
Cognition 126 (2013) 87–100
Contents lists available at SciVerse ScienceDirect

Cognition

journal homepage: www.elsevier .com/locate /COGNIT
Using regression to measure holistic face processing reveals a strong link
with face recognition ability

Joseph DeGutis a,b,⇑, Jeremy Wilmer c, Rogelio J. Mercado a,b, Sarah Cohan b

a Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA 02130, United States
b Vision Sciences Laboratory, Department of Psychology, Harvard University, United States
c Department of Psychology, Wellesley University, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 February 2012
Revised 31 August 2012
Accepted 7 September 2012
Available online 16 October 2012

Keywords:
Face recognition
Face perception
Holistic processing
Individual differences
Composite task
Part-whole task
0010-0277/$ - see front matter Published by Elsevie
http://dx.doi.org/10.1016/j.cognition.2012.09.004

Abbreviations: CFMT, Cambridge Face Memory
task; PW, Part-whole task.
⇑ Corresponding author at: Geriatric Research Ed

Center (GRECC), VA Boston Healthcare System, 150
Boston, MA 02130, United States.

E-mail address: degutis@wjh.harvard.edu (J. DeG
Although holistic processing is thought to underlie normal face recognition ability, widely
discrepant reports have recently emerged about this link in an individual differences con-
text. Progress in this domain may have been impeded by the widespread use of subtraction
scores, which lack validity due to their contamination with control condition variance.
Regressing, rather than subtracting, a control condition from a condition of interest cor-
rects this validity problem by statistically removing all control condition variance, thereby
producing a specific measure that is uncorrelated with the control measure. Using 43 par-
ticipants, we measured the relationships amongst the Cambridge Face Memory Test
(CFMT) and two holistic processing measures, the composite task (CT) and the part-whole
task (PW). For the holistic processing measures (CT and PW), we contrasted the results for
regressing vs. subtracting the control conditions (parts for PW; misaligned congruency
effect for CT) from the conditions of interest (wholes for PW; aligned congruency effect
for CT). The regression-based holistic processing measures correlated with each other
and with CFMT, supporting the idea of a unitary holistic processing mechanism that is
involved in skilled face recognition. Subtraction scores yielded weaker correlations, espe-
cially for the PW. Together, the regression-based holistic processing measures predicted
more than twice the amount of variance in CFMT (R2 = .21) than their respective subtrac-
tion measures (R2 = .10). We conclude that holistic processing is robustly linked to skilled
face recognition. In addition to confirming this theoretically significant link, these results
provide a case in point for the inappropriateness of subtraction scores when requiring a
specific individual differences measure that removes the variance of a control task.

Published by Elsevier B.V.
1. Introduction

Holistic face processing has popularly been defined as
the simultaneous integration of the multiple features and
components of a face into a single perceptual representa-
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ucation and Clinical
S. Huntington Ave.,

utis).
tion (Rossion, 2008). Alternatively, others have conceived
of holistic face processing as an obligatory attentional
strategy, in which parts are represented independently
but are not treated as such during perceptual decision-
making (e.g., Richler, Tanaka, Brown, & Gauthier, 2008).
Classic demonstrations of holistic face processing include
the following phenomena, in which faces show consis-
tently larger effects than objects: (a) face recognition is
disrupted when inverting the picture-plane (face inversion
effect, Yin, 1969); (b) immediate memory for a face part is
much more accurate when that part is presented in the
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whole face than when it is presented alone (part-whole
task, Tanaka & Farah, 1993); and (c) aligning two half faces
of different individuals decreases performance for tasks
that require perception of either half independently (com-
posite task, Young, Hellawell, & Hay, 1987). More recently,
Van Belle and colleagues (2010) discovered that when a
mask covers participants’ fixation area, participants show
a marked impairment in discriminating inverted faces
but are not impaired at upright faces, indicating that par-
ticipants integrate other information around the masked
portion in the upright faces. These works provide rich con-
verging evidence for the existence of holistic face
processing.

