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ABSTRACT

The prevalence of developmental prosopagnosia (DP), lifelong face recognition deficits, is
widely reported to be 2—2.5%. However, DP has been diagnosed in different ways across
studies, resulting in differing prevalence rates. In the current investigation, we estimated
the range of DP prevalence by administering well-validated objective and subjective face
recognition measures to an unselected web-based sample of 3116 18-55 year-olds and
applying DP diagnostic cutoffs from the last 14 years. We found estimated prevalence rates
ranged from .64-5.42% when using a z-score approach and .13—2.95% when using a
percentile approach, with the most commonly used cutoffs by researchers having a
prevalence rate of .93% (z-score, .45% when using percentiles). We next used multiple
cluster analyses to examine whether there was a natural grouping of poorer face recog-
nizers but failed to find consistent grouping beyond those with generally above versus
below average face recognition. Lastly, we investigated whether DP studies with more
relaxed diagnostic cutoffs were associated with better performance on the Cambridge Face
Perception Test. In a sample of 43 studies, there was a weak nonsignificant association
between greater diagnostic strictness and better DP face perception accuracy (Kendall's tau-
b correlation, tb =.18 z-score; tb = .11 percentiles). Together, these results suggest that
researchers have used more conservative DP diagnostic cutoffs than the widely reported 2
—2.5% prevalence. We discuss the strengths and weaknesses of using more inclusive
cutoffs, such as identifying mild and major forms of DP based on DSM-5.
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1. Introduction

Developmental prosopagnosia (DP) is a severe lifelong
impairment in the ability to learn and recognize faces with
otherwise normal neurological, socio-cognitive, intellectual,
and visual functioning. Researchers have been aware that
prosopagnosia resulting from an acute brain injury is quite
rare and initially, researchers also believed DP to be a rela-
tively rare disorder (e.g., De Haan, 1999; Jones & Tranel, 2001;
McConachie, 1976). However, in the past 20 years, with the
help of media coverage as well as the internet and social
media, there has been an appreciation that DP is not as rare as
initially thought (e.g., Bate & Tree, 2017).

A handful of larger studies have provided estimates of the
prevalence of DP in adults (for a study examining the preva-
lence of face recognition difficulties in middle childhood, see
Bennetts, Murray, Boyce, & Bate, 2017). Their diagnostic
methods have differed, some using only self-report measures
and semi-structured interviews (Kennerknecht et al., 2006;
Kennerknecht, Yee-Ho, & Wong, 2008), one using a single
objective measure (Bowles et al., 2009), and another using a
combination of subjective and objective measures (Zhao et al.,
2018). In the initial study reporting DP prevalence across a
large sample, Kennerknecht et al. (2006) had subjects fill out a
questionnaire and were subsequently asked open-ended
questions about their face recognition experience
throughout their lifetime during an interview. Subjects were
diagnosed as prosopagnosic if they reported a set of specific
symptoms, such as being unable to decide whether they know
a face or not, having false negative and false positive face
recognition events, and using other means of recognition (e.g.,
gait, voice, hairstyle, etc.). The estimated prevalence rate of
prosopagnosia in their sample of 689 medical students in
Germany was 2.47% (95% CI: 1.31%—3.63%) and 1.88% (95% CI:
1.05%—2.71%) in a follow-up study with 533 medical students
in Hong Kong (Kennerknecht, Yee-Ho, & Wong, 2008). Though
this suggests high rates of self-reported face recognition def-
icits, the validity of these studies has been criticized due to
their failure to incorporate objective tests (e.g., Tree, 2011;
Arizpe et al., 2019). Though several recent studies have shown
that self-reported face recognition ability significantly pre-
dicts objective face recognition, these relationships have been
in the smaller-to-moderate range (e.g.,, r = .22 in younger
adults, Bowles et al., 2009; r = .44, Arizpe et al.,, 2019; r = —.39,
Gray et al., 2019; r = —.40, Ventura, Livingston, & Shah, 2018).
This suggests that individuals generally have some insight
into their objective face recognition abilities, though self-
reported face recognition alone is inadequate to diagnose
prosopagnosia (see Arizpe et al.,, 2019 for a more in-depth
discussion).

In addition to self-report, other studies have used objective
face recognition measures to estimate the prevalence of DP. In
a sample of 240 Australians, Bowles et al. (2009) used the
Cambridge Face Memory Test (CFMT, Duchaine & Nakayama,
2006), a validated and widely used test in diagnosing proso-
pagnosia (e.g., Bate et al., 2014; Bate, Haslam, Tree, & Hodgson,
2008; Duchaine, Yovel, & Nakayama, 2007; Rezlescu, Pitcher, &
Duchaine, 2012). They diagnosed a subset of participants as
prosopagnosic whose CFMT scores were more than two

standard deviations below the mean, indicative of a major
impairment. Based on this cutoff, they concluded that the DP
prevalence rate is at least 2%, not significantly different from
the self-report-based estimates. One downside with relying
solely on an objective measure is that it may not capture
whether individuals experience prosopagnosia in their
everyday life or if they experience distress from their face
recognition deficits. Notably, a large DP study by Zhao et al.
(2018) combined both subjective self-reports and objective
tests to screen 9533 university students in Beijing, China.
Their three-step screening process included self-report face
recognition questionnaires, a semi-structured prosopagnosia
interview, and a previously validated computer-based Old-
New face recognition test. When comparing the total sample
to those who received a DP diagnosis,’ this resulted in a DP
prevalence rate of 1.15% (95% CI: .94%—1.36%), substantially
lower than estimates of studies using either one subjective or
one objective measure. Though the Zhao study was the most
thorough with combining self-report and objective measures,
a downside to both Zhao et al. and Bowles et al. are that they
relied on a single objective measure, and single measures are
susceptible to effects such as fortuitous guessing and may
have less reliability when compared to incorporating multiple
measures (Holdnack et al., 2017).

