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A B S T R A C T

Novel paradigms have allowed for more precise measurements of sustained attention ability and fluctuations in
sustained attention over time, as well as the neural basis of fluctuations and lapses in performance. However, in
recent years, concerns have arisen over the replicability of neuroimaging studies and psychology more broadly,
particularly given the typically small sample sizes. One recently developed paradigm, the gradual-onset contin-
uous performance task (gradCPT) has been validated behaviorally in large samples of participants. Yet neuro-
imaging studies investigating the neural basis of performance on this task have only been collected in small
samples. The present study completed both a robust replication of the original neuroimaging findings and
extended previous results from the gradCPT task using a large sample of 140 Veteran participants. Results
replicate findings that fluctuations in attentional stability are tracked over time by BOLD activity in task positive
(e.g., dorsal and ventral attention networks) and task negative (e.g., default network) regions. Extending prior
results, we relate this coupling between attentional stability and on-going brain activity to overall sustained
attention ability and demonstrate that this coupling strength, along with across-network coupling, could be used
to predict individual differences in performance. Additionally, the results extend previous findings by demon-
strating that temporal dynamics across the default and dorsal attention networks are associated with lapse-
likelihood on subsequent trials. This study demonstrates the reliability of the gradCPT, and underscores the
utility of this paradigm in understanding attentional fluctuations, as well as individual variation and deficits in
sustained attention.
Introduction

Over the course of a day, individuals consistently employ and sustain
attention to a multitude of tasks. Whether driving to work or reading a
paper, the ability to maintain focused voluntary attention on a single task
is a critical cognitive function that allows individuals to effectively
interact with their environments and complete goals. Given that the
ability to sustain attention can profoundly impact many other cognitive
and sensory functions (Barkley, 1997; Fortenbaugh, Robertson and
Esterman, 2017c; Sarter et al., 2001; H. Silver and Feldman, 2005),
characterizing sustained attention abilities has been an active area of
research for decades, with some studies focused on understanding
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fluctuations of or decrements in sustained attention ability across time in
healthy observers (Berardi et al., 2001; Carriere et al., 2010; Esterman,
Rosenberg and Noonan, 2014b; Fortenbaugh et al., 2015; Levy, 1980;
Mackworth, 1948; Robertson et al., 1997; Rosenberg et al., 2016; Sarter
et al., 2001; Staub et al., 2014; Staub et al., 2013), and others focused on
characterizing deficits in sustained attention ability associated with
psychiatric and neurological disorders (Altpeter et al., 2000; Barkley,
1997; Clark et al., 2002; Forster et al., 2015; Park et al., 2012; Rosenberg
et al., 2016; Van Vleet and DeGutis, 2013).

In recent years, researchers have made substantial progress in char-
acterizing the neural networks involved in sustained attention (Clayton
et al., 2015; Esterman et al., 2013; Esterman, Rosenberg, et al., 2014b;
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Fortenbaugh, DeGutis and Esterman, 2017b; Langner and Eickoff, 2013;
Lawrence et al., 2003; Rosenberg et al., 2016; Sarter et al., 2001).
Enabling this progress has been the development of novel tasks and an-
alytic methods that allow for more precise measurements of sustained
attention ability and induce more failures in sustained attention over
shorter testing periods, increasing sensitivity to individual differences, as
well as behavioral relationships with brain activity/connectivity. One
commonly used paradigm in this literature is the not-X continuous per-
formance task, requiring participants to frequently respond to non-target
stimuli and infrequently withhold responses to rare target stimuli. This
task allows measurements of sustained attention and vigilance decre-
ments to be obtained over much shorter periods of time than other tasks,
which involve responses only to infrequent target events, while at the
same time sampling behavior at a high rate. These include the commonly
used Sustained Attention to Response Task (SART) (Robertson et al.,
1997), and the Gradual Onset Continuous Performance Task (gradCPT)
(Esterman et al., 2013), as well as many other innovative variations
(Helton and Russell, 2011; Kucyi et al., 2017; Shalev et al., 2011; Temple
et al., 2000). One unique feature that was introduced in the gradCPT is
the use of gradual transitions from one trial image to the next, elimi-
nating the abrupt offsets and onsets of stimuli between trials that can
serve to orient involuntary attention toward the display (Fortenbaugh et
al., 2015; Rosenberg et al., 2013). The removal of these abrupt off-
sets/onsets makes the task more dependent on endogenous attentional
control both behaviorally and with regard to fluctuations in the fMRI
signal.

Previous studies using the gradCPT have leveraged its sensitive and
data-rich behavioral output to identify and examine a number of
behavioral and neural indicators of both instantaneous attentional state
and overall sustained attention ability. For example, results from the
original gradCPT study (Esterman et al., 2013) showed that while the
default, dorsal attention, and sensory regions demonstrated character-
istic task-negative and task-positive BOLD responses to the onset of target
(mountain) scenes, preparatory (pre-trial) activity in these regions was
also associated with subsequent accuracy. Specifically, greater activity in
stimulus-selective parahippocampal place area (PPA) and dorsal atten-
tion network (DAN) was associated with subsequent accuracy, while
greater activity in the default mode network (DMN) was associated with
subsequent errors. These results are consistent with other studies that
indicate that ongoing DMN activity may reflect task-unrelated thoughts
such as mind wandering (Andrews-Hanna et al., 2014; Broyd et al.,
2009; Christoff et al., 2016; Greicius et al., 2003; Mason et al., 2007;
Raichle et al., 2001), and that ongoing sensory/DAN activation may
reflect ongoing attention to task-related stimuli (Corbetta and Shulman,
2002; Posner and Peterson, 1990; M. A. Silver and Kastner, 2009). In
addition to examining activity surrounding rare target events, the orig-
inal study by Esterman et al. (2013) computed a continuous dynamic
metric of reaction time variability, which revealed that sustained per-
formance can be characterized by at least two states: when participants
are “in the zone” versus “out of the zone”. Periods of being “in the zone”
are defined based on low reaction time variability to frequent non-target
stimuli (e.g., images of city scenes) while “out of the zone” is defined as
periods of higher reaction time variability. Analyses of in-the-zone versus
out-of-the-zone periods revealed that accuracy was higher (fewer errors
of commission and omission) during in-the-zone periods. In contrast to
preparatory activation associated with target accuracy, fluctuations be-
tween these attentional states were coupled with on-going brain activity
in the default mode network (DMN) such that greater activation was
associated with being in the zone. The dorsal attention network (DAN)
exhibited the opposite relationship–greater activity when out of the zone.
Subsequent studies corroborated and extended the findings about these
relationships, indicating greater task-negative activation when in the
zone and greater task-positive activation when out of the zone (in dorsal
and ventral attention regions; Kucyi et al., 2016; Esterman et al., 2014a,
2016). Further, these patterns interacted with preparatory activity before
targets (correct vs. incorrect) such that task-positive effects were stronger
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out of the zone and task-negative effects were stronger in the zone. This
led to the hypothesis that optimal attentional states are not simply re-
flected by task-positive and task-negative activation alone. Specifically,
attentional fluctuations can be described with multiple behavioral
markers-accuracy, mind wandering, RT variability, and motivational
state-each of which may have independent and even opposing contri-
butions to brain activity across large-scale brain networks. This dichot-
omous relationship between the neural markers of accuracy and
variability suggest that, for tasks that require constant engagement across
extended periods of time, prolonged suppression of DMN and/or acti-
vation of DAN may not be sustainable and may undermine attentional
stability over time. Thus, in relation to the observed variability coupling
with brain activity, moderate increases in DMN activity during “in the
zone” periods and decreases in task-positive attentional control regions
such as the DAN may indicate a more distributed and/or efficient
attentional state that can be maintained over periods of time. One
unanswered question regarding this somewhat surprising
variability-brain coupling is whether the degree to which DMN and DAN
are coupled with fluctuations in variability is related to overall attention
ability across participants. Specifically, do participants with better sus-
tained performance show greater coupling, supporting the idea that this
coupling helps maintain a balance or optimal activation across
task-negative and task-positive networks.

Since the initial publication, the gradCPT and its variants have been
used to further characterize sustained attention both in neurotypical
(Esterman et al., 2015, 2016; Esterman et al., 2017; Esterman, Reagan,
Liu, Turner and DeGutis, 2014a; Esterman, Rosenberg, et al., 2014b;
Kucyi et al., 2016; Kucyi et al., 2017; Rosenberg et al., 2013) and clinical
populations (Auerbach et al., 2014; Fortenbaugh, Corbo, et al., 2017a;
Rosenberg et al., 2016). Further, this task has been used to explore
variation in sustained attention associated with age, gender, sociocul-
tural factors, and time of day (Fortenbaugh et al., 2015; Riley et al.,
2017; Riley et al., 2016). Performance, as well as the neural correlates of
fluctuations in accuracy (preparatory activity) and variability (in/out of
the zone), have been shown to be modulated by motivation and reward
(Esterman et al., 2016, 2017; Esterman, Reagan, et al., 2014a). In clinical
samples, behavioral performance on the gradCPT has been associated
with PTSD, depression, and early life trauma (Auerbach et al., 2014;
DeGutis et al., 2015; Fortenbaugh, Corbo, et al., 2017a). Analyses of
functional connectivity during the task, although outside the scope of this
paper, are sensitive to individual differences in performance, early life
trauma, and ADHD (Fortenbaugh, Corbo, et al., 2017a; Rosenberg et al.,
2016).