In addition to the specialized ability to perceptually
integrate faces into a coherent whole, neurotypical individ-
uals also have excellent short-term and long-term face
memory abilities. For example, visual short-term memory
for faces is significantly better than for objects (Curby &
Gauthier, 2007). Long-term recognition of faces from
memory is extremely accurate and fast, especially for
well-known faces (Ramon, Caharel, & Rossion, 2011; Tanaka,
Curran, Porterfield, & Collins, 2006), and is robust to
perceptual degradation (Liu, Seetzen, Burton, & Chaudhuri,
2003).

It is commonly assumed that face-specific holistic
processing abilities underlie our impressive ability to
recognize faces. Though several findings are consistent
with this possibility, the assumption has yet to receive
strong empirical support. First, studies suggest that both
holistic face processing and face recognition improve
throughout infancy (e.g., Cashon & Cohen, 2003, though
both may reach adult levels by age 5, Crookes & McKone,
2009). Such parallel improvements over development,
however, are not uncommon even for functionally
independent abilities. Second, studies of prosopagnosics,
individuals with severe face recognition deficits, have
shown that they also have significant deficits in holistic
processing of face identity (Busigny, Joubert, Felician,
Ceccaldi, & Rossion, 2010; Ramon et al., 2011; DeGutis
et al., submitted for publication). Yet while these neuropsy-
chological studies provide a powerful means of dissociating
abilities (e.g., face and object processing), their capacity to
associate impaired abilities is more limited (Caramazza,
1984; though see individual differences approach in
DeGutis et al., submitted for publication). Third, reports
suggest that the other-race effect, the recognition advan-
tage for own-race compared to other-race faces, co-occurs
with an own-race advantage in holistic processing as well
as an own-race advantage in processing configural face
information (Hancock & Rhodes, 2008; Sporer, 2001).
Again, however, these findings could exist in parallel,
and are only weak evidence for a functional linkage.
Moreover, researchers have largely failed to find significant
correlations between the size of an individual’s own-race
recognition advantage and the size of their own-race
holistic processing advantage (e.g., Michel, Rossion, Han,
Chung, & Caldara, 2006; though see Rhodes, Brake, Taylor,
& Tan, 1989). Such a lack of correlation provides evidence
against the hypothesis of a functional linkage between
holistic processing and the other-race effect in face
recognition. Taken together, these previous studies neither
strongly support nor strongly falsify the notion that
holistic processing plays a role in skilled face recognition.

Three recent studies have examined individual differ-
ences in holistic processing and face recognition. A robust
individual differences-based correlation between face rec-
ognition and measures that isolate holistic processing
would provide strong evidence for the presence of a spe-
cific functional linkage. However, the results of these three
studies differ widely, and it is therefore difficult to draw
clear conclusions from them. These studies report nearly
the full range of possible non-negative relationships be-
tween holistic processing and face memory: zero
(R2 = 0.003; Konar, Bennett, & Sekuler, 2010a), non-zero
but quite small (R2 = 0.02; Wang, Li, Fang, Tian, & Liu,
2012), and rather sizable (R2 = 0.16; Richler, Cheung, &
Gauthier, 2011a). Additionally, these studies have either
failed to establish significant associations between
multiple measures of holistic processing (Konar, Bennett,
& Sekular, 2010b; Wang et al., 2012) or have found a
holistic processing/face recognition link only using one
holistic processing measure (Richler et al., 2011a), calling
into question whether different holistic processing tasks
are measuring similar aspects of a unitary holistic
construct rather than certain task-specific effects.