As these studies demonstrate, the prevalence of DP is
dependent on the diagnostic criteria, and currently there is no
widely accepted diagnostic criteria for DP. Barton and Corrow
(2016) reviewed the diagnostic criteria used in 23 recently
published DP studies and found a high degree of variability,
with most studies using significantly more conservative
criteria than those providing initial prevalence rates of 2—2.5%,
or even 1.15%. Most commonly, prosopagnosia diagnostic
criteria required evidence of impairment on both subjective
and multiple objective assessments. While the CFMT and the
Famous Faces Memory Test (FFMT) are the most commonly
used objective tests, a variety of other face recognition tests
have also been used (e.g.,, Old-New Face Recognition Test,
Duchaine & Nakayama, 2005) and some studies have addi-
tionally used face perception tests, such as the Cambridge Face
Perception Test (CFPT, Duchaine, Yovel, & Nakayama, 2007).
Despite most of these 23 studies citing in their introductory
paragraph the prevalence of DP to be 2—2.5% (based on studies
using single self-report or objective tests, Kennerknecht et al.,
2006; Bowles et al., 2009), the criterion they used to diagnose DP
was substantially stricter. This raises the question of what the
prevalence of DP is according to recent diagnostic cutoffs and
whether there are more principled approaches to determining
cutoffs for DP, such as using data-driven cluster analyses in a
large sample or employing criteria from the most recent
version of the DSM-5 (e.g., mild vs major neurocognitive dis-
orders, Sanchev et al., 2014). No studies to date have provided

1t should be noted that out of the 180 probable DPs in this
study, only 105 chose to participate. Of these 105 individuals, 64
had confirmed DP (61%). Using this rate of 61%, we estimated that
46 of the 75 individuals who chose not to participate may have
also had DP. Thus, to calculate the overall prevalence of DP in this
sample, we added the DP individuals who participated (64) with
the estimated number of DPs who chose not to participate (46),
giving a total of 110 DPs.
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empirical guidance for diagnostic cutoffs, which was the focus
of the current investigation.

To help address these questions, the current study had
three main objectives. Our first goal was to estimate the
prevalence of DP based on the most commonly used diag-
nostic cutoffs of DP research studies from 2008 to 2021. We
estimated the cutoffs used in 68 DP studies and applied these
criteria to a large, unselected sample of 3116 web-based par-
ticipants who had taken diagnostic tests for prosopagnosia:
one validated self-report face recognition questionnaire
(Cambridge Face Memory Questionnaire, CFMQ, Arizpe et al,,
2019) and two validated objective face recognition tests (un-
familiar face learning/recognition-CFMT3, famous face
recognition-FFMT, Mishra et al., 2019). Our second goal was to
use these measures and our large dataset to determine if there
are natural clusters of participants with low objective and
subjective face recognition scores that should be regarded as
DP. This could provide evidence whether DP exists on a con-
tinuum, i.e., normative view, or rather represents a more
discrete cluster, i.e., pathologic view (Barton & Corrow, 2016).
Lastly, we sought to investigate whether studies with more
relaxed diagnostic cutoffs would be less able to capture known
face-related impairments in DPs. In particular, face perception
has been commonly found to be impaired in DPs at the group
level (e.g., using the CFPT, Duchaine, Yovel, & Nakayama,
2007; Eimer, Gosling, & Duchaine, 2012; Mishra et al., 2021).
We calculated average CFPT scores from 43 available studies
and tested whether CFPT averages in DPs from each study
were associated with the strictness of the diagnostic cutoff
used. We conclude with a discussion about the advantages
and disadvantages of adopting particular diagnostic cutoffs
for DP.

2. Methods and methods
2.1. Participant recruitment

Adult participants from the United States that were 18—55
years of age completed the face recognition tasks and self-
report questionnaire on testmybrain.org, a cognitive testing
website accessed through search engines, social media, and
news sites, where participants receive feedback on their
cognitive performance compared to population norms
(Fortenbaugh et al., 2015; Germine et al., 2011, 2012; Riley et al.,
2017). The study included 3116 unpaid US participants (1904
females) who visited the website between January 2015 and
March 2015. Previous studies have shown that the mean and
variance of performance in samples from testmybrain.org are
similar to in-lab samples (e.g., CFMT, Germine et al., 2012) and
that individuals with very poor face recognition are not more
prevalent in testmybrain.org studies compared to in-lab
studies (e.g., Arizpe et al, 2019). All participants gave
informed consent in accordance with guidelines set forth by
the Committee on the Use of Human Subjects at Harvard
University and the Wellesley College Institutional Review
Board. Participants completed a voluntary demographic sur-
vey which asked questions related to age, sex (male/female,
note that when the data was collected only two options were
given), location, native language, education, and ethnicity. All

participants received feedback on their performance relative
to others at the completion of all the tasks.

2.2. Task and procedure

In this study, three assessments of face recognition, in the
following order, were included in the battery for each partic-
ipant: (1) Cambridge Face Memory Questionnaire (CFMQ), (2)
Cambridge Face Memory Test, version 3 (CFMT3), and (3)
Famous Faces Memory Test (FFMT).

The Cambridge Face Memory Questionnaire (CFMQ) is a
previously validated (see Arizpe et al., 2019) 18-item ques-
tionnaire designed to measure self-assessment of one's face
recognition in daily life. The CFMQ, where higher scores
indicate better self-reported face recognition, has been shown
to positively correlate with the CFMT (r = .44) and FFMT
(r = .52). The CFMQ includes questions assessing the fre-
quency of both positive and negative face recognition occur-
rences and one question assessing one's face recognition skills
compared to others. These questions were developed by Drs
Brad Duchaine, Ken Nakayama, and Laura Germine to screen
for prosopagnosia and have been used for the past 20 years for
this purpose (e.g., DeGutis et al., 2012, www.faceblind.org). We
found the CFMQ was highly reliable, Cronbach's alpha = .91,
similar to other face recognition self-reports (e.g., Cronbach's
alpha for PI20 = .93, Shah, Gaule, Sowden, Bird, & Cook, 2015).

The Cambridge Face Memory Test (CFMT, Duchaine &
Nakayama, 2006) is a widely used test of novel face recogni-
tion in which participants are required to learn and recognize
six target faces in conditions of varying difficulty. Faces were
presented in grayscale with no hair or other distinguishing
non-facial features. The first part of the test introduced six
target faces to participants where each target face was shown
at three different angles for 3 s each. After learning each target
face, participants were presented with a three-alternative
forced-choice (AFC) task to choose the face they just studied
out of three options. These three choices included the learned
target face and two non-target faces presented in the same
angle and lighting. Participants then simultaneously studied
the six target faces shown for 20 s. Afterwards, they
completed 30 forced-choice trials, each including one target
and two non-target faces shown in different views and light-
ing conditions. Finally, participants again studied the six
target faces for 20 s and completed 24 3-AFC trials. For these
last 24 trials, visual noise was added to stimuli to make the
task more challenging. As our experiment was publicly
available online, we refrained from using the original CFMT to
maintain the integrity of the original CFMT for clinical pur-
poses. Instead, we used the CFMT3 which is identical to the
original version developed by Duchaine and Nakayama (2006),
except that different face stimuli are used. Instead of photo-
graphs of faces, the CFMT3 uses novel artificial faces that were
generated via FaceGen software (Singular Inversions, Toronto,
ON). Though some studies have found that artificial faces are
more difficult to remember than real faces (Balas & Pacella,
2015), others have found similar overall recognition perfor-
mance and robust face inversion effects, suggesting very
similar processing as real faces (Katsyri, 2018). With regards to
the CFMT3, we found it had high internal consistency, Cron-
bach's alpha = .76. Additionally, in a subset of 67 individuals
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who took both the CFMT3 and CFMT original, we found a
robust correlation, r = .61 (P < .001).