There were two goals of the present study. First, we sought to repli-
cate the core original findings from the Esterman et al. (2013) study.
While multiple studies have utilized the gradCPT paradigm to ask novel
questions, to date, the core findings regarding the relationship between
ongoing activity in the DAN and DMN to ongoing attentional stability
and pretrial activity in these regions to attentional lapses, has not been
replicated. This is important as questions have arisen in recent years
regarding the extent to which many findings in psychology and neuro-
science replicate and generalize to larger samples that are not limited to
self-selecting college students, have a greater range in baseline intelli-
gence/cognitive functioning, and are more representative of the general
population as a whole (Boekel et al., 2015; Button et al., 2013; Open
Science Collaboration, 2015; Poldrack et al., 2017). Within the neuro-
sciences, one of the primary issues that has been raised regarding find-
ings from functional magnetic resonance imaging (fMRI) studies, is the
low power that is associated in part with small sample sizes (Button et
al., 2013). Given the diverse set of inferences being drawn from gradCPT,
it is critical to determine whether the core behavioral and neural findings
are both replicable and robust to changes in sampling population. The
behavioral aspects of the gradCPT, including overall performance, the
relationship between variables, as well as the reliability of each variable,
have been validated in a large, heterogeneous sample of participants
(>10,000). In terms of the fMRI findings, variability-BOLD correlations
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Fig. 1. Histogram showing the ages of participants in years.
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have been replicated in several gradCPT studies (Esterman et al., 2017;
Kucyi et al., 2017), as well as in other sustained attention tasks (Johnson
et al., 2015; Kucyi et al., 2017; Rosenberg et al., 2015). However, these
studies have only been assessed in small groups of healthy, young par-
ticipants of a relatively restricted range of ages, demographics, and
health status (Esterman et al., 2013; Esterman, Rosenberg, et al., 2014b).
In order to address these issues, and to determine the extent to which the
original gradCPT findings regarding brain-behavior relationships repli-
cate to a larger sample, with more variability across a range of de-
mographic factors, the present study assessed performance on the
gradCPT with concurrent functional magnetic resonance imaging (fMRI)
in a large sample of 140 Veterans.

The second goal of the current study was to extend previous findings
from the original Esterman et al. (2013) study in three important ways.
First, we used whole-brain voxel level analyses rather than the
region-of-interest approach originally used to more fully characterize the
evoked responses of all three response types possible on gradCPT task, as
well as contrasts between different transient events. This revealed
overlapping (e.g., salience network) and distinct (e.g., ventral visual
cortex) activation markers of attentional lapses. Further, we have
extensively expanded the lapses precursor analysis, by exploring the
whole brain, as well as a longer trajectory of activation preceding errors.
We find that areas outside of our a priori sensory, DAN, and DMN regions
predict errors, and also show that error trajectories begin up to 12.8 s
before a lapse of attention. In addition to these group-level expanded
analyses, we further explore the variance time course (in/out of zone
BOLD coupling) in several ways that help elucidate the role of this var-
iability/brain coupling in sustained attention. While it has been previ-
ously shown that BOLD activity in several regions tracks reaction time
stability as measured with the variance time course (VTC), the degree to
which the strength of this coupling affects overall performance or is
predictive of individual differences in performance has not been tested.
Leveraging the large sample size of the current study, we demonstrate
here across two analyses that VTC coupling strength is associated with
and can be used to predict overall performance on the task.

Methods

Participants

The initial participant sample included 157 Veterans from Operation
Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn
(OEF/OIF/OND) who were recruited from the Translational Research
Center for Traumatic Brain Injury and Stress Disorders (TRACTS) at the
Veterans Affairs Boston Healthcare System. Details regarding the larger
TRACTS cohort has been described in detail elsewhere (Lippa et al.,
2015; McGlinchey et al., 2017). Exclusion criteria for TRACTS includes:
(a) history of neurological illness (other than traumatic brain injury
(TBI)); (b) history of seizures; (c) current diagnosis of schizophrenia
spectrum or other psychotic disorders (not related to PTSD); (d) current
active suicidal and/or homicidal ideation, intent, or plan requiring crisis
intervention; or (e) cognitive disorder due to general medical condition
other than TBI. Participants in the present sample completed the current
task during MRI scanning as part of a larger battery of tests that includes
clinical interviews and neuropsychological testing. The TRACTS MRI
protocol, completed at the end of the 8–10 h testing day, includes two
structural MRI scans, a diffusion tensor imaging (DTI) scan, and two
6-min resting state scans. The gradCPT functional scan was appended to
the end of the MRI protocol between January 2013 and March 2015. Due
to limited scanning time, only one run of the gradCPT was collected in
contrast to the original study which collected multiple runs (Esterman et
al., 2013). The Institutional Review Board of Human Studies Research at
the VA Boston Healthcare System approved all research procedures. All
participants provided informed consent and were reimbursed for their
time and travel expenses.

For the present study, veterans with a history of moderate or severe
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TBI were excluded from the final sample (N¼ 7), as moderate and severe
TBI has been consistently shown to impair cognition (Robertson et al.,
1997; Schretlen and Shapiro, 2003; Slovarp et al., 2012). Data from an
additional participant was excluded due to technical difficulties (no re-
sponses recorded during task). An additional 5 participants were
excluded due to excessive motion during the functional gradCPT scan
run. This included 2 participants who moved over 5mm over the course
of the 8-min run, and 3 participants who hadmore than 30% of their data
points censored using the criteria outlined below. Finally, following the
methodology of Fortenbaugh et al. (2015), we assessed whether partic-
ipants showed significant periods of inactivity, defined as 30 s periods or
greater with no response to the task (“tune outs”). Lack of responses over
such large periods of time (i.e. >37 consecutive trials) could be due to
lack of engagement on the task by participants. A total of 4 participants
were excluded using this criterion leading to a final sample size of 140
participants (131 males; 32.1� 7.7 years of age). To highlight the broad
age distribution in the current sample, Fig. 1 shows a histogram of the
participant's ages in years. Average years of education was 14.2� 2.0
years. The mean estimated premorbid IQ of the sample, measured with
the Wechsler test of adult reading (WTAR; Wechsler, 2001), was
104.4� 10.5. Thus, participants showed on average normal intellectual
functioning. Compared to the known demographics of the original
sample in Esterman et al. (2013), there are some differences which would
be expected from a Veteran population compared to a predominantly
college-based sample. The current sample was significantly more biased
toward male participants, 37.5% vs. 93.6% male: χ2¼ 43.63, p< .0001,
and a Mann-Whitney U test showed that on average the Veteran sample
was older, 24 vs. 32 years of age: U¼ 426.5, p< .001. As years of edu-
cation were not recorded in the original sample, no comparison could be
calculated though it is likely that a sample recruited from college cam-
puses may have a higher number of years of education on average than
the 14 years average in the current sample. We additionally note that our
sample of Veterans, while limited in terms of gender, includes a range of
individuals in terms of background demographics and clinical issues.
While beyond the scope of the current paper, this sample includes Vet-
erans with a history of mild TBI (e.g. concussions), and a range of po-
tential clinical symptoms including anxiety, PSTD, and depression. We
include additional clinical information about our sample in Supplemen-
tary Fig. 1 for the interested reader.

Finally, we compared the motion parameters across the two studies
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using Mann-Whitney U tests looking at the maximum absolute
displacement across the entire run. These results show no overall dif-
ference across the six motion parameters in our current sample to those
measured in Esterman et al. (2013). A trend towards smaller yaw rota-
tions was observed in the present sample (Current Sample¼ 0.5479�;
Esterman et al., 2013 sample¼ 0.6162�; U¼ 795, p¼ .058) while no
other motion directions showed any difference (p> .24 for all). The
means for the six motion parameters across the two groups is shown in
Supplementary Fig. 2.

Behavioral paradigm and stimuli

For this study, a single 8-min run of the gradCPT was completed,
following the methodology of Esterman et al. (2013) with one exception.
As in the original study, the gradCPT stimuli consisted of 20 round,
grayscale photographs of mountain and city scenes, with 10 from each
category. On each trial, a random scene was chosen for presentation with
90% probability that the chosen scene would be a city scene and 10%
probability that the scene would be a mountain scene, with the constraint
that identical images could not be chosen on consecutive trials. Using
linear interpolation, scene images gradually faded from one to the next
over the course of 800ms, for a total of 600 trial images over the course
of the 8-min run. For the task, participants were required to press a
button when a city scene was shown and withhold responses when
mountain scenes were shown (i.e., go/no-go task). The task instructions
emphasized response accuracy without reference to speed. However, as a
new image replaced the previous image every 800ms, there was an
implicit response deadline in the task. Participants were given a practice
session prior to scanning where they were familiarized with each of the
20 scene images and given 1–2min of practice completing the task. In
contrast to the original study (Esterman et al., 2013), which used a goggle
system for stimulus presentation, images in the current study were
viewed from a mirror in the scanner projected via a back-projection
screen.

MRI acquisition and processing

Scanning was completed at the Neuroimaging Research for Veterans
(NeRVe) center at the VA Boston Healthcare hospital on a 3T Siemens
MAGNETOM Trio system. During the first part of the scanner session two
anatomical magnetization prepared rapid gradient-echo (MP-RAGE)
structural scans were obtained with a 12-channel head coil. These MP-
RAGE T-1 scans were acquired with the following parameters: repeti-
tion time (TR)¼ 2530ms, echo time (TE)¼ 3.32ms, flip angle¼ 7�,
acquisition matrix¼ 256� 256 x 176, voxel size¼ 1mm3. Anatomical
scans were inspected at acquisition for motion artifacts and repeated if
necessary. Following acquisition these scans were averaged to increase
signal-to-noise ratio. All structural images were then processed using
standard FreeSurfer and Analysis of Functional Imaging (AFNI) pipelines
(Cox, 1996; Fischl et al., 1999; Fischl et al., 2004).

