using Fourier amplitude spectra
collapsed over spatial orientations) could a consistent predic-
tion of human search efficiency be achieved (Fig. 12c). Thus,
it is evident that the mere existence of low-level stimulus
properties does not necessarily entail their successful utilization
in visual search. We suggest that, at least in some detection
tasks, the successful utilization of low-level stimulus properties
requires the top-down deployment of knowledge of the diag-
nostic information. Whereas in some cases these diagnostic
features may be evident through common knowledge (e.g.,
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airplane detection), for other categories the knowledge of the
diagnostic features is probably acquired through experience
and training (e.g., car detection). Additional research system-
atically contrasting image statistics with human detection per-
formance would be required in order to define exactly which
low-level image properties might guide attention and how they
interact with higher-level, experience-based, category-specific
mechanisms to guide the detection of naturalistic objects.

Author note One of the authors, Shlomo Bentin died unexpectedly
shortly after receiving the first reviews of this article. We dedicate this
article to his memory. Without his hard work, creativity, insight, and
collaborative spirit, this research would not have been possible. This
study was funded by NIMH Grant No. R01 MH 064458 to L.C.R. and
S.B. L.C.R. has a Senior Research Career Scientist award from the
Veterans Administration and is affiliated with the VA Clinical Sciences
Research Service, Department of VeteransAffairsMedical Center,Martinez,
CA.

Appendix: Image analysis

In order to quantify how well each target category could be
detected among the distractors solely by means of low-level
stimulus properties, we turned to a classification approach. We
chose to quantify the category-related information carried by
the Fourier amplitude spectrum5. This image property has been
put forward as an explanation of the advantage of faces in
visual search with real-life images (VanRullen, 2006). In gen-
eral, each image used in the experiments described in the main
text was characterized by three separate measures, or ‘binning
strategies’, derived from their Fourier amplitude spectra (ori-
entation-frequency bins, orientation bins, and frequency bins).
Each one of these measures was then evaluated separately by
assessing their contribution to the performance of the classifi-
cation of target versus distractor image categories.

All images were first normalized to have a zero mean and
unit variance, and then were Fourier transformed; all of the
following procedures were implemented by custom-made
Matlab (The MathWorks, Natick, MA) scripts. The absolute
value of each Fourier coefficient was computed. In order to
reduce the high dimensionality (5000 coefficients), the Fouri-
er plane was divided into logarithmic-radial bins, using 18
orientations (every 10º between 0º and 180º) and six scales.
The values within each bin were averaged, transforming each
image into a 108 (18 × 6) feature long vector. This represen-
tation is based on the texture histogram used by Neumann and
Gegenfurtner (2006), which was shown to significantly

predict human similarity ratings. Two modifications of their
method were made: First, to compress the wide range of
Fourier amplitude coefficients, a log-transform of the entire
Fourier plane was applied prior to averaging. Second, the
transitions between the different bins were graded, using a
log-cosine function to define scale rings (as in Peli, 1990) and
a cosine function to define orientation sectors. This allowed
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Fig. 12 Discriminability analyses of the four different target categories,
conducted using three different Fourier amplitude spectrum binning
strategies. On the left, the binning strategies of the Fourier plane are
illustrated. The coloring of the bins has no relation to the color code of
the bar charts; it is used only to demonstrate the ways that the Fourier
plane was softly divided. On the right, the mean discriminability scores
for each target category are charted. The error bars depict one standard
error of the mean across 100 random training-test splits

5 We have tested a few other image properties as well. These were found
to be either too poor (object orientation and length) or too informative
[Silhouette Distance (Cutzu & Tarr, 1997) and Coarse Footprint Diffe-
rence (Sripati & Olson, 2010)] to drive the observed behavior. We
focused our report on Fourier amplitude based measures due to their
theoretical significance, but the analyses of the other measures are avail-
able by demand.
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for equal representation of each Fourier coefficient while
avoiding arbitrary hard bin limits. In addition to the radial-
logarithmic binning ('orientation-frequency bins'), two addi-
tional binning strategies were applied: one using only orien-
tation sectors (collapsed across frequencies) and the other
using only frequency rings (‘radial average’, collapsed across
orientations). These two binning strategies transformed each
image into an 18- or six-feature-long vector, respectively.

Once the feature vectors were produced by a given binning
strategy, they were used to train four different linear classifiers
(support vector machines) to discern between each of the
target categories and the distractors. For example, for face
targets, a classifier was trained to classify feature vectors
derived from the face images as class +1 and feature vectors
derived from the 16 distractor categories as class −1 (a ‘one vs.
all’ approach). Similarly, this was repeated with the three other
target categories, each resulting in its own trained linear
classifier.

In order to test the performance of the classifiers in the task
of detecting a particular target category out of 16 search items
(as was required from the human participants in the largest set
size condition), we assembled groups of 16 images, each
consisting of 15 distractors from different categories and a
single target. In order to ensure unbiased classification, the
images used in the training phase were excluded from this
testing phase. Next, the degree of ‘targetness’ of each image
was defined as the inner product of its feature vector with the
weight vector corresponding to the trained classifier. We then
checked whether each actual target received the highest
‘targetness’ score among its group of search items. If the actual
target was indeed ranked first, that was considered a successful
detection. By repeating this procedure over 16 different allo-
cations of search item groups and 100 training and test subset
splits, we estimated the probability of a successful detection,
which we will refer as the ‘discriminability score’. In the case
of no relevant information in the Fourier spectra, this score
would be expected to equal 1/16 (chance performance). In the
case that a specific target category could be always discerned
from the distractors on the basis of its Fourier amplitude
spectra, this measure would be expected to equal 1. The
discriminability scores for each spectral binning strategy are
depicted in Fig. 12. The least constrained binning of the
Fourier power spectrum (Fig. 12a, ‘orientation-frequency
bins’) was found to be highly informative of the object’s
basic-level category in general, and not only for faces. Since
the search for faces by humans was significantly more efficient
than those for cars and butterflies, the Fourier amplitude spec-
tra per se cannot account for the most efficient search for faces
in the present study (cf. Hershler & Hochstein, 2005). The
detection of targets by this procedure can be considered a
coarse equivalent of selective top-down gain of different sub-
populations of V1 complex cells, enhancing the responses to
spatial frequencies of particular orientations and wavelengths.

However, if such unconstrained top-down gaining of V1 sub-
populations was a reality, human participants would have been
expected to efficiently detect all four of the target categories
tested. Since our behavioral results showed otherwise, this
result indicates that, whereas naturalistic basic-level categories
are confounded by typical amplitude spectra, this information
is not necessarily utilized for guiding attention.

The discriminability scores based on the Fourier power spec-
trum collapsed across frequencies (Fig. 12b) were more consis-
tent with human performance, in the sense that they predicted
that airplanes should be discriminated better from the distractors
than would either cars or butterflies. Note, however, that the
discriminability of airplanes was higher than that of faces, which
contrasts with the human search performance.

The discrimination scores based on the Fourier power spec-
trum averaged across orientations (Fig. 12c), were ordered in a
fashion consistent with the human data: Faces were the most
distinguishable, followed by airplanes, butterflies, and cars.
Whereas these scores did not perfectly match the pattern of
human results, they were strongly negatively correlated with
the control group's search slopes across the four target catego-
ries (r = −.95, as compared with r = −.26 for the orientation
frequency bins and r = −.01 for the orientation bins).
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