For the Famous Faces Memory Test (FFMT), one of three
equivalent versions were assigned to each participant (for
more details on the procedure and specific faces shown in
each version, see Mishra et al., 2019). The face stimuli were
drawn from a pool of 69 front-view faces of famous celebrities
taken from google images advanced searches that were
included in three famous face tests (FFMT1-27 faces,
FFMT2—-40 faces, FFMT3—26 faces), with 24 faces repeated
across at least one test. We do not have legal permission to
publicly archive the famous faces stimuli. Readers seeking
access to these materials should contact Dr Jeremy Wilmer
(jwilmer@wellesley.edu). The faces were cropped to remove
extra facial features like hair, ears, and area below the jawline.
The visual angle for all the face images was 5.5° x 7°. The faces
belonged to people from various professions including actors/
actresses, politicians, musicians, and sports personalities. In
all versions, participants were shown an image of a famous
face and asked, “Who is this?” If they typed in a response, they
were then shown the correct answer along with their
response to indicate whether they correctly identified the
person. By design, misspellings of the correct name or even
unique descriptions of the person were allowed and scored as
correct. Participants who did not respond correctly were
additionally asked to indicate whether they were familiar with
the person. Trials where participants said they were unfa-
miliar with the person were not included in the overall
calculation of scores (similar to other DP studies, e.g., Murray
& Bate, 2020). This was done to avoid very lower scores in
people who had reduced media exposure. As was done in a
prior study (Wilmer et al., 2012), the total score was the
number of trials for which they both (a) submitted a response
and (b) it was verified that their response was a correct iden-
tification. To normalize the scores across different versions,
we calculated the version-specific z-score for each participant.
Because the distributions of these scores were comparable in
each of the FFMT versions, we treated the versions as equiv-
alent in our analyses (similar to Mishra et al., 2019). In this
paper, we refer to all three versions singularly as the FFMT.
Because we only scored trials where participants were
familiar with the faces, which varied across participants, we
were not able to calculate reliability of the overall test. How-
ever, recent studies have shown that famous face memory
tests have sufficient reliability (e.g., .75-.80, Pozo, GermineL.,
Scheuer, & Strong, 2021).

2.3. Selection criteria and methods for prevalence
estimation

We selected 104 peer-reviewed DP studies that were published
from 2008 to 2021 by using keyword searches for develop-
mental prosopagnosia and congenital prosopagnosia into
google scholar and PubMed. Next, we identified which studies
used the CFMT, FFMT, and self-report questionnaire similar to
the CFMQ (e.g., Prosopagnosia Index-20, P120, Shah et al., 2015)
in their diagnostic criteria and calculated their diagnostic
cutoffs for these measures. If no specific cutoff was
mentioned, when individual subject data was available, we
attempted to determine the cutoff score based on the least

impaired individual that was deemed a prosopagnosic in the
study. We were able to replicate the diagnostic criteria used in
68 out of the 104 studies. In studies that were not included,
they either used tests that were not similar to our tests from
testmybrain.org (e.g., Old-New face recognition test, Zhao
et al., 2018) or we could not confidently determine their
diagnostic cutoffs.

The subjective cutoffs used in the DP studies we selected
varied. Some subjective measures were more structured, such
as having abnormal performance on the Faces and Emotion
Questionnaire (e.g., Freeman, Palermo, & Brock, 2015a, 2015b)
or scoring certain standard deviations below the mean on the
PI-20 (e.g., Shah et al, 2015). Others involved anecdotal
reporting of lifelong face recognition difficulties. For studies
that used a questionnaire other than the CFMQ, we generated
analogous cutoffs using our CFMQ data. More precisely, for the
studies that specified their strict, quantitative approach for
subjective cutoffs (e.g., taking two standard deviations below
the mean), we employed the same method using the CFMQ
scores. For studies that involved the presence of subjective
face recognition complaints, we tried to approximate their
diagnostic method using the first question on the CFMQ,
which asked, “Compared to my peers, I think my face recog-
nition skills are ...”, Far Below Average/Below Average/
Average/Above Average/Far Above Average. A recent study
from our lab (Arizpe et al.,, 2019) showed that this single
question is particularly good at screening for face recognition
difficulties. We included participants who answered ‘Far
Below Average’ or ‘Below Average’ on this question to be
comparable with studies that used qualitative criteria for
subjective cutoffs.

We estimated DP prevalence rates in our sample using both
z-score estimates (which most studies reported) as well as
percentile cutoffs calculated based on the z-scores. For
instance, if a study's objective cutoff was 2 standard de-
viations below the mean on the CFMT, we calculated the
number of participants who were in the bottom 2.275% of all
CFMT scores. This percentile-based analysis was conducted to
mitigate any impact that could originate from deviations from
a normal distribution, since percentiles are more robust to
non-normality than z-scores.

2.4. Cluster analyses

Using our large sample, we sought to determine if there was a
natural cutoff for a group that performed poorly on subjective
and objective face recognition tests. Prior to performing
cluster analyses, we randomly split our sample into a testing
dataset (n = 1540) and a replication dataset (n = 1576).
Following random assignment, we normalized face process-
ing measures separately within the testing dataset and repli-
cation dataset using a z-transformation. Prior to performing
cluster analyses, we screened for multivariate outliers sepa-
rately within each dataset to meet distributional assumptions.
Based on a Mahalanobis distance criterion of P < .001, we
removed seven multivariate outliers in the testing dataset and
five multivariate outliers in the replication dataset, achieving
a final sample size of 1533 and 1571, respectively.