The functional run was collected using a 32-channel head coil and one
whole-brain echo-planar T2*-weighted sequence. The scanning param-
eters for the functional scan were as follows: TR¼ 2000ms, TE ¼ 30 ms,
flip angle ¼ 90�, 248 vol, acquisition matrix ¼ 64 � 64, in-plane reso-
lution ¼ 3.0 � 3.0 mm2, slice thickness ¼ 3.75 mm. Following acquisi-
tion, the functional scan was processed using AFNI and custom written
routines in Matlab (Mathworks Inc., Natick, MA). Preprocessing steps
included slice-time correction, motion correction using a 6-parameter,
rigid body, least-squares alignment procedure, spatial smoothing with a
6-mm FWHM Gaussian kernel, automated co-registration and normali-
zation of anatomical and functional volumes to Talairach space, and
scaling of functional dataset values to percent signal change using the
equation x’ ¼ 100* (x – x0)/x0, where x0 was the mean value of the run.
During preprocessing, automated segmentation algorithms generated
three masks from the Talairached anatomical volume. These included
masks covering grey matter, white matter, and cerebral spinal fluid
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(CSF). Average time series from the functional scan were extracted from
eroded white matter and cerebral spinal fluid masks to use as nuisance
regressors.

Behavioral analyses

Reaction time and accuracy
Analysis of behavioral performance on the gradCPT has been

described in detail elsewhere (Esterman et al., 2013; Fortenbaugh et al.,
2015). Briefly, response times to each trial were determined using an
iterative algorithm that assigned button presses to individual trials. Re-
action times were calculated relative to the beginning of each image
onset. Thus, a reaction time of 800ms would indicate that the current
image was 100% coherent while shorter reaction times indicate that the
current imagewas still in the process of transitioning in from the previous
image. After the response time algorithm was run, reaction time and
performance variables were calculated. These include: mean reaction
time, reaction time variability (defined using the coefficient of variation
(CV), or the standard deviation of the reaction time divided by the mean
reaction time for that participant), commission error (CE) rate (the
number of target mountain scenes a participant pressed to), and omission
error (OE) rate (the number of city scenes a participant failed to press to).
Using standard signal detection analysis, the commission and omission
error rates were then used to calculate d’ and criterion scores, where d’
reflects the ability of participants to discriminate between city and
mountain scenes and criterion reflects the strategy used by participants,
or the willingness to press the response button in the case of uncertainty.
Standard procedures were used to correct for cases where hit rates were
100% or false alarm rates were 0%, with one-half error deducted or
added, based on the total number of target or non-targets presented in the
run, respectively. A confirmatory factor analysis was performed,
following up on the exploratory factor analyses that were completed on
the four primary behavioral variables examined in web-based versions of
the gradCPT (Fortenbaugh et al., 2015)—namely, the two reaction time
measures, d’, and criterion. The confirmatory factor analysis was run in R
using a maximum likelihood estimator (Lavaan R package; Rosseel,
2012), specifying a 2-factor model of ability (CV and d-prime) and
strategy (RT and criterion).

Vigilance
To investigate potential vigilance decrements over the course of the 8-

min run, linear changes in performance were assessed for each of the six
behavioral measures: mean reaction time, reaction time variability,
commission error rate, omission error rate, d’, and criterion. For this
analysis, the data was divided into four 2-min quartiles. Mean perfor-
mance was then assessed for each quartile and a linear regression was
calculated to determine the slope parameter for each participant sepa-
rately. One-sample t-tests were conducted to determine if the slopes
differed significantly from zero.

In the zone vs. out of the zone
Following the analysis first outlined in Esterman et al. (2013), this

analysis inferred instantaneous attentional state by using trial-by-trial
variations in reaction time to calculate the variance time course (VTC).
VTCs were computed for each participant using the >500 correct re-
sponses to the non-target city scenes. First, reaction times were z-trans-
formed to normalize values within participants and the absolute value of
the z-scores was calculated so that higher values indicated greater de-
viations from the mean, including both very slow and very fast reaction
times, while lower values indicated reaction times closer to the mean of
the run. Values for trials without responses (omission errors and correct
omissions to target mountain scenes) were linearly interpolated from the
reaction times of the two surrounding trials. A smoothed VTC was then
computed using a Gaussian kernel of 9 trials full-width at half-maximum
(FWHM), integrating information from the surrounding 20 trials with a
weighted average. While the VTC is a continuous, within-subject
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measure of variability that is agnostic of when participants are in any
particular attentional state, splitting the time series up into high and low
variability trials allows for accuracy comparisons across a participant's
relatively more or less stable periods of performance. From the smoothed
VTC, a median split was used to divide performance on each trial into low
and high-variability bins. Based on previous work, these 4-min periods
are referred to as being “in the zone” and “out of the zone”, respectively.
While there are multiple ways that can be used to split performance (e.g.,
relative to the group-level mean variability, or splitting two or more
contiguous intervals of trials into groups), the trial-by-trial assignment
into low/high variability bins was used in order to follow previous
methodology and provide a within-subject measurement of each partic-
ipant's state relative to their overall performance (Esterman et al., 2013).

Neuroimaging analyses

Event related activity
For each participant, functional data was submitted to a hierarchical

general linear model (GLM) analysis that included two levels. The first
level analysis was used to regress motion and nuisance parameters from
each voxel's time series. The first-level GLM included regressors associ-
ated with the six motion parameters and two additional nuisance re-
gressors: cerebral spinal fluid (CSF) and white matter time series.
Additionally, linear, quadratic, and cubic trends were modeled. The GLM
analysis also included censoring of time-points around abrupt move-
ments. The time-points where motion exceeded 0.5 mm as well as the TR
immediately following the movement were censored (ignored) in the
GLM analysis (see Supplementary Fig. 2 for individual participant
censoring proportions). This affected the estimation of regressor beta-
values but did not delete the time points from the residual time series.
The residual time series from the first-level GLMwere then submitted to a
second-level GLM that modeled the stimulus events, again using time-
point censoring. Stimulus events, including correct omissions, commis-
sion errors, and omission errors were modeled as impulse events in the
same GLM. Correct commissions (accurately responding to non-target
city scenes) were not explicitly modeled in this GLM due to their high
frequency. Regression coefficients for each of the three event types were
compiled across participants and tested via voxel-wise one-sample t-tests.
The correct omission versus commission error contrast was tested with a
paired-sample t-test. Whole-brain statistical maps were corrected for
multiple comparisons using the new and more conservative ex-Gaussian
voxel-cluster Monte-Carlo-type α simulation rather than the previous
standard Gaussian model in AFNI (Cox et al., 2017). First, the AFNI
3dFWHMx function was run with the spatial autocorrelation function
(ACF) option in order to estimate the spatial smoothness of the data with
a mixed Gaussian plus mono-exponential model to generate random
noise fields. The estimated parameters for this model were then used
with the 3dClustSim command and ACF option to estimate the minimum
cluster sizes needed to reach statistical significance. Across all three event
types, the correction omission/commission error contrast, and the two
whole-brain VTC analyses below, we choose the most conservative
cluster-size threshold corrected p< .05 for all analyses, at a nominal
p¼ .01. Significant clusters were �81 voxels.

Lapse precursors
To model pre-trial activity in response to target mountain scenes

when participants either correctly withheld responses (correct omis-
sions) or incorrectly pressed (commission errors), two different analytic
approaches were utilized. For both analysis, the residual time series from
the first-level GLM which did not model events were used. As AfNI zeros
out but does not delete censored time points in the residuals, after
extraction of the time series the time points censored in the GLM analyses
were converted to NaN in Matlab for all following analyses and were thus
again excluded from these analyses. First, we replicated the approach
utilized in Esterman et al. (2013). Using the same,
independently-defined, regions of interest (ROIs) from Esterman et al.
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(2013), three ROIs were assessed: the parahippocampal place area (PPA),
dorsal attention network (DAN), and the default mode network (DMN).
In the second approach, we looked at pretrial activity using a whole-brain
voxel-level analysis. Average residual time series were extracted for each
of the three ROIs in the first approach, while individual residual time
series were extracted for each voxel in the second approach. Using an
iterative algorithm, linear time interpolation was conducted to estimate
the BOLD response at each image transition (rate¼ 0.8 s), using only the
nearest TRs for estimation. For the ROI analysis, the pretrial period was
defined as the average activation of the two trials immediately preceding
a target mountain onset (�1.6 s to �0.8 s). For the second approach, in
order to accommodate the increased noise moving from an ROI to
voxel-level time series analysis, we increased the temporal averaging
window to seven trials (~3 TRs) that occurred in the window �4.8sec to
0.0sec before target onset. To assess statistical significance in this second
analysis, a permutation-based Monte Carlo approach was used. The
correct omission and commission error labels were randomly shuffled for
each participant. A new subtraction map was calculated and the
maximum cluster size observed for positive and negative differences in
this shuffled map was determined. This shuffling process was repeated
5000 times and the distribution of maximum positive and negative
cluster sizes for the shuffled subtraction maps was calculated. From these
distributions, the 250th largest cluster size (top 5th percentile) was
recorded separately for positive and negative cluster distributions. Tak-
ing the larger of these two cluster sizes resulted in a 353-voxel cluster
threshold. Note we did not perform the lapse precursor analysis split by
in/out of the zone given the small number of commission error trials
when participants were in the zone within a single run (i.e. 19 partici-
pants did not have a single commission error when they were in the zone
and the average number of in the zone commission errors was ~4 trials).