Konar and colleagues (2010a, b), the first to gather such
data, reported that individual differences in their compos-
ite task (CT) did not significantly correlate with perfor-
mance on a face identification task. In contrast, Richler
and colleagues (2011a) demonstrated a sizable positive
relationship between face recognition ability and the com-
plete design of the CT, which reduces confounding re-
sponse bias effects, ostensibly providing a better measure
of holistic processing. While this article made a strong case
that Konar and colleagues’ failure to find a correlation may
have resulted from confounding factors in the partial de-
sign of the CT, it left open the possibility that this holis-
tic/face recognition link is due to task-specific aspects of
the CT rather than holistic processing, per se. Wang and
colleagues (2012) most recently added to this debate by
showing that face recognition performance, when sub-
tracting object recognition performance, was significantly
but quite modestly correlated with both CT (using a similar
partial design as Konar et al., 2010a) and part-whole task
(PW). Moreover, they demonstrated that PW and CT did
not correlate with each other. Wang and colleagues also
added to this debate by reporting the reliabilities of their
measures, indicating that the relationship between holistic
processing and face recognition may be substantially
attenuated by the lack of reliability of the measures used.

In sum, while individual differences-based analyses can
provide a strong test for a functional linkage (Wilmer,
2008), the results reported to date have either failed to
show construct validity for holistic processing, have dem-
onstrated only small holistic processing/face recognition
effect sizes, or have not provided converging evidence from
multiple measures of holistic processing. Here, we clarify
this debate with an improved analytic approach. The above
studies all calculated measures of holistic processing by
numerically subtracting the control condition (parts trials
in PW and misaligned trials or misaligned congruency ef-
fect in CT) from the condition of interest (whole trials in
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PW and aligned trials or aligned congruency effect in CT) to
produce difference scores. As we confirm and illustrate be-
low, such subtraction measures are routinely confounded
with the control condition in individual differences studies
(Cronbach & Furby, 1970; Edwards, 2001; see Figs. 2E and
3E for demonstrations that PW and CT subtraction mea-
sures negatively correlated with control conditions). At
best, this confounding complicates the interpretation of
the prior individual differences based studies. At worst,
one or more of those studies’ results may have been a spu-
rious artifact of the decision to use subtraction measures.
The current study regresses the control conditions from
the conditions of interest, thereby creating specific mea-
sures independent of the control condition.

We first test whether regression-based measures of
holistic processing (PW and CT) correlate with each other
where subtraction-based measures failed to do so (Wang
et al., 2012). We next test whether a regression approach
can clarify the link between holistic face processing and
face recognition ability. Finally, we test the relative contri-
bution of holistic processing and non-holistic processing to
face recognition ability.
2. Methods and materials

2.1. Participants

43 Caucasian participants (27 female) with an average
age of 24.37 years (SD = 4.71) took part in the study for
compensation. All reported having never experienced diffi-
culties with face recognition and having normal or cor-
rected-to-normal vision. All participants gave informed
consent in compliance with the Institutional Review Board
of the VA Boston Healthcare System and were tested at the
VA Boston Medical Center in Jamaica Plain, MA.
2.2. Tasks

2.2.1. Cambridge Face Memory Test
We chose the Cambridge Face Memory Test (CFMT) as

our measure of face recognition memory because it has
Fig. 1. Example of task stimuli for CFMT (A), part-whole (B), and composite task
noise (bottom) in CFMT. The participant’s task is to choose which of the three f
stimuli for whole and part trials in the part-whole task. In C are example aligned
task stimuli are the same as those used in the part-whole but with the addition
high reliability and validity, and because its wide use
affords broad comparability with other studies. Its internal
reliability in published studies ranges from .86 to .89
(a = .89, Wilmer et al., 2010; a = .86, Duchaine &
Nakayama, 2006; a = .88, Bowles et al., 2009) and its
test–retest reliability is .70 (Wilmer et al., 2010). Its high
validity is shown by its face specificity: it correlates highly
with other face-related measures (naming of famous faces:
r = .70, Russell, Duchaine, & Nakayama, 2009, and r = .51,
Wilmer et al., 2010; face perception: r = .60, Bowles et al.,
2009), yet correlates more modestly with measures of
non-face visual memory (r = .26) and verbal memory
(r = .17) (Wilmer et al., 2010).

Participants learned to recognize six target faces,
excluding non-facial cues that could be used for differenti-
ation (e.g., hair, see Fig. 1A), and were tested in progres-
sively more difficult stages.