Using R software and associated libraries (R Core Team,
2013; http://www.R-project.org/), we conducted a hierarchical
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cluster analysis (HCA) to determine an optimal number of
clusters within the testing and replication datasets. Briefly,
HCA initially assigns each participant to a unique cluster in
which each cluster represents a single participant. Next, in an
iterative fashion, each cluster is combined with the next most
similar cluster based on the minimal multivariate distance.
Clusters are iteratively combined in this manner until all data
points are contained within a single cluster. Throughout this
iterative process, HCA identifies multiple possible clustering
solutions, which range from two clusters to n — 1 clusters. To
compute multivariate distance between participants and/or
clusters, we utilized the squared Euclidean distance between
our normalized face recognition measures. To perform itera-
tive cluster linkage, we utilized Ward's minimum variance
linkage, which forms clusters that minimize the error sum of
squares at each iteration (Ward, 1963). Next, we aimed to
identify an optimal cluster solution in a data-driven manner
using the nbClust library in R (Charrad, Ghazzali, Boiteau, &
Niknafs, 2014). Specifically, potential cluster solutions were
evaluated and compared based on 30 different criteria avail-
able (e.g., silhouette width). Though there is no accepted
standard for approximating the sample size required to form a
given number of clusters (k; Dolnicar, Griin, Leisch, & Schmidyt,
2014), based on a conservative heuristic of 2% (Formann, 1984),
the sample size within the testing and replication datasets
(n = ~1500) was likely adequate to compare cluster solutions
ranging from k = 2 to k = 10. Using this data-driven approach,
the optimal cluster solution was identified among these po-
tential cluster solutions based on performance across the
previously described 30 clustering metrics.

To determine if the clustering solutions were consistent
across cluster analytic approaches, we also computed a two-
and three-cluster solution calculated using the k-means al-
gorithm within the testing and replication datasets. Next, we
assessed the agreement of participant assignment to each
cluster between the HCA and k-means algorithms across the
testing and replication datasets by calculating inter-rater
reliability using Cohen's Kappa (two-cluster solution) or
Cohen's weighted Kappa (three-cluster solution). Based on
recently recommended guidelines (McHugh, 2012), we inter-
preted Kappa values < .40 to indicate no or minimal inter-rater
reliability, Kappa values between .40 and .59 to indicate weak
inter-rater reliability, Kappa values between .60 and .79 to
indicate moderate inter-rater reliability, and .80—1.00 to indi-
cate excellent inter-rater reliability.

2.5.  Association between Cambridge Face Perception
Test and study diagnostic cutoffs

Finally, we sought to investigate whether studies with more
relaxed versus stricter diagnostic cutoffs would show differ-
ential performance on an independent face perception mea-
sure. We reviewed DP studies published in the past 14 years
that administered the Cambridge Face Perception Test (CFPT,
Duchaine, Germine, & Nakayama, 2007), ranked them based
on the strictness of their diagnostic criteria, and compared
their DPs' performance on the CFPT. The CFPT is a well-
validated (e.g., Mishra et al., 2021) and widely used test of
face perception used in many DP studies. The test consists of
eight trials in which participants are asked to sort a set of six

frontal view faces on a continuum from most to least like a
target face, shown from % view. We used the CFPT in this
analysis because it is widely used and because DPs consis-
tently perform worse than controls at the group level (e.g.,
Duchaine, Yovel, & Nakayama, 2007; Eimer et al., 2012; Mishra
etal., 2021). It should be noted that though DPs perform worse
on the CFPT and other face perception tests (e.g., computer-
ized Benton, Mishra et al., 2021), they are typically not as
impaired as on face memory tests, with some DPs performing
within the normal range of performance on face perception
tests. DP researchers have described face perception perfor-
mance in DPs as a shifted distribution towards impairment
(Biotti et al., 2019; Bate et al., 2019; Mishra et al., 2021) and
though some researchers have distinguished apperceptive
versus non-apperceptive subtypes of DPs (e.g., Biotti & Cook,
2016), there is currently limited evidence for discrete sub-
groups of DPs with impaired versus unimpaired face percep-
tion abilities (see Bennetts et al., 2022). To rank the strictness
of diagnostic criteria of studies administering the CFPT, we
applied the diagnostic criteria to our dataset of 3116 partici-
pants and used both z-score and percentile approaches. After
calculating the percentages for all the studies, they were
sorted from the lowest (i.e., strictest diagnostic criterion) to
the highest (i.e., least strict diagnostic criterion), and Kendall's
tau-b as well as a Pearson correlations were calculated to
determine the relationship between the strictness of diag-
nostic criteria and CFPT performance.

2.6. Sample size justification, preregistration, and
inclusion/exclusion

The sample size of the current study was based on guidelines
from Naing, Winn, and Rusli (2006) for determining the sample
size for prevalence studies. We used the following formula:
n= % where sample size is n, Z = Z statistic for a level of
confidence (in our case 1.96), P = expected prevalence (2% from
previous DP reports), and d = precision (we set this at + .5%).
This gave a suggested sample size of 3012, and the sample we
obtained was 3116. Note that no part of the study procedures or
analyses was pre-registered prior to the research being con-
ducted. We report how we determined our sample size, all data
exclusions, all inclusion/exclusion criteria, whether inclusion/
exclusion criteria were established prior to data analysis, all
manipulations, and all measures in the study.

2.7. Data, study materials, and analysis code
availability

Data and analysis code are available at https://osf.io/5469z/.

3. Results
3.1 Participants

3116 volunteers (1904 females) ranging in age from 18 to 55
years (M = 30.99, SD = 10.54) performed the CFMT, CFMQ, and
FFMT on testmybrain.org. Regarding the highest education
attained, .6% of the participants attended middle school, 9.5%
went to high school/secondary school, 28.6% attended some
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college/university, 26.8% held a bachelor's degree, 26.8%
received had a graduate degree, and 3.3% did not indicate their
level of education. There were significantly more female par-
ticipants than males in the sample (overall females: 61%,
overall males: 39%), similar to other studies from testmybrain.
org (Germine et al., 2011).