In addition to calculating the mean pre-trial BOLD signal change, we
extended analyses from previous studies using the gradCPT by examining
the temporal dynamics across our three a priori ROI regions (PPA, DAN,
and DMN) to determine the extent to which patterns of pretrial activity
across these three regions is predictive of upcoming lapses or successes in
sustained attention. For this analyses, we included only those partici-
pants who had 3 or more commission error trials (N¼ 135) in order to
ensure enough time points were available for the slope analysis. Of the 5
participants excluded from this analysis, one participant had no com-
mission errors and thus no data available in this category, and two par-
ticipants each had only one or two commission errors across the entire
run. Using a design similar to that applied by Thompson et al. (2013), we
assessed temporal dynamics in a 12.8 s window (16 trials) centered 6.4 s
prior to the onset of a mountain stimulus (see Fig. 6A). First, we extracted
the time points in the 12.8 s window for each trial and modeled temporal
changes in BOLD activity using linear regression to obtain a slope value.
For each participant, separate trial-based slope values were calculated for
correct omission and commission error trials in each of the three ROIs.
The mean slope was then calculated across all the trials in each category.
We then calculated the mean slope values prior to commission errors or
correct omissions for each of the three ROIs individually and compared
differences in slope values using a 3 (ROI) x 2 (Event Type)
repeated-measures ANOVA and paired t-tests.

Variance time course
To determine which voxels had time series that co-varied with fluc-

tuations in attention state, a slightly different approach from the original
study by Esterman et al. (2013) was used. We note, however, that this
time-delayed approach is reported in the Supplementary Materials of that
paper and compared with the main analytic approach. As in Esterman et
al. (2013), the residuals from the second-level event-related GLM anal-
ysis outlined above were used. Given the delayed hemodynamic
response, the smoothed VTC time series for each participant was then
shifted by 6 s and whole brain correlations were calculated using 3dRe-
gAna in AFNI. Spearman rho calculations were used rather than Pearson's
r as the question of interest was which brain regions show monotonic
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trends in fluctuations in BOLD activity with changes in reaction time
variability, and there was no a priori reason to assume these fluctuations
would be linearly related to reaction time. Additionally, inspection of
individual participant's VTC time series showed that data points are
generally not normally distributed given the lower limit on reaction
times variability (i.e., absolute z-scores) leading to positive skewed dis-
tributions. Thus, non-parametric correlations are a more appropriate
statistic in this type of analysis. The resulting correlation coefficients
were converted to Fisher z scores and a one-sample t-test was calculated
on normalized correlation coefficients. As with the event-related analyses
above, results of the analysis were thresholded using the
cluster-corrected thresholds for p< .05 (nominal p¼ .01; cluster
size� 81 voxels).

Variance time course and individual differences
While the degree to which multiple brain regions track the variance

time course has been assessed in previous studies, to date no work has
examined the extent to which the degree of coupling is related to or
predictive of overall performance. To determine whether the degree of
coupling between BOLD signal and reaction time variability is mean-
ingful for an individual's overall performance, two additional analyses
were completed that examined inter-individual differences in overall
performance on the gradCPT. First, we tested whether the z-scores from
the above whole-brain VTC analysis were correlated with participant's
overall accuracy on the task using their d’ score. For this analysis, at
every voxel the VTC regression z-scores were correlated with d’ scores
across participants. As with the other whole-brain analyses above, results
of the analysis were thresholded using the cluster-corrected thresholds
for p< .05 (nominal p¼ .01; cluster size� 81 voxels).

In our second analysis, using our PPA, DMN, and DAN ROIs, we tested
whether consideration of the degree to which each region tracks a par-
ticipant's VTC and the degree to which regions are coupled with each
other over the course of the run can predict individual differences in
overall performance, again using d’ as our dependent variable. For this,
the 10 nodes of the ROIs were used (PPA¼ 2 nodes, left and right;
DAN¼ 4 nodes, left and right intraparietal sulcus (IPS) and frontal eye
fields (FEF); DMN¼ 4 nodes, bilateral anterior medial prefrontal cortex
(AMPFC), bilateral posterior cingulate cortex (PCC), and left and right
lateral parietal cortex; see Supplementary Fig. 4). We first calculated the
correlation (Pearson's r) between the VTC and the average time series
from each of the 10 nodes as well as the correlation between each of the
node pairs for each participant. This gave a total of 55 connections/VTC-
brain correlations which were used in a multiple linear regression model
using a leave-one-subject-out (LOSO) cross-validation procedure to pre-
dict d’ (Esterman et al., 2010; Fortenbaugh, Corbo, et al., 2017a). For the
LOSO procedure, every participant was left out of the training dataset
once. In each of these iterations, a linear regression model was built from
N features across the 139 participants in the training dataset, where N
was varied from 1 to 55 (all possible) features. Feature selection was
done by finding the N features with the greatest correlation between
coupling and d’ in the training set. Thus, for a given feature set size, the
features included in the model could vary across participants. Once the
features were selected the beta weights from the regression model were
used to predict the d’ score of the participant left out. After all 140 it-
erations for a given feature set size, the predicted and measured d’ scores
across all 140 participants were correlated with each other to assess the
quality of the model.

Results

Behavioral results

Overall performance
While the primary focus of the current paper was to investigate

whether the neuroimaging findings of Esterman et al. (2013) replicated
in the current sample, it was first important to consider whether our
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novel sample of Veterans performed behaviorally similar to the previous
sample of 16 young, healthy non-Veterans as any performance differ-
ences would be expected to impact the related BOLD signal. Table 1
summarizes the behavioral performance of the 140 Veterans in the cur-
rent sample. For comparison, Table 1 also shows the mean performance
from the 1st run of the experiment in Esterman et al. (2013) as partici-
pants in this study completed multiple runs of the task. Given the
significantly larger sample size in the present study, data from Esterman
et al. (2013) were compared to the present study using Mann-Whitney U
tests. As seen in Table 1, for all performance measures including both
reaction time and accuracy, at the group level, performance did not differ
significantly in the present sample to that observed over the 1st run of the
task in Esterman et al. (2013).

Time-on-task effects
The original study by Esterman et al. (2013) also considered changes

in performance across each run, to investigate whether vigilance decre-
ments could be observed in how participants completed this challenging
sustained attention task. As seen in Table 1, a similar pattern of change in
performance across the 8min of task was observed. For all four of the
primary performance measures considered in Esterman et al. (2013),
namely, mean reaction time, reaction time variability (CV), commission
errors, and omission errors, significant changes in performance were
observed as indicated by the one-sample t-tests comparing the group
slope values to a hypothetical mean of zero. The present study also
included two additional performance measures, d’ and criterion, which
represent discrimination ability and strategy on task, respectively.
Interestingly, while discrimination ability was seen to significantly
decrease over the course of the run, consistent with a vigilance decre-
ment, we found no change in the strategy used by participants.
Comparing the slopes to those observed in the original sample (Esterman
et al., 2013), the only behavioral difference was in the slope of the mean
reaction times, with participants in the present sample speeding up their
reaction times over the course of the run while participants in the original
sample tended to slow down. Importantly, however, for all performance
measures related to accuracy, strategy, or fluctuations in reaction time,
changes in performance across time were equivalent across the two
samples.

Relationship between performance variables
In the original study by Esterman et al. (2013), a strong correlation

was observed across participants between reaction time variability (CV)
and lapse rate, defined by the number of commission errors. In For-
tenbaugh et al. (2015) this relationship was further investigated using
factor analyses on the behavioral performance of over 10,000 partici-
pants across the world who completed an online version of the gradCPT
task. Results of these analyses indicated two latent factors in performance
on the gradCPT task. The first factor, which we have labeled the ability
factor, was driven by reaction time variability and discrimination ability,
measured using d’ to account for both commission and omission error
rates. The second factor, the strategy factor, was driven by mean reaction
time and criterion values, and reflected the approach used by participants
to complete the task. As seen in Fig. 2 and Table 2, the results of the
present study replicated the findings found in Fortenbaugh et al. (2015),
with strong correlations observed across the ability variables, d’ and
reaction time variability and the strategy variables, criterion and mean
reaction time. While all correlations show a significant relationship,
further analyses were completed to compare the strength of the corre-
lations taking into account the covariance matrix given that the corre-
lations were from the same participants and the measures dependent
(Steiger, 1980). As seen in Table 2, results showed that the relationship
between d’ to reaction variability is significantly stronger than the rela-
tionship between d’ and mean reaction time. Similarly, the relationship
between criterion and mean reaction time is significantly stronger than
the relationship between criterion and reaction time variability (see
Table 2). To assess if the same latent variables were observed in the



Table 1
Group means on the behavioral performance measures in the present study. For comparison, the mean values from the 1st run of the 16 participants from Esterman et al. (2013) are shown
and compared to the means of the present sample. One-sample t-tests on the slope parameters tested if the slopes differed from zero (i.e., did performance change over time).