During the introductory phase, a target face was pre-
sented from three different views (front, right profile, left
profile) for 3 s per view. After this, participants were pre-
sented with three three-alternative forced-choice trials,
where they identified the target face among two foils, with
one trial for each of the three views. The process was re-
peated for the remaining five faces, resulting in 18 total tri-
als. Next, participants studied these same 6 target faces
shown all at once for 20 s. Following this study period, par-
ticipants were tested on 30 trials where they identified a
target face among two foils from novel views and with
changes in lighting (see Fig. 1A top). Participants then re-
ceived 20 more seconds to study the same 6 target faces.
The remaining 24 trials were the most difficult and pre-
sented faces with novel views, lighting changes, and the
addition of visual noise (see Fig. 1A bottom).

2.2.2. Part-whole task
To measure holistic processing, we used a recent ver-

sion of the classic PW task (Tanaka, Keifer, & Bukach,
2004, used with permission of Jim Tanaka, University of
Victoria).

2.2.2.1. Logic of the task. The part-whole task assesses how
much subjects integrate individual facial features into the
(C). In A are example test trials with view change (top) and the addition of
aces is a target face that they were asked to remember. In B are example

and misaligned stimuli in the composite task. Note that these composite
of 30% noise.



Fig. 2. Holistic processing measurements for PW using subtraction and regression. Part trials serve as the control condition, while whole trials serve as the
condition of interest. Individual differences in holistic processing were calculated two ways: (A) subtraction, where the control condition is subtracted from
the task of interest to produce a difference score (left half, red plots, each difference score is indicated with a vertical black line) or (B) regression, where the
control condition is regressed from the task to interest to produce residuals (right half, blue plots, each regression residual is indicated with a vertical black
line). As can be seen in the lower left graphs, the subtraction approach creates a measure that is negatively correlated with the control condition and
positively correlated with the condition of interest. In contrast, the regression approach creates a measure that is not correlated with the control task but is
strongly correlated with the condition of interest.
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whole face context. In particular, after encoding a target
face (e.g., Roger’s face), subjects demonstrate an advan-
tage for discriminating a feature change (e.g., discriminat-
ing Roger’s nose from Ken’s nose) when features are
shown within the context of the target face (whole trials)
compared to when discriminating features shown in iso-
lation (part trials). Our logic was that between-subjects
variation in part trials primarily reflects general visual
perception as well as face part processing abilities,
whereas between-subjects variation in whole trials
reflects general visual perception, face part processing,
and holistic face processing abilities. Thus, we reasoned
that regressing part trial performance from whole trials
would provide a relatively pure measure of holistic face
processing (for further details see analysis Section 2.3.1,
below).

2.2.2.2. Stimuli and procedure. Target faces were created
using either a Caucasian male or Caucasian female face
template that included the hair and face outline. For each
male and female template, six target faces were created,
each with a different nose, mouth, and pair of eyes
inserted into the template (for an example, see Fig. 1B).
Therefore, each target face was unique and did not share
a feature with another target face. Foils for each target
face were created by switching one of the three facial
components (eyes, nose, or mouth) with that of a differ-
ent target face.
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Fig. 3. Holistic processing measurements for the CT using subtraction and regression. The congruency effect in misaligned trials serves as the control effect
while the congruency effect in aligned trials serves as the effect of interest. Individual differences in holistic processing were calculated two ways: (A)
subtraction, where the control effect is subtracted from the effect of interest to produce a difference score (left half, red plots, each difference score is
indicated with a vertical black line) or (B) regression, where the control effect is regressed from the effect of interest to produce residuals (right half, blue
plots, each regression residual is indicated with a vertical black line). As can be seen in the lower left graphs, the subtraction approach creates a measure
that is negatively correlated with the control effect and positively correlated with the effect of interest. In contrast, the regression approach creates a
measure that is not correlated with the control effect but is strongly correlated with the effect of interest.
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For each trial in PW, participants were initially pre-
sented with a central fixation for 500 ms. A whole target
face was then centrally presented for 1000 ms, followed
by a mask (scrambled face) for 500 ms. Next, participants
were presented with either a whole trial, in which one
stimulus was the target face and the other a foil, or a part
trial, in which only a given isolated feature (eyes, nose, or
mouth) from both the target and foil face were presented.
On whole trials (50%) participants were asked to indicate
which whole face matched the target face, and for part tri-
als (50%) participants were asked to indicate which iso-
lated face feature matched the target face. For both part
and whole trials, the stimuli were presented side by side
and remained on the screen until the participants made a
response of ‘1’ for the left stimulus or ‘2’ for the right
stimulus. There was a single session of 72 trials for each
gender (36 parts trials and 36 whole trials), with equal
numbers testing eyes, nose, and mouth, with gender being
blocked.