3.2 CFMT, FFMT, and CFMQ performance and
intercorrelations

We found that the overall group performance on the CFMT (M
items correct = 54.26, SD = 7.39), FFMT (M z-score = —.01,
SD = 1.01), and CFMQ (M score = 68.15, SD = 11.25) was very
similar to previous normative samples (e.g., Arizpe et al., 2019;
Germine et al., 2011; Germine et al.,, 2012). In terms of the
distributions of scores, we found that all three measures
deviated from normality and were negatively skewed,
particularly the FFMT (see Supplementary Materials Table S1/
S2 and Figure S1). Notably, the percentile approach we
employed is robust to deviations from normality (see more on
this in the discussion below). Similar to previous studies, we
also observed similar moderate-to-strong correlations be-
tween these three measures: CFMT/FFMT (r = .46, p < .001),
CFMT/CFMQ (r = .44, p < .001), FFMT/CEMQ (r = .51, p < .001).
This suggests that the three tests all measure aspects of face
recognition ability but are not so overlapping as to suggest
they are measuring the exact same construct.

3.3. Prosopagnosia prevalence estimation

We were able to replicate the diagnostic cutoffs that were
utilized in 68 DP studies from 2008 to 2021. As shown in Fig. 1,
the diagnostic criteria varied significantly across the studies.
Only one study diagnosed DP based on one objective test
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whereas the majority of the studies, 56%, used three tests (e.g.,
one subjective and two objective). The most common method
to meet DP criteria was to take two standard deviations below
the mean on both the CFMT and FFMT along with some sub-
jective report of face recognition difficulties. This approach
was used in 31 out of the 68 studies (46%). Other common
methods included taking two standard deviations below the
mean on the CFMT in combination with self-reported face
recognition difficulties. This approach was used in 14 studies
(21%). The third most common method, used in 4 studies (6%),
focused on objective tests and incorporated the two standard
deviation cutoff below the mean on both of CFMT and FFMT.
The remaining studies (28%) used idiosyncratic diagnostic
cutoffs that were either unique to that study or only replicated
in one or two other studies.

Applying these diagnostic cutoffs from the previous
studies to our web-based sample using a z-score cutoff
approach (middle panel Fig. 1), the calculated DP prevalence
rates also varied considerably, ranging between .64% (95% CI:
.39%—.99%) and 5.42% (95% CI: 4.65%—6.28%). The lowest rate
of .64% was calculated by taking 2 SD below the mean on the
FFMT and CFMQ along with 1.5 SD below the mean on the
CFMT. The diagnostic criteria that involved taking two stan-
dard deviations below the mean on either the CFMT or the
FFMT along with subjective complaints yielded the highest DP
prevalence estimate of 5.42%, eight times greater than the
lowest rate. The most common method of taking two stan-
dard deviations below the mean on the CFMT and FFMT with
subjective reporting resulted in the prevalence estimate of
.93% (95% CI: .62%—1.33%).

We found a similar pattern, though reduced prevalence,
when using the corresponding percentile cutoff approach
(right panel, Fig. 1). The estimated prevalence varied from .13%
(95% CI: .03%—.33%) to 2.95% (95% CI: 2.39%—3.61%). For the
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Fig. 1 — Diagnostic cutoffs of DP studies from 2008 to 2021 and the estimated prevalence rates. Note. CFMT = Cambridge Face
Memory Test version 3, CFMQ = Cambridge Face Memory Questionnaire, FFMT = Famous Faces Memory Test, SD = standard
deviations below the mean. Error bars represent 95% confidence intervals based on the sample size. CFMQ 1 or 2 indicates
that participants in these studies self-reported poor face recognition, which corresponded to either 'Below Average' (2) or 'Far
Below Average' (1) responses on the CFMQ item "Compared to my peers, I think my face recognition skills are... "
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percentile-based estimation, the lowest rate of .13% was
calculated by taking those who scored below the 2.275th
percentile on the FFMT and CFMQ in combination with below
the 6.68th percentile on the CFMT. The highest DP prevalence
estimate of 2.95%, which is more than twenty-two times
greater than the lowest rate, was based on those who scored
below the 2.275th percentile on either the CFMT or FFMT along
with self-reported face recognition deficits. The most common
method of taking those below the 2.275th percentile on both
the CFMT and FFMT with self-reported face recognition deficits
yielded the prevalence rate of .45% (95% CI: .25%—.75%).

3.4.  Cluster analyses

We next sought to determine if there was a more data-driven
approach to identifying DPs from non-DPs. We applied cluster
analyses to the testing (n = 1533) and replication datasets
(n = 1571). In the testing dataset, the optimal number of
clusters was identified as a two-cluster solution (favored by
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10/30 metrics), which outperformed a three-cluster solution
(favored by 6/30 metrics) and all other potential cluster solu-
tions (<2/30 metrics). In the replication dataset, the optimal
number of clusters was identified as a three-cluster solution
(favored by 9/30 metrics), which slightly outperformed a two-
cluster solution (favored by 8/30 metrics) and all other po-
tential cluster solutions (<2/30 metrics). We present results
for the two-cluster solution for the testing and replication
datasets (see Fig. 2 and below). The three-cluster solutions can
be found in the Supplementary Materials (see Figure S2).

3.4.1. Hierarchical cluster analysis: cluster description

In the testing dataset, the two-cluster solution was character-
ized by sub-groups exhibiting below-average performance
(n = 596) or above-average performance (n = 937) across all face
processing measures (see Fig. 2A), suggesting a unidimensional
structure. In the replication dataset, the two-cluster solution
was similarly characterized by subgroups exhibiting either
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Fig. 2 — Hierarchical Cluster Analysis 2-cluster Solution: Testing (A) and Replication (B) Samples. Note. CFMT = Cambridge Face
Memory Test version 3, CFMQ = Cambridge Face Memory Questionnaire, FFMT = Famous Faces Memory Test. Error bars
represent 95% confidence intervals. Dim2 = dimension 1, Dim2 = dimension 2
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performance (n = 723) across all face processing measures (see
Fig. 2B). For the three-cluster solution, the testing dataset was
again characterized by a unidimensional structure, with sub-
groups exhibiting slightly below average performance (n = 440),
slightly above-average performance (n = 937), or below-
average performance (n = 156) across all face processing
measures (see Supplementary Figure S2A). In the replication
dataset, the three-cluster solution was also similarly charac-
terized by subgroups exhibiting slightly below average perfor-
mance (n = 522), slightly above-average performance (n = 848),
or below-average performance (n = 201) across all face pro-
cessing measures (see Supplementary Figure S2B).