Parameter Mean
�95%CI

1-Sample t-test
(x0¼ 0)

Esterman et al. (2013)
1st run (95%CI)

Mann-Whitney
Across samples

Mean reaction time (RT) 0.764� 0.012 0.780� 0.037 U¼ 991,
p¼ .451

Reaction time variability (CV) 0.197� 0.007 0.187� 0.024 U¼ 910,
p¼ .220

Commission Error Rate (CE) 0.212� 0.023 0.271� 0.065 U¼ 809,
p¼ .069

Omission Error Rate (OE) 0.050� 0.013 0.043� 0.026 U¼ 1109,
p¼ .949

D0 2.926� 0.141 2.695� 0.485 U¼ 951,
p¼ .324

Criterion 0.573� 0.071 0.684� 0.117 U¼ 1002,
p¼ .491

Slope – RT �0.0015� .00015 t(139)¼�2.016,
p¼ .046

0.0049� 0.0043 U¼ 694,
p¼ .013

Slope - CV 0.0046� 0.0013 t(139)¼ 6.938,
p< .0001

0.0042� 0.0030 U¼ 1065,
p¼ .748

Slope - CE 0.0139� 0.0051 t(139)¼ 5.383,
p< .0001

0.0046� 0.0113 U¼ 980,
p¼ .413

Slope - OE 0.0046� 0.0024 t(139)¼ 3.792,
p< .0001

0.0045� 0.0050 U¼ 1101,
p¼ .909

Slope – D0 �0.0898� 0.0237 t(139)¼�7.426,
p< .0001

�0.0661� 0.0439 U¼ 1025,
p¼ .579

Slope - Criterion 0.0048� 0.0115 t(139)¼ 0.815,
p¼ .416

�0.0199� 0.0313 U¼ 976,
p¼ .400
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present sample as previous studies (Fortenbaugh et al., 2015), a confir-
matory factor analysis was run using the proposed two factor model
(Table 3). We found that this model fit the data sufficiently well, ac-
cording to current standards (Hu and Bentler, 1999; Schreiber et al.,
2006), with four out of five criteria indicating a good fit (see Table 3).

In the zone vs. out of the zone
Using the VTC time series to calculate stable reaction time periods

(“in-the-zone”) and unstable periods (“out-of-the-zone”), we examined
whether behavioral performance differs across these periods of time. As
seen in Fig. 3, consistent with the study by Esterman et al. (2013),
paired-sample t-tests show that participants made more errors when they
were out of the zone than in the zone (commission error rate:
t(139)¼ 12.01, p< .0001; omission error rate: t(139)¼ 9.14, p< .0001),
while no difference was seen in the mean reaction time across the two
epochs, t(139)¼ 1.10, p¼ .27. We further compared our signal detection
measures across in-the-zone and out-of-the-zone epochs. Results showed
a decrease in discrimination ability (d’) when participants were out of the
zone, t(139)¼ 17.47, p< .0001, while no change in response strategy
were observed in the criterion measure, t(139)¼ 1.295, p¼ .197.
fMRI results

Event-related activation analyses
Analysis of event-related activity focused on three types of events: 1)

correct omissions, where participants correctly withheld responses to the
rare mountain scenes, 2) commission errors, where participants failed to
withhold a response to mountain scenes, and 3) omission errors, or rare
trials where participants failed to press to a city scene. Fig. 4 shows maps
of areas with significant event-related BOLD activity to these three types
of events and the contrast between correct omissions and commission
errors (see Supplementary Tables 1–3 for detailed cluster information).
As seen in Fig. 4a, the most frequent type of event, correct omissions, was
associated with widespread increases in task positive networks associ-
ated with attention, including the dorsal attention, fronto-parietal, and
salience networks (Yeo et al., 2011). This widespread positive activity
also covers regions associated with the vigilance attention network
(Langner and Eickoff, 2013), specifically the pre-supplementary motor
area (pre-SMA), inferior frontal gyrus, insula, lateral prefrontal cortex,
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temporal-parietal junction, intraparietal sulcus, middle occipital gyrus,
temporal occipital junction, and thalamus. In contrast, decreases in ac-
tivity are seen in default network regions, including the anterior medial
prefrontal cortex (amPFC), posterior cingulate cortex (PCC), and left
lateral parietal cortex. Within visual cortex, a division was seen with
medial visual cortex showing a decrease in activity while lateral and
ventral visual cortex showed an increase in activity. These activations
were likely the results of a combination of target detection, cognitive
control and response inhibition necessary to withhold a response to
target mountain stimuli.

Commission errors, or failures to effectively detect and/or withhold
responses to rare mountain trials (Fig. 4b), were associated with
increased activity in the ventral attention and salience networks, also
referred to as the cingulo-opercular network, thought to be engaged in
error monitoring, attentional reconfiguration, and maintaining/
refreshing tonic alertness, task control and goals (Dosenbach et al., 2008;
Sadaghiani & D'Esposito, 2015), including the bilateral insula and
fronto-operculum, thalamus, dorsal anterior cingulate cortex including
pre-SMA, and anterior prefrontal cortex. Fig. 4d shows the correct
omission vs. commission error map, with positive values showing areas
with greater activity following correct omissions while negative values
show relatively higher activity following a commission error. Lateral
visual and parietal regions, including the IPS which is known to contain
topographic maps of spatial attention (M. A. Silver and Kastner, 2009; M.
A. Silver, Ress and Heeger, 2005), showed greater responses on correct
omission trials, potentially reflecting greater visual attention to stimuli
during these trials. On the other hand, greater activation in dorsal ACC
and insular cortex for commission errors may have reflected error-related
activation or processing.

The second type of error that participants made in this type of not-X
CPT task was omission errors, where participants fail to respond to
frequent city images. Task-evoked activity to omission errors (Fig. 4c)
was almost entirely overlapping with the evoked responses to commis-
sion errors and correct omissions, with increased activity seen in the pre-
SMA region, thalamus, inferior parietal lobules, middle frontal gyrus, and
insula, and decreased activity in the posterior cingulate. This may have
reflected some aspect of response inhibition, independent of task-
relevance (CO and OE), as well as error-related activation, independent
of stimulus type (CE and OE).
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Fig. 2. Behavioral Results. Scatterplot showing the relationship across the four primary behavioral measures on the gradCPT task identified in Fortenbaugh et al.
(2015): mean reaction time, reaction time variability (CV), d’, and criterion. The graph shows strong correlations within the behavioral measures related to
performance (d’ and CV) and the measures related to strategy (criterion and RT). Each diamond represents a single participant and the black line shows the
regression line.

Table 2
Statistical results of correlations across the four primary performance measures, mean re-
action time, reaction time variability (CV), d’, and criterion shown in the scatterplots of
Fig. 2. The bottom row compares the difference in the strength of the correlation in the two
rows above.

Accuracy Measures

D0 Criterion

Mean Reaction Time r¼�0.490,
p< .001

r¼�0.705,
p< .001

Coefficient of Variation r¼�0.749,
p< .001

r¼�0.288,
p¼ .001

Difference of Correlation z¼�3.943,
p< .0001

z¼�5.566,
p< .0001

Table 3
Results of the confirmatory factor analysis testing the proposed two factor model: ability
(reaction time variability and d’) and strategy (mean reaction time and criterion). We
considered a ratio of χ2 to degrees of freedom�3, SRMR and RMSEA values� 0.06, and CFI
and TLI values> 0.95 to be indicators of good model fit (Hu and Bentler, 1999; Schreiber
et al., 2006). All criteria indicated a good fit except for Root Mean Square Error of
Approximation (indicated by * in the table).

Quality of Fit Measurement Value

χ2/degrees of freedom 2.525*
Standardized Root-Mean-Square Residual (SRMR) 0.024*
Root Mean Square Error of Approximation (RMSEA) 0.104
Comparative Fit Index (CFI) 0.994*
Tucker-Lewis Index (TLI) 0.963*
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Precursors of attention lapses
While the previous analysis examined the evoked responses to correct

omissions, commission errors, and omission errors using a standard GLM
approach assuming a canonical hemodynamic response, in our next
analysis we examined BOLD activity related to these events in the time
leading up to the target mountain trials (correct omission and commis-
sion errors). Following the approach outlined in Esterman et al. (2013),
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we first examined pre-trial activity averaged across the two trials
immediately preceding the beginning of each mountain trial (�1.6 to
�0.8 s from trial beginning). Note that one participant made no com-
mission errors across the run and was therefore excluded from the
following analyses. Fig. 5a shows the mean deviation in BOLD signal for
the PPA, DAN, and DMN ROIs across this window. Paired-sample t-tests
showed only a partial replication of the results from Esterman et al.
(2013). BOLD activity was significantly lower in the PPA and higher in
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Fig. 3. Behavioral Results. Bar graphs showing mean behavioral performance differences when participants are in-the-zone versus out-of-the-zone for the
behavioral performance measures. Error bars represent �1 S.E.M.

Fig. 4. Evoked Activity Results. Event evoked activity results from GLM analysis for (a) Correct Omissions, (b) Comission Errors, (c) Omission Errors, and (d)
Correct Omissions – Comission Error contrast. All maps show T-statistics and are displayed after correction for multiple comparisons (corrected p< .05; nominal
p< .01, cluster size> 81 voxels).
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Fig. 5. Pre-trial Activity Results. (a) The left panel shows the results from ROI-level analysis. The average activation level for Commission Errors (CE) and Correct
Omissions (CO) across the �1.6sec to �0.8sec window prior to target onset are shown for the PPA, DAN, and DMN ROIs. Error bars show �1 S.E.M. Significant
differences across CO and CE pretrial activity are shown with * for p< .05. (b) The right panel shows the results from the whole-brain voxel-level analysis on the
CO-CE contrast activity averaged across the �4.8 to 0.0sec window prior to target onset. This map shows the T-statistic thresholded after correction for multiple
comparisons (Monte-Carlo p< .05, cluster size> 353 voxels).