2.2.3. Composite task
Because of its wide use and acceptance as a measure of

holistic face processing, we chose the CT as our second
measure of holistic processing (see Fig. 1C).

2.2.3.1. Logic of the task. In the composite task, subjects are
slower and less accurate to say that the top halves of two
sequentially presented faces are the same when aligned
with different bottom halves, compared to either when
the top halves are aligned with same bottom halves
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(Richler, Mack, Gauthier, & Palmeri, 2009) or when the
halves are misaligned (Hole, 1994). In essence, the CT pri-
marily uses interference as a measure of holistic processing
– the irrelevant lower half of the face affects upper half dis-
crimination performance because the face is automatically
processed as a whole.

There exists a debate in the literature about the relative
validity of two different versions of the CT, the complete
design and the partial design (e.g., Richler et al., 2011a).
Since the complete design of the CT has shown to eliminate
the confound between the effect of alignment and re-
sponse bias that may occur in the partial design (Cheung,
Richler, Palmeri, & Gauthier, 2008; Richler, Cheung, Wong,
& Gauthier et al., 2009), and as a result may better capture
face-specific holistic processing effects (Gauthier, Klaiman,
& Schultz, 2009; Richler, Bukach, & Gauthier, 2009), we
used it instead of the more common partial design (e.g.,
Konar et al., 2010a, 2010b; Wang et al., 2012). For more a
thorough description of the details of the partial and com-
plete designs the reader is referred to Richler et al. (2011a).

The logic of the complete design is that the difference in
performance between aligned congruent and aligned
incongruent trials reflects holistic face processing while
the difference in performance between misaligned congru-
ent and misaligned incongruent trials does not. In particu-
lar, when the task is to determine if the top halves of two
sequentially presented faces are the same, holistic process-
ing is thought to cause subjects to perform worse on trials
with same top halves and different bottom halves (incon-
gruent trials) and slightly better on trials with same top
halves and same bottom halves (congruent trials). In con-
trast, the difference in performance between misaligned
congruent and misaligned incongruent trials is not thought
to reflect holistic face processing, though it may reflect
context effects driven by non-face-specific mechanisms
(Gauthier et al., 2009; Richler, Bukach, & Gauthier, 2009).

Considering this, our logic was that between-subjects
variation in the congruency effect (congruent minus
incongruent trials) in misaligned trials might reflect
non-face-specific context effects, whereas between-
subjects variation in the congruency effect in aligned trials
reflects both non-face-specific context effects as well as
holistic face processing abilities. Thus, we reasoned that
regressing the misaligned congruency effect from the
aligned congruency effect would leave a relatively pure
measure of holistic face processing (for further details see
analysis Section 2.3.1, below).

2.2.3.2. Stimuli and procedure. Faces in the CT were the
same as those used in the part-whole task. The orders of
the PW and CT were counterbalanced across subjects.
The images were split into a top half and a bottom half
with a horizontal 2 pixel slit, approximately in the middle
of the nose, creating aligned faces. To create misaligned
faces, the bottom half was shifted to where the face outline
of the bottom image lined up with the nose midline of the
top. Pilot testing using the same faces as PW revealed ceil-
ing effects during misaligned trials, so 30% Gaussian noise
was added to the faces to increase difficulty. Because the
part-whole stimuli were all based on one female and one
male face with the same chin, hair, eyes, and head shape,
all male composite faces had identical outer features and
all female composite faces also had identical outer
features.