3.4.2. Cluster consistency between hierarchical and k-means
approaches

To examine the robustness and reliability of our HCA findings,
we next performed k-means cluster analyses for two- and
three-cluster solutions and found a very similar pattern of
results in both the testing and replication datasets (see Sup-
plementary Materials Figures S3 and S4). For the two-cluster
solution, we observed moderate-to-strong inter-rater reli-
ability between the HCA and k-means algorithms for the
testing dataset (x = .83, 95% CI = .80—.86, P < .001) and the
replication dataset (x = .69, 95% CI = .66—.73, P < .001). For the
three-cluster solution, we observed slightly reduced inter-
rater reliability between the HCA and k-means algorithms
across for the testing dataset (x =.38,95% CI = .32—.44, P < .001,
there was a discrepancy in assigning participants between the
‘average’ versus ‘above average’ clusters, x = .02) and a higher
correspondence in the replication dataset (x = .80, 95%
CI = .78—.82, P < .001). Together, this shows that HCA results
largely generalized to the k-means approach and that neither
method identified clusters of individuals with poorer face
recognition that could be considered in the prosopagnosic
range of performance.

3.4.3. Post-Hoc analysis in individuals with subjective face
recognition deficits

Because individuals with below-average self-reported face
recognition are those more likely to seek out prosopagnosia
researchers or visit prosopagnosia websites (e.g., wWww.
faceblind.org, www.troublewithfaces.org), we also sought to
determine if this particular subset of individuals had defined
clusters or subgroups. We performed cluster analyses in in-
dividuals reporting “below average” or “far below average” face
recognition compared to their peers (n = 927, based on a single
item in the CFMQ, see Methods). Using HCA, we found that the
optimal number of clusters was identified as a two-cluster
solution (10/30 metrics), which outperformed a three-cluster
solution (1/30 metrics). Similar to cluster analyses of the
entire sample, the two clusters represented overall high
(n = 437) and low face recognition abilities (n = 488) and failed
to identify a cluster close to what would be considered proso-
pagnosic performance (see Supplementary Figure S5).

3.5. CFPT performance comparison across diagnostic
criteria

We finally analyzed face perception performance between DP
studies using different diagnostic criteria to see if the

strictness of the cutoffs employed was associated with face
perception abilities. For this analysis, studies that explicitly
used the CFPT in the screening process and studies that did
not administer or report individual-level CFPT results were
excluded, which resulted in a total of 43 studies included. As
can be seen in Fig. 3, the studies overlapped considerably in
their CFPT performance.

After ranking these studies from the most to least strict
diagnostic criteria, we calculated Kendall's tau-b and Pearson
correlations (using both z-score and percentile approaches
applied to our unselected web sample, see Supplementary
Figure S6) to determine the relationship between the strict-
ness of diagnostic criteria and CFPT performance of the DPs.
For the z-score approach, there was nonsignificant associa-
tion between CFPT and cutoff strictness (Kendall's tau-b cor-
relation, tb = .18, p = .125; Pearson r = .17, p = .267), with
stricter studies having numerically better CFPT scores. We
found a similar pattern when using a percentile approach to
calculating prevalence, with a nonsignificant association be-
tween CFPT and cutoff strictness (Kendall's tau-b correlation,
tb =.11, p = .339; Pearsonr = .28, p = .067), with stricter studies
again having numerically better CFPT scores. These results
clearly do not support the assertion that stricter diagnostic
cutoffs allow one to better capture known face-related im-
pairments in DPs.

4, Discussion

The current investigation illustrates the range of diagnostic
criteria that DP studies have employed over the last 14 years
and the associated DP prevalence rates. Applying these
differing criteria to our sample of 3116 unselected web par-
ticipants, we found estimated DP prevalence rates ranged
from .64 to 542% when using a z-score approach and
.13—2.95% when using a percentile approach, with the most
commonly used cutoffs by researchers having a prevalence
rate of .93% (z-score) and .45% (percentile). These estimates
are considerably lower than the 2—2.5% prevalence commonly
reported in the media and in introduction sections of many DP
publications. These variable estimates of the prevalence of DP
bring up the issue of whether there is a more data-driven
approach to estimating the prevalence of DP. We addressed
this in the current study by applying cluster analyses to our
large dataset as well as a subset of individuals with self-
reported below average face recognition. In both cases, we
found unidimensional clusters based on better versus worse
face recognition ability, but no clusters that identified those
with close to prosopagnosia-level performance. This provides
support for DP existing on a continuum rather than repre-
senting a discrete group. Finally, we examined whether the
use of more relaxed versus stricter DP cutoffs in studies
affected group-level face perception performance on the
CFPT. We found a weak and nonsignificant correlations be-
tween cutoff strictness and CFPT performance, suggesting
that more relaxed versus stricter criteria are likely not
capturing mechanistically distinct populations of DPs. These
findings have important theoretical and practical implications
for how DP is diagnosed, and we conclude with recommen-
dations for future studies.
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For the last decade or so, the prevalence of DP has been
reported in academic research papers and in the media to be
2-2.5%. In this study, we found that the prevalence of DP
based on the most common cutoffs used across 31 of 68
research studies from 2008 to 2021 was .93% (z-score) and .45%
(percentiles) but also that there was considerable variability.
In studies using one diagnostic test, the DP prevalence rate
was as high as 3.11% (z-score) and 2.09% (percentiles) whereas
with three diagnostic tests, it was as low as .64% (z-score) and
.13% (percentiles). This variability highlights the lack of diag-
nostic agreement amongst DP researchers and shows that
there is a conservative bias towards a more rigorous criterion,
where a DP identified in one study would be able to meet most
of the existing criteria that researchers use. Though these
conservative criteria could potentially identify more differ-
ences between DPs and controls, one downside of this
approach is that it may make recruiting and screening DPs
very burdensome and time-consuming, resulting in smaller
sample sizes and less power to discover DP versus control
group differences. Even recent DP studies still use quite small

samples (e.g., N = 10, Gerlach & Starrfelt, 2021; N = 13, Haeger
et al., 2021), making them more susceptible to potential
sampling biases and more challenging to replicate. An overly
conservative approach may also dissuade researchers from
performing DP studies due to the burden of recruiting rare
participants. Further, selecting only the most impaired DPs
would make it more difficult to identify behavioral and bio-
logical markers that differentiate “pure” DP cases from
borderline DP cases, if such markers exist.