Fig. 6. Network-Level Trends Prior to Attentional Lapses. (a) The panels on the left side of the figure illustrate the method used to assess dynamic pretrial activity in
individual participants. The mean time series in the window �20sec to 0sec prior to target scene onsets is shown for Correct Omission (CO) and Commission Error
(CE) trials for the PPA, DAN, and DMN ROIs separately. The blue and red dots show the mean across trials with the red and blue shaded regions shows �1 S.E.M.
The shaded grey box shows the 12.8sec (16 trials) interval of interest just prior to target onset used in the current analysis. Linear regression was applied to the 16
time points in each trial to extract a slope parameter (examples shown by red and blue lines). (b) Group level bar graph showing the mean slope across participants
for CO and CE trials as a function of ROI (PPA, DAN, and DMN). Error bars show �1 S.E.M. Significant differences in slopes across CO and CE trials are shown with
* for p< .05.
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the DMN prior to lapse trials when participants made commission errors
compared to trials where participants correctly withheld responses (PPA:
t(138)¼�2.25, p¼ .026; DMN: t(138)¼ 3.05, p¼ .003). In contrast to
Esterman et al. (2013), while numerically the DAN showed lower BOLD
activity in lapse trials compared to correct response trials, no significant
difference was observed across commission error and correct omission
trials, t(138)¼�0.88, p¼ .382. To further explore the consistency across
studies, we plot in Table 4 the mean BOLD activity contrast (correct
omissions - commission errors) along with the 95% confidence intervals
from the original Esterman et al. (2013) dataset, along with the measured
contrast from the current data. As can be seen in Table 4, not only was no
significant difference observed between commission errors and correct
omission trials for the DAN ROI in the present dataset, but the difference
across these two types of trials fell outside the 95% confidence interval of
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the significant contrast measured in Esterman et al. (2013). Thus, while
the magnitude of the difference was small within the DAN ROI in the
original study, the observed difference fell outside the expected range,
indicating that the current results do not replicate those of the original
study.

Extending this analysis beyond Esterman et al. (2013), we examined
differences between precursors of correct omissions vs. commission er-
rors at the whole brain voxel-wise level (Fig. 5b; see Supplementary
Table 4 for detailed cluster information). We found significant clusters in
ventromedial PFC regions consistent with the ROI-level analysis showing
higher activity in the DMN before a commission error. Interestingly, we
also found a cluster in somatomotor cortex in the right hemisphere
extending to left somatomotor cortex, suggesting greater activity in the
task-relevant motor system or fine motor preparation signals could lead



Table 4
Pretrial Activity. The results below show the measured average activation level across the
�1.6sec to�0.8sec window prior to target onset for the PPA, DAN, and DMN ROIs. The first
four columns show data from the original Esterman et al. (2013) study. Mean activity level
for Commission Errors (CE) and Correction Omissions (CO) are shown along with the mean
and 95% confidence intervals for the CO-CE contrast. The last column shows the mean
CO-CE contrast levels for the present study, showing that mean differences in the DAN ROI
in the present study falls outside the 95% confidence interval from Esterman et al. (2013).

Esterman et al. (2013) Current
Study

ROI CE CO Difference
(CO-CE)

Difference
95%CI

Difference
(CO-CE)

PPA �0.0016 0.0211 0.0227 0.0049 to 0.0405 0.0157
DAN �0.0032 0.0129 0.0161 0.0043 to 0.0278 0.0041
DMN 0.0353 �0.0030 �0.0383 �0.0612 to

�0.0154
�0.0228
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to errors of commission (right-handed response). Conversely, left insula,
right ventral visual cortex, and bilateral thalamus exhibited greater ac-
tivity before correctly withholding, regions consistent with response
control and visual processing respectively. Overall these results were
consistent with the ROI analyses and prior work, but do not provide
support for DAN as a precursor to response accuracy, as was found in the
original report.

Temporal dynamics of pretrial activity
While the previous analysis examined mean activity levels in the time

just prior to a target stimulus onset, examining mean activity within a
small window of time provides just a snapshot of overall activity andmay
not fully capture the temporal dynamics that lead to subsequent lapses in
performance. While there are many potential ways to model temporal
dynamics, in the following analysis we examined temporal changes in
pretrial BOLD activity using a simple measurement of change over time:
linear slope analysis (i.e., moving from a point estimate to a line). Fig. 6a
shows a schematic of the procedure used, which involved estimating
slope parameters across the 16 trials (12.8sec window) preceding a target
onset and examining differences in slope patterns across event type
(correct omissions and omission errors) for the PPA, DAN, and DMN
ROIs. Comparing the mean slope parameter estimates across participants
with a 2� 3 repeated-measures ANOVA (see Fig. 6b), we found no main
effect of event type, F(1,134)¼ 2.45, p¼ .120 but a main effect of ROI,
F(2,268)¼ 6.34, p¼ .002. Importantly, however, an Event Type x ROI
interaction was observed, F(2,268)¼ 3.50, p¼ .032, with lower slopes
prior to commission errors than correct omissions in the task-positive
PPA and DAN ROIs while higher slopes prior to commission errors
were seen in the DMN. Follow-up paired sample t-tests showed that
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slopes significantly differed across correction omission and commission
error trials in the task-positive ROIs (PPA: t(134)¼�2.16, p¼ .032;
DAN: t(134)¼�2.14, p¼ .034), while no significant difference was
found in the DMN ROI, t(134)¼ 0.87, p¼ .387.

Reaction time stability
To examine the relationship between trial-by-trial fluctuations in

reaction time stability and BOLD activity, whole-brain correlations were
calculated using each participant's VTC time series. For this correlation,
the VTC time series were down-sampled into TR-space and shifted by
3 TRs (6 s) to account for the hemodynamic delay. Correlations were
calculated using Spearman Rho and the resulting correlation coefficients
were Fisher transformed. Fig. 7 shows the resulting VTC thresholdedmap
(see Supplementary Table 5 for detailed cluster information). Consistent
with previous studies (Esterman et al., 2013; Esterman, Rosenberg, et al.,
2014b; Kucyi et al., 2017), several networks showed significant corre-
lations with reaction time variability. Within the DMN, bilateral posterior
cingulate and ventromedial prefrontal cortex, and left lateral parietal
cortex all showed negative correlations with the VTC time series, indi-
cating higher levels of activity during moments of relative stability (i.e.
lower reaction time variability). Negative correlations were also seen
extending from the posterior cingulate cortex inferiorly into the medial
occipital cortex. In contrast, positive correlations were observed in
several task-positive regions including supplementary motor association
area, lateral and ventral occipital cortex, bilateral inferior frontal gyrus
and insula, frontal eye fields, and temporo-parietal junction. These areas
corresponded to areas typically engaged during sustained attention tasks,
including the dorsal and ventral attention networks and the salience
network.

Reaction time stability and overall performance
While multiple task-positive and task-negative regions were found to

track fluctuations in reaction time variability, and this replicates several
previous studies (Esterman et al., 2013, 2017; Esterman, Rosenberg, et
al., 2014b; Kucyi et al., 2016), these relationships are counter to other
characterizations of these networks (for review see: Fortenbaugh,
DeGutis et al., 2017b). For example, DMN was more active “in the zone”,
while task positive networks were more active “out of the zone” (see
Discussion). Given this, our next analysis went a step further in asking
whether this coupling of BOLD activity and response variability is pre-
dictive of overall behavioral performance at the individual level. For this,
the Fisher z-transformed correlation coefficients from each participant's
VTC analysis were correlated on a voxel-by-voxel basis with overall
discrimination ability (d’) across participants. Results of this analysis
(Fig. 8; see Supplementary Table 6 for detailed cluster information)
Fig. 7. Variance Time Course Results. BOLD signal
correlation with the reaction time variability time
course. Positive (yellow) values show regions where
BOLD activity increased as reaction time variability
increased; negative (blue) values show regions where
BOLD activity decreased as reaction time variability
increased. The map shows T-statistics after correction
for multiple comparisons (corrected p< .05; nominal
p< .01, cluster size> 81 voxels).



Fig. 8. Variance Time Course and Performance Results.
Results of analysis correlating individual VTC-BOLD
signal correlation strength with overall performance
(d’) on the task across participants. The map shows T-
statistics after correction for multiple comparisons
(corrected p< .05; nominal p< .01, cluster size> 81
voxels).
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showed that the degree to which the posterior cingulate cortex (over-
lapping with DMN) tracked reaction time variability on a
moment-to-moment basis predicted overall task performance (d’) across
participants. Greater negative coupling (lower variability and higher PCC
activation) in an individual was associated with more accurate perfor-
mance. A similar relationship was found for a region in the left superior
frontal gyrus which also overlaps with the DMN (Yeo et al., 2011). In
contrast, regions in right inferior parietal/temporal-parietal junction
(overlapping with VAN) and ventral visual cortex showed the opposite
pattern—greater positive couple (higher variability and higher
temporal-parietal junction activation) was associated with more accurate
Fig. 9. Predicting Individual Differences in Performance. Results of the leave-one-subje
between the measured and predicted d’ score as a function of the number of featu
between the measured and predicted d’ scores for all 140 participants in the 18-fea
once between the 10 nodes of the PPA, DMN, and DAN ROIs, and the VTC in the 1
number of folds that each of the connections was selected as a feature in the pred

159
performance. Overall, these results suggest that if anything, these re-
lationships between ongoing variability and brain activity (Fig. 7) were
generally reflective of better performance at the individual level.