Participants saw two sequentially presented faces and
were told to selectively attend to the top portion of the face
and report, as accurately and quickly as possible, if the top
halves were the same or different. Each trial began with a
300 ms fixation cross, followed by a 200 ms blank screen,
then the target face for 400 ms. Participants were then pre-
sented with a mask image (as in the part-whole task) for
500 ms. The test face was then presented for 400 ms fol-
lowed by a prompt for a response (unlimited duration),
with a 1 s interval before the next trial. Each trial began
with one of the six template faces, followed by a face from
one of the four conditions (same/different � congruent/
incongruent). For each gender, the task had two rounds of
72 trials, with a break between each round, with gender
being blocked. There were equal numbers of aligned and
misaligned trials in each block, with each alignment having
an equal number of trials in each condition (18). In addition,
there were a balanced number of same and different trials.

2.3. Analyses

2.3.1. Calculating difference scores and residuals for PW and
CT

For the part-whole and composite tasks, we calculated
holistic processing scores using both subtraction, as was
used in prior studies (Konar et al., 2010a; Richler et al.,
2011a; Wang et al., 2012), and regression, which we advo-
cate here as the more informative approach.

The disadvantage of subtraction scores in individual dif-
ferences-based analyses is that they are yoked to their two
component scores in a way that obscures the relative con-
tribution of each component to their variation. In the case
of the part-whole task (see Fig. 2), a low subtraction score
could result entirely from exceptional performance in the
part condition, entirely from poor performance in the
whole condition, or from some combination of the two.
Likewise, a correlation (or lack thereof) between part-
whole subtraction scores and face recognition could result
entirely from variation in the part condition, entirely from
variation in the whole condition, or from some combina-
tion of the two. Given that holistic processing is theorized
to be present in whole trials but absent in part trials, a cor-
relation (or lack thereof) resulting from variation in the
part trials is not of theoretical interest. The presence of
parts variation in the part-whole task subtraction score
therefore prevents one from asking the focused question
of interest: Does variation in holistic processing, which is
only theorized to be present in the wholes condition, relate
to face recognition?

Regression scores, in contrast to subtraction scores,
contain only the variation in the condition of interest, with
the variation in the other condition statistically removed.
For example, regression measures holistic processing in
the part-whole paradigm as the variation left over in whole
trials (the condition of interest) after the variation it shares
with the part trials (the control condition) is removed.
Regression accomplishes this by essentially asking how a
given individual’s whole trial performance compares to
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the typical person with the same part trial performance.
This can be clearly visualized in Fig. 2B. In this figure,
whole trial performance is plotted against part trial perfor-
mance, and the least-squares regression line shows the ex-
pected whole performance for someone with any given
part performance. The distance of each dot above or below
this line represents how each individual’s whole perfor-
mance deviates from the best estimate of the mean whole
performance for all other individuals with the same part
score. In this way, a regression measure is created that sta-
tistically equates all individuals’ part scores and measures
that portion of their whole performance that is not ac-
counted for by their part performance.

The computation of subtraction can be similarly repre-
sented on a figure that plots the condition of interest
against the control condition. For example, Fig. 2A, like
Fig. 2B, plots wholes performance against parts perfor-
mance. Instead of plotting the regression line, however,
Fig. 2A plots the line of equality representing all the points
where the subtraction score would be zero. The vertical
distance of each point from this line represents that
individual’s subtraction score. The variation that our
subtraction scores share with their control measures is
documented by the non-zero correlation shown in the
bottom left graph in Fig. 2C. In contrast, Fig. 2E shows
that the regression scores are statistically independent of
their respective control measures.

Note that while individual regression scores have a par-
ticular meaning relative to their least-squares regression
lines, and subtraction scores have a particular meaning rel-
ative to their subtraction lines, the variance in these scores
across individuals remains the same with any arbitrary
vertical translation of these lines. Therefore, for purposes
of correlational analyses, the difference in slope between
the regression and subtraction line is what differentiates
these two measures.