In our DP prevalence estimates, it is notable that we found
a sizeable difference between higher estimated prevalence
rates based on z-score cutoffs versus lower prevalence rates
based on a percentile approach, begging the question of what
the most accurate estimation is. Because the distributions of
the CFMT, CFMQ, and especially the FFMT deviated from
normality and were skewed towards lower scores (see
Supplementary Figure S1), the z-score cutoff analysis likely
overestimated the prevalence of DP compared to if the tests
were more normally distributed. Since the percentile
approach is robust to deviations from normality, this
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approach may represent a better theoretical estimate of the
DP prevalence. However, if the goal is to determine the prev-
alence of DP based on the measures and methods that re-
searchers typically use (our CFMT3, FFMT, and CFMQ
measures are very similar to most DP studies), then we sug-
gest that our z-score cutoff results may better reflect the
population prevalence rates of DP as is typically studied by DP
researchers. Thus, our estimate of the population prevalence
of DP based on the most common practices employed by DP
researchers is 1 out of 108 individuals, or .93%.

To better understand the impact of studies using different
face recognition cutoffs for DP, we analyzed whether stricter
cutoffs could allow researchers to better capture face matching
deficits commonly reported in developmental prosopagnosia
(see Mishra et al., 2021). We compared DPs’ face perception
performance on the CFPT across 43 studies, none of which used
the CFPT in diagnosing DPs. If stricter diagnostic criteria were
associated with worse CFPT performance, it would support that
DPs diagnosed with stricter criteria could be mechanistically
distinct (in terms of their face perception abilities) from DPs
diagnosed with looser criteria. Notably, our results revealed
weak and non-significant correlations in the opposite direction,
with more strictly diagnosed prosopagnosics having numeri-
cally better face perception performance. This finding provides
preliminary support for the assertion that using more relaxed
diagnostic criteria does not appreciably change the nature of
the disorder being studied, though it would be useful to repli-
cate these findings with other, potentially more sensitive face
perception tests (e.g., computerized Benton, Mishra et al., 2021;
Murray, Bennetts, Tree, & Bate, 2021) as well as other behavioral
(e.g., face recollection vs familiarity abilities, Stumps, Saad,
Rothlein, Verfaellie, & DeGutis, 2020) and neural measures
(e.g., TMRI/EEG). A beneficial implication of this finding is that
previous DP results using looser diagnostic criteria would likely
generalize to DPs identified using stricter diagnostic criteria.

The current study also investigated whether there are
natural cutoffs for identifying prosopagnosics when using
subjective and objective diagnostic face recognition mea-
sures (CFMQ and CFMT/FFMT). Performing hierarchical and
k-means cluster analyses on separate testing (n = 1533) and
replication samples (n = 1571) consistently identified either
two or three clusters of individuals with generally below-
versus generally above-average subjective and objective
face recognition abilities (as well as an ‘average’ group in the
three-cluster solution). This suggests that there is not a
discrete cluster of prosopagnosic individuals that emerge
when taking this data-driven approach amongst an unse-
lected sample. We additionally performed cluster analyses
within just those individuals with self-reported below
average/far below average face recognition abilities, who
may often be referred to prosopagnosia websites (e.g.,
faceblind.org) or prosopagnosia researchers. Again, clusters
emerged of those with generally average versus generally
below average subjective and objective face recognition
abilities, though far from prosopagnosia performance levels.
Together, these results, along with a visual inspection of the
data, suggest that face recognition performance is graded and
that face recognition difficulties lie on a continuous spectrum
rather than representing a discrete population, supporting
the normative rather than pathologic view of DP (Corrow

et al., 2016). This is similar to several other developmental
and neurological disorders, including autism (Lord,
Elsabbagh, Baird, & Veenstra-Vanderweele, 2018), multiple
sclerosis (Vollmer, Nair, Williams, & Alvarez, 2021), and Alz-
heimer's Disease (Hampel et al., 2021).

The continuous nature of face recognition performance
that the cluster analyses revealed is consistent with studies
showing that DPs and typically developed participants are
qualitatively similar. For example, Abudarham, Bate,
Duchaine, and Yovel (2021) found that DPs, controls, and
super recognizers used similar facial features for successful
face recognition. Together, this advocates for more generally
using an individual differences approach rather than a cate-
gorical/diagnostic approach to study face recognition ability.
However, behavioral and fMRI evidence suggests there are
qualitative differences in DP versus control face processing
(Tian et al., 2020) and that associations found within the more
general population can break down at the DP end of the con-
tinuum (e.g., association between social-cognitive and face
recognition abilities, Barton and Corrow, 2016; Fry et al., 2022).
Additionally, just because face recognition is graded does not
mean that all aspects of face processing that contribute to face
recognition are. Other measures such as holistic processing
(Bennetts et al., 2022) or preferential fixation location (Pertzov
et al., 2020) may reveal more distinct DP versus control dif-
ferences or distinctions within DPs. For example, with regards
to face perception ability, a recent study of 37 DPs by Bennetts
et al. (2022) found DP subgroups with similar face perception
deficits but either intact or deficient holistic face processing
ability. Additional studies using better-characterized samples
of DPs and controls would be useful to establish whether there
are discrete differences between DPs and controls and if there
are perceptual subtypes of DPs or rather a graded continuum
of perceptual ability (e.g., shifted distribution model of DP
perceptual deficits, Biotti et al., 2019).