Predicting individual differences in performance using VTC and network-level
In our final analysis we utilized the three networks/ROI groupings

from the Esterman et al. (2013) study to determine whether the degree of
coupling between PPA, DAN, and DMN regions with reaction time sta-
bility and overall connectivity across network regions can be used to
predict individual differences in overall performance. Across the VTC and
10 nodes comprising the PPA, DAN, and DMN ROIs (see Methods Section
ct-out multiple linear regression analysis. (a) Pearson's r correlation coefficient
res (connections) used in the model. (b) Scatterplot showing the relationship
ture regression model. (c). Figure showing the 25 connections selected at least
8-feature regression model. The color and weight of the connection show the
iction model (max¼ 140 folds).



Table 5
Summary table showing the number of connections across regions in the leave-one-subject-
out linear regression analysis using VTC and network level coupling to predict individual
participant performance (d’) in the 18-Feature model. A total of 25 unique connections
were selected at least once across the 140 folds of the 18-Feature model (see Fig. 9c). The
main table shows the distribution of the 25 connections across the 9 potential categories.
The bottom row, labeled Node Total, shows the total number of times each of the three
networks (PPA, DAN, DMN) or the VTC was selected as one of the two nodes in the 25
connections. Thus, the Node Total values are not equal to the sum of the column above and
the sum across the Node Total row is 50 (2 nodes x 25 node pairs).

PPA DAN DMN VTC

PPA 0 2 3 1
DAN 0 10 4
DMN 1 4

Node Total 6 16 19 9
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2.5.4. Variance Time Course and Individual Differences and Supplementary
Fig. 4 for details), we tested the ability of 1–55 features to predict d’ using
a leave-one-subject-out linear regression approach. Fig. 9a shows the
correlation coefficient between the measured and predicted d’ values
across all 140 participants as a function of the number of features used in
the linear regression models. As seen in Fig. 9a, the best prediction ability
was seen with the 18-Feature model, which showed a significant positive
correlation between the measured and predicted d’ values, r¼ 0.402,
p< .0001 (see Fig. 9b). For the 18-Feature model, a total of 25 unique
connections were selected across all 140 participant folds and 11/25
connections were selected on 140/140 participant folds. Of the 11 con-
nections selected in every fold, the predominant groupings included
VTC-DMN connections and DMN-DAN connections (see Fig. 9c). The
pattern held when all connections selected were grouped according to
ROIs (see Table 5). Across the 25 connections, 10 included DAN-DMN
connections while 9 included VTC-ROI connections (4 VTC-DMN, 4
VTC-DAN, 1 VTC-PPA). Collectively, these results suggest that important
information regarding attentional stability and overall performance is
carried in both the degree to which the DAN and DMN track reaction time
stability, or the VTC, and that additional unique information is carried in
the degree to which DAN and DMN activity is correlated with each other.

Discussion

The results of the present study provide both an important robust
replication of findings from the original gradCPT study (Esterman et al.,
2013), as well as an extension by relating the strength of VTC-brain
coupling to individual differences in performance and pretrial temporal
dynamics to lapse likelihood. In the original gradCPT study (Esterman et
al., 2013), 16 young, healthy volunteers completed multiple runs of the
task while in the scanner. In contrast, the present study utilized 140
Veteran participants who each completed one run of the task. While
Veterans can be considered a special population, with higher prevalence
rates of both neurological and psychiatric illnesses than the general
population (e.g., mild traumatic brain injury and posttraumatic stress
disorder; see below), it is important to note that at the group level, the
performance of the Veteran participants in the present study was statis-
tically identical to that of the participants in the original study for all
behavioral measures with the exception of one: the change in mean re-
action time over the course of the run. Additional behavioral analyses
comparing the relationship across four of the primary behavioral mea-
sures using a confirmatory factor analysis (Table 3) provided support for
the same latent factors related to ability and strategy on the task as found
in a large web-based sample of over 10,000 participants between the ages
of 10–70 years old who completed a shorter version of the gradCPT task
(Fortenbaugh et al., 2015). Collectively then, the behavioral results of the
present sample suggest that performance of this unique sample are both
valid and representative of what one would expect at the group-level
from the general population.

More importantly, perhaps, given recent concerns that the field of
neuroimaging faces a replication crisis (Poldrack et al., 2017), the pre-
sent neuroimaging results provide a robust replication of the relationship
between fluctuations in response variability and ongoing brain activity.
Specifically, the whole-brain VTC correlation (Fig. 7) replicated and
extended the results of Esterman et al. (2013), and corroborated similar
analyses in subsequent papers (Esterman et al., 2017; Esterman, Rosen-
berg, et al., 2014b; Kucyi et al., 2016). Namely, we found that regions in
the default mode network exhibited greater activity during low vari-
ability in-the-zone periods, as does the putamen. On the other hand,
task-positive regions in the dorsal and ventral attention network
exhibited greater activity during highly variable, out-of-the-zone periods.
Our results, along with these previous studies, suggest that in-the-zone
performance is accomplished with either less attentional resources (i.e.,
more effortlessly), or alternatively, that attentional resources are
engaged with greater efficiency and precision. Studies have supported
the latter; task-irrelevant stimuli are processed with greater depth during
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these in-the-zone periods, akin to lower perceptual load, or more efficient
task-related processing (Esterman, Rosenberg, et al., 2014b). Similarly,
we have found that inhibitory TMS (1 Hz) to the right frontal eye field
impaired more optimal periods of performance (in the zone), but not less
optimal (out of the zone) periods of performance (Esterman et al., 2015).
This suggests that despite lower overall activity levels in dorsal and
ventral attention regions while in the zone, these task-positive regions
may be more critical during these periods of consistent and accurate
performance. In the domain of attentional control over the motor system,
Kucyi et al. (2017) found that stable and accurate periods of rhythmic
finger tapping was also associated with less activation in task-positive
regions and more activation in DMN regions, again consistent with
neural efficiency and suggestive that the relationship between atten-
tional stability and neural coupling is not restricted to visual attention.
On the other hand, recent evidence suggests that DMN activity may be
greater during periods of high predictability, suggesting that in the zone
periods could be akin to a more “autopilot” mode (Vatansever et al.,
2017).

While the variability-brain correlation replicated prior group-level
results, we also took advantage of the large sample size to ascertain
whether this coupling between ongoing brain activity and behavioral
variability was associated with individual differences in performance.
While the VTC has been shown behaviorally to track relative perfor-
mance within individuals (i.e., better accuracy in versus out of the zone),
the extent to which individual differences in VTC coupling may relate to
overall performance has not been examined before. If, on the one hand,
the VTC correlations in the brain were stronger in those with worse
performance, it would suggest that this coupling is maladaptive. If,
however, this brain-behavior coupling is stronger in better performers, it
suggests that this correlation is adaptive. Our results from the whole-
brain VTC coupling correlation analyses (Fig. 8) suggest the latter, such
that subcomponents of the DMN show stronger negative coupling (more
activity in the zone) in more accurate performers. Similarly, the right
temporal-parietal junction of the ventral attention network exhibited
stronger positive coupling with variability (more activity out of the zone)
in more accurate performers. These individual-differences results, while
not as extensive as the group VTC result, suggest that the coupling
observed between fluctuations of attention and ongoing activity in large-
scale brain networks is adaptive. Additionally, focusing just on the PPA,
DAN, and DMN networks, our cross-validation linear regression analysis
demonstrated that the degree of VTC coupling within the nodes of the
DAN and DMN in particular, in addition to coupling across the DAN and
DMN nodes, contains discriminative information that can be used to
predict individual differences in overall performance. These results
provide further support that the extent to which regions couple with
fluctuations in reaction time variability, while intrinsically a within-
subject measure of attentional state, also contains information
regarding inter-individual differences in sustained attention perfor-
mance. In the original study, it was posited that the relative balance of
DMN and DAN activity may play an important role in determining
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attentional state at any given moment, though no interactive effects were
tested at that time (Esterman et al., 2013). The theory that the interplay
between task-positive and task-negative regions, and in particular the
interplay between the DAN and DMN, rather than the activity in one
region alone, may have an important role in cognitive functioning is
receiving increasing interest (Avelar-Periera et al., 2017; de Pasquale et
al., 2017; Gao and Lin, 2012; Kucyi et al., 2017; Thompson et al., 2013;
Vatansever et al., 2017). The fact that the degree of DMN and DAN
connectivity was able to provide additional information beyond just the
VTC-DMN and VTC-DAN features in the regression models supports this
assertion. Given the limited number of a priori regions used in the present
analysis, however, future work is needed to determine how widespread
or localized this connectivity-derived information is across the brain.

The current study also sought to replicate and extend previous ana-
lyses on the neural precursors of attentional lapses, defined as errors of
commission. Broadly, the results across the two pretrial analyses show
that changes in BOLD activity leading up to a target event can provide
information regarding future performance, or lapse likelihood. Consis-
tent with the original report and others (Esterman et al., 2013; Esterman,
Rosenberg, et al., 2014b; Thompson et al., 2013), mean activity in
stimulus specific PPA was higher just prior to correct vs. lapses trials,
while DMN showed the opposite pattern, greater mean activity preceding
lapses vs. correct trials. Extending this analysis, examining the temporal
dynamics across correct omission and commission error trials showed
different patterns of activity across the three ROIs in the 12.8 s prior to a
target mountain onset. While PPA and DAN showed negative slopes prior
to a lapse trial, with BOLD activity decreasing, results showed if anything
an increase in DMN BOLD activity, though the contrast across correct
omission and commission error slopes was not significant for DMN. As
seen in Fig. 6, the differences in slopes was primarily seen for lapse trials
across the three ROIs with little to no difference in activity patterns
across the PPA, DMN, and DAN ROIs (slopes� 0) prior to correct omis-
sion trials. These results suggest that PPA and DAN activity represents
task-related stimulus processing that enables successful performance,
and that when this activity wanes over many seconds, performance can
suffer. On the other hand, it suggests that DMN activity may reflect
task-unrelated activity, such as mind wandering (Christoff et al., 2016;
Garrison et al., 2013; Konishi et al., 2015; Kucyi et al., 2016; Raichle et
al., 2001). This is consistent with several studies, including Kucyi et al.
(2016), which used thought probes to examine DMN activity in relation
to both mind wandering and variability. Interestingly, they also found
that while DMN activity was greater during mind wandering, it was also
greater during periods of low variability (i.e., in the zone, see previous
paragraph). This was the case despite overall greater variability during
mind wandering. Additionally, there was no anatomical segregation
between DMN voxels that tracked behavioral variability versus those that
tracked mind wandering. Rather, independent and additive influences of
attentional state (in/out of the zone) and mind-wandering were assessed
using linear mixed-effects models on the average DMN time series, and
were again found when tested on DMN sub-regions parcellating the DMN
into 7 or 54 sub-regions. These results are also consistent with findings
from a recent study assessing cognitive flexibility (Vatansever et al.,
2017) which suggests a role for the DMN in automated information
processing related to the performance of external task goals (i.e., not just
mind wandering). Together, the current results, along with Kucyi et al.
(2017) and Vatansever et al. (2017), argue against a unitary model of
DMN and suggest that multiple, independent contributions of the DMN to
cognition exist (e.g., in relation to behavioral variability, accuracy, and
mind wandering).

In contrast to the original report, we did not replicate the significant
precursor effects in the DAN (see Fig. 5 and Table 4), though the slope
analysis showed a significant difference in the direction of BOLD activity
slopes prior to attentional lapses versus correct omissions. In the original
study (Esterman et al., 2013), higher mean levels of activity in the DAN
was associated with subsequent correct vs. lapses trials. In the current
data, this effect did not reach significance and the observed difference fell
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outside of the 95% confidence interval from Esterman et al. (2013).
There are several possible reasons why this component of the study failed
to replicate. One possible explanation regards the role of motivation. We
previously found that task positive networks, including DAN, exhibited
greater activity before correct trials only when participants were moti-
vated (with monetary rewards) relative to an unrewarded condition
(Esterman et al., 2017). This led to the conclusion that motivation is
associated with a more proactive strategy (Botvinick et al., 2001), such
that participants actively maintain activity in task positive regions in
order to maximize success. Thus, such motivational differences could
explain the weaker nature of the current results, which may have varied
more in this sample because participants completed the gradCPT task at
the end of a long day of assessments. Conversely, it may be that prior to
target onsets pretrial effects are weaker in DAN than PPA, with differ-
ences evolving and becoming more prominent after target onsets. The
fact that significant slope differences were observed in the pretrial win-
dow could be seen as supporting this argument, with the dynamic
changes in the DAN perhaps more important than the final value just
prior to target onset. Along these lines, it may be that given the small
sample size in the original study, the mean pretrial differences observed
just before target onset in the DAN are in fact unreliable. Given recent
work suggesting that changes in short-window temporal dynamics may
be related to cognitive functioning (Kucyi et al., 2017; Thompson et al.,
2013), and our potentially conflicting finding regarding changes in DAN
activity leading to correct omissions and commission errors, additional
work will be needed to decide between these competing explanations.

Finally, using a whole brain approach, we found that activity in the
motor cortex was also associated with lapses of attention. We speculate
that greater activity in the contralateral motor system could indicate a
more pre-potent response set, increasing the likelihood of a failure to
inhibit a response in the upcoming target/mountain trial. Peak activation
in this cluster was observed in the right (ipsilateral) motor cortex
extending across into left motor cortex (see Fig. 5 and Supplementary
Table 4). While ipsilateral, and specifically the right, motor cortex has
been associated with fine finger movements (Chen et al., 1997), it is
unclear from the present data the extent to which such ipsilateral signals
may reflect general motor planning signals. Together, these results sug-
gest that there are heterogeneous neural, and perhaps psychological
causes of attentional lapses (e.g., motor, mind wandering, effort). Future
work should further examine whether individual and clinical differences
in types of lapses exist and whether they can be independently predicted
and even modulated. For example, TMS directed toward DMN regions
could be used to reduce lapses due to mind wandering, while stimulation
of visual cortices could attenuate lapses due to visual distraction. Further,
trial-to-trial prediction, or even real-time fMRI could take advantage of a
heterogeneous model of attentional lapses to enhance accuracy (deBet-
tencourt, Cohen, Lee, Norman and Turk-Browne, 2015).

In addition to the analyses of the original report, we also examined
and contrasted the evoked responses to the different stimulus event
types. Target/mountain events evoked broad activation in task-positive
and lateral visual regions, as well as a deactivation in DMN and medial
visual regions, regardless of whether participants correctly withheld their
response (Fig. 4a and b). Interestingly, correct omissions evoked rela-
tively greater responses in lateral visual and dorsal attention, implicating
enhanced visual processing and attentional control in the execution of
response inhibition (Fig. 3d). In contrast, errors of commission evoked
relatively greater responses in salience network regions including dorsal
anterior cingulate (dACC) and insular cortex, regions implicated in error
processing and task reconfiguration. Finally, rare errors of omission
evoked responses in regions that were associated with commission errors
(insular and dACC) as well as others associated with correct omissions
(dorsal parietal/prefrontal). In general, all task events evoked highly
overlapping patterns of activation that call into question pure regional
specificity of functions such as inhibition or error monitoring (Aron et
al., 2004; Botvinick et al., 2004; Kerns et al., 2004; Swick and Chatham,
2014).
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There are several limitations in the current study. One important
limitation is the low number of female participants, with 94% of our
sample being male. While this is representative of the U.S. Veteran
population, important gender differences have previously been reported
in the sustained attention literature (Blatter et al., 2006; Riley et al.,
2016). For healthy samples, this concern is somewhat reduced by the fact
that our results largely replicate those of Esterman et al. (2013), in which
the sample was 62.5% women. However, from a clinical perspective,
understanding how sustained attention varies as a function of gender is
an important issue that requires further study to better understand in-
dividual differences and provide a framework for understanding changes
in sustained attention in clinical populations that may include more
women than men. Additionally, the current sample included all Veterans
enrolled into the TRACTS cohort who were able to complete an MRI
scanning session. As no additional screening or inclusion/exclusion
criteria were applied, within the sample as a whole, there are multiple
sub-groups of participants (e.g., Veterans with mTBI, clinical symptoms
of anxiety, depression, or PTSD). The goal of the present study was to
take a group-level approach to replication and the fact that clinical
sub-samples were present in the current group of participants represents
more of a limitation for the individual differences analysis than the
group-level evoked events, VTC, and pretrial analyses. However, as with
any selective sample, the present data must therefore be approached with
some caution in terms of generalizing the results to the general popula-
tion or other potential clinical samples. Finally, while the gradCPT
paradigm is similar to many other continuous performance tasks that
utilize a go/no-go response paradigm (Conners, 1994; Robertson et al.,
1997), the ability to completely segregate event-related effects attribut-
able to attentional lapses vs. response preparation/inhibition is reduced.
While there are separate issues that may be faced using alterative
response paradigms (e.g., 2AFC), future research examining differences
across paradigms with differing response patterns may help to further
dissociate the underlying cognitive processes that contribute to the
evoked response patterns observed.

In spite of these limitations, this robust replication has many impli-
cations for future research focused on clinical populations with atten-
tional dysfunction. Importantly, this study indicates that previous
findings using this neurocognitive measure of sustained attention will
likely generalize to other samples with greater diversity or unique
characteristics in terms of demographics or clinical pathology. Although
beyond the scope of this study, we are hopeful this task will help eluci-
date mechanisms of attentional impairments across a wide range of
clinical pathologies that are common in this population and others,
including PTSD, mTBI, and substance abuse (DeGutis et al., 2015; Swick
et al., 2013; Swick et al., 2012). Additionally, while the neuroimaging
results of the current study focused on group-level results, future studies
focused on individual differences within the general population may
provide an opportunity to assess the neural basis of normal variations in
sustained attention ability. Functional connectivity during the task may
also add additional mechanistic understanding of how sustained atten-
tion can reveal clinically relevant brain dysfunction. Research has
already demonstrated that connectivity during the gradCPT is associated
with early life trauma and ADHD symptoms (Fortenbaugh, Corbo, et al.,
2017a; Rosenberg et al., 2016). Given that deficits in sustained attention
are pervasive across a wide range of clinical populations (for review, see:
Fortenbaugh, DeGutis et al., 2017b), the present results may provide a
basis for exploring cognitive and neural dysfunction across a wide range
of patient groups.

In conclusion, the current study robustly replicates the majority of
behavioral and neuroimaging markers of sustained attention and fluc-
tuations in accuracy and variability over time. As the current sample
represents a more demographically and clinically diverse group than
most basic fMRI research, the present results further underscore the
validity of the gradCPT and supports its generalizability to other pop-
ulations. As this task has already been used by multiple research groups
and cited hundreds of times, the current study provides valuable
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assurance to future investigators who contemplate this methodology to
study sustained attention. More broadly, we hope this work serves to
highlight the importance and utility of replication in the fMRI
community.
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