Together, the current findings have important implications
for diagnosing DP. Because our cluster analyses demonstrated
that face recognition, particularly objective performance, is on
a continuum, this suggests that validated methods used to
diagnose other continuous neurocognitive disorders (e.g.,
dementia) could be applied to DP. One standard, validated
approach that is currently used to diagnose continuously
distributed neurocognitive disorders is from the latest edition
of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5, Sachdev et al.,, 2014). Based on poor reliability asso-
ciated with using a single measure used in diagnosis
(Holdnack et al., 2017), the DSM-5 recommends that at least
two objective validated measures within a domain (in the case
of DP, two face recognition measures) are impaired (z-
score < —2 for major neurocognitive disorder) to receive a
diagnosis. It also suggests that there should be subjective ev-
idence of impairment. This criterion of self-reported face
recognition deficits and z-score < —2 on two or more face
recognition tests is consistent with previous recommenda-
tions (Dalrymple et al., 2014) and has been the most common
method used to diagnose DP in the last 14 years (see Fig. 1) and
we suggest this would be a useful standard for the field
moving forward. When using this criterion, we estimate the
prevalence of prosopagnosia in the population to be .93% (z-
score approach) or .45% (percentile approach).
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The DSM-5 also differentiates major from mild neuro-
cognitive disorders, which may be a useful distinction for DP
research going forward. Mild neurocognitive disorder is
defined as performance worse than one standard deviation
below the normative mean on multiple tests whereas major
neurocognitive disorder requires z-scores < —2 (Sachdev et al.,
2014). Based on this and the fact that we found no significant
DP performance differences on the CFPT based on diagnostic
criteria, it could be fruitful for future studies to include mild
prosopagnosics with subjective face recognition complaints.
When applying the DSM-5 mild neurocognitive criterion to
our large web-based sample using the z-score approach, we
found the prosopagnosia prevalence was 3.08%, with 2.15%
having mild prosopagnosia and .93% having major proso-
pagnosia (with percentiles, the prosopagnosia prevalence was
3.27%, with 2.82% having mild prosopagnosia and .45% having
major prosopagnosia). Thus, including mild prosopagnosics
could improve recruitment efforts and allow for appreciably
larger prosopagnosia study sample sizes. These larger sample
sizes have the potential to better characterize individual dif-
ferences amongst prosopagnosics and could help discover
mechanistic differences between prosopagnosics that could
further refine diagnostic cutoffs (e.g., identify a “true” cut-off if
one exists). Further, larger DP sample sizes could improve the
replicability and generalizability of DP findings. A downside to
including mild prosopagnosics would be, if those participants
dominated the sample, it could potentially obscure important
prosopagnosic versus control differences. For this reason, we
suggest that if researchers include mild prosopagnosics they
also include an equal or greater number of major proso-
pagnosics as well. Further, it would be important to perform
all key analyses with only major prosopagnosics in addition to
the larger sample of mild and major prosopagnosics.

A recent study by Burns, Gaunt, Kidane, Hunter, and Pulford
(2022) also suggests that looser criteria should be employed
when diagnosing DP. They studied 61 individuals with self-
reported lifelong difficulty with faces with either impaired
CFMT scores (z-score < —2, n = 27, so-called ‘Classical DPs') or
unimpaired CFMT scores (n = 34, so-called ‘Excluded DPs'
because they are routinely excluded from DP studies). They
found that the excluded group showed many deficits on
objective face processing measures, though smaller in
magnitude than classical DPs, and argue that self-reported
face recognition difficulties, as measured by the PI20, should
be used as the sole criteria to diagnose DP. Though our findings
agree with the sentiment of having more inclusive DP diag-
nostic criteria, there are problems with solely relying on self-
report for a diagnosis, including biases in self-report and lack
of insight into one's face recognition abilities (e.g., 10—18 and
51—70-year-olds as well as males in general overestimate their
self-reported face recognition abilities in comparison with
19-50-year-olds and females, DeGutis et al., 2023). Addition-
ally, since Burns et al. (2022) showed that many of their
excluded sample have face recognition deficits, several of
these individuals would likely meet the DSM-5 criteria for mild
prosopagnosia. Though we do not believe that those with self-
reported face recognition deficits and normal objective face
recognition performance (z-score > —1 across several tests)
should be classified as developmental prosopagnosics, it
would be important to study these individuals and understand

the source of their self-report versus objective discrepancies
(e.g., social anxiety impairing face recognition in the real world
though not during lab testing) and work with these individuals
to develop more sensitive face recognition tests that better
reflect their self-reported difficulties.

There are several limitations with the current study. First,
in estimating the prevalence of prosopagnosia in our web
sample based on the cutoffs of published studies, we relied on
our CFMQ, CFMTS3, and FFMT measures, but about one third of
the studies that we reviewed did not employ similar mea-
sures. Given that the CFMT and FFMT are the most commonly
and traditionally used DP diagnostic tests, it is unlikely that
these prevalence estimations differ from studies that used
other diagnostic tests, yet there still may be some variance.
Additionally, although we used the CFMT3 in place of the
original CFMT (Duchaine & Nakayama, 2006) as to not widely
distribute the original CFMT, there may be subtle differences
between the CFMT3 and original which could affect preva-
lence rate, such as the use of artificial faces in the CFMT3
(though Katsyri, 2018, suggests that artificial faces are pro-
cessed similarly to real faces). Another limitation is that par-
ticipants recruited via testmybrain.org tend to be younger,
more educated, and female than a fully representative sample
and testmybrain.org could have attracted more individuals
with poor face recognition abilities interested in seeing if they
have a deficit, which would potentially inflate the DP preva-
lence (though the similar Mean and SD of the tasks compared
to the lab suggests this is not a widespread issue). Replicating
these findings in a sample more representative of the general
population would be useful. Another limitation is that the
CFPT has complex instructions and may have less-than-ideal
reliability (e.g., Controls « = .74, DPs a = .79, Mishra et al., 2021;
Controls « = .67, Rezlescu et al., 2012; Controls « = .74, Bowles
et al., 2009), suggesting that alternative face perception mea-
sures could have been more ideal. Additionally, importantly, a
diagnosis of prosopagnosia requires ruling out other factors
that could cause face recognition deficits (e.g., poor low-level
vision, see Corrow et al., 2016; Dalrymple et al., 2014), which
we were unable to assess in our large online sample. Thus, our
estimates of prosopagnosia prevalence rates are likely slightly
higher than had these individuals been screened out. A final
limitation of the current study is that the results are specific to
developmental prosopagnosia and do not generalize to the
much rarer disorder of acquired prosopagnosia, which often
presents with more severe face processing deficits (e.g.,
Barton, Albonico, Susilo, Duchaine, & Corrow, 2019). It would
be important for future investigations to systematically re-
view the diagnostic cutoffs used in acquired prosopagnosia
studies and estimate the prevalence of prosopagnosia
amongst individuals with acquired brain injury.

In sum, the current study reviewed the different ap-
proaches used to diagnose DP over the last 14 years and
calculated corresponding prevalence rates in a large, unse-
lected web-based sample. Our results highlight that the most
common DP diagnostic cutoffs used have been substantially
more conservative (e.g., .93% prevalence when using a z-score
approach) than the widely reported DP prevalence rate of
2-2.5%. Using cluster analyses, we also found that there is a
continuous distribution of face recognition abilities with no
natural demarcation for a DP cutoff. Additionally, we found
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that face perception performance was very similar across DP
studies with looser and stricter diagnostic cutoffs. Considering
these findings, we suggest that DP researchers adopt stan-
dardized neurocognitive disorder cutoffs from DSM-5 to iden-
tify major (self-report + at least 2 validated face recognition
tests z-score < —2) and mild (self-report + at least 2 validated
face recognition tests z-score < —1) forms of prosopagnosia
until more mechanistically grounded cutoffs can be identified.
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