Though the CT measures holistic processing by compar-
ing two effects (aligned congruency effect vs. misaligned
congruency effect) rather than two conditions (as in the
PW), these same principles apply. In particular, the stan-
dard way of calculating holistic processing in the CT
(shown in Fig. 3A) is by subtracting the misaligned congru-
ency effect (misaligned congruent–misaligned incongru-
ent) from the aligned congruency effect (aligned
congruent–aligned incongruent). Note that these are in fact
‘‘difference of differences’’ scores that subtract one differ-
ence score from another. As can be seen in Fig. 3C and D,
these differences of differences correlate with the congru-
ency effect for both misaligned (control condition) and
aligned trials (condition of interest). This illustrates that,
when using the standard subtraction approach, both misa-
ligned and aligned congruency effects contribute to the
holistic processing measure. Unfortunately, this fails to
capture the theory of the CT that holistic processing influ-
ences the aligned congruency effect but not the misaligned
congruency effect (for an explanation of this theory, see
Section 2.2.3.1 above).

In contrast, the regression-based holistic processing
measure correlated with the aligned congruency effect
(Fig. 3F) but not the misaligned congruency effect
(Fig. 3E), better capturing the theory behind the CT. To cal-
culate this regression-based holistic processing measure,
we dropped one level of subtraction but retained the other.
Specifically, we calculated the same misaligned congru-
ency measure (misaligned congruent minus misaligned
incongruent) and the same aligned congruency measure
(aligned congruent minus aligned incongruent) as Richler
and colleagues (2011a), using subtraction, but then re-
gressed the misaligned measure from the aligned measure
(see Fig. 3B). The theoretical reason for this hybrid ‘‘regres-
sion of differences’’ approach is that we expected holistic
processing to both improve performance in the aligned
congruent condition and hinder performance in the
aligned incongruent condition. In cases such as this, where
both conditions are predicted to have non-zero effects and
the directions of these predicted effects are opposite in
sign, a subtraction measure may capture the desired effects
under the assumption that the magnitude of those oppo-
site effects is comparable. An additional benefit of this hy-
brid approach is that then there was only a single stage of
computation changed between the subtraction (‘‘differ-
ence of differences’’) measure and the regression (‘‘regres-
sion of differences’’) measure. Any variation in results
between the subtraction CT and regression CT measure
could therefore be attributed to this single change.

Note that results are similar, and all key conclusions re-
main supported, if a ‘‘regression of regressions’’ holistic
processing measure is used in place of a ‘‘regression of dif-
ferences’’ measure (see Supplementary Materials). The
‘‘regression of regressions’’ measure is computed by
regressing the misaligned congruency regression scores
(residuals obtained by regressing misaligned incongruent
from misaligned congruent) from the aligned congruency
regression scores (residuals obtained by regressing aligned
incongruent from aligned congruent).

3. Results

3.1. Face recognition and holistic face processing: overall
performance

We first sought to confirm that our results are in line
with previous reports and that PW and CT show robust
holistic processing effects (see Fig. 4).

The results of CFMT demonstrate a very similar mean
and standard deviation to previous findings (raw score
M = 58.8, SD = 8.4) (Duchaine & Nakayama, 2006; Wilmer
et al., 2010). Additionally, we found very similar results
to a previous study of Caucasian participants on PW
(Tanaka et al., 2004), demonstrating a robust whole over
part trial advantage (whole M = 78.2%, part M = 67.1%,
t(42) = 10.50, p < .0001). We did not find a significant part
vs. whole difference in reaction times, suggesting that this
effect was not driven by a speed-accuracy tradeoff. For CT,
similar to previous reports (Richler et al., 2011a), we
showed a significant congruency by alignment interaction
(F(1, 42) = 21.73, p < .0001) driven by decreased perfor-
mance on aligned incongruent trials relative to misaligned
incongruent trials (t(42) = 4.76, p < .001). We did not find a
significant congruency by alignment interaction in reac-
tion times, suggesting that this effect was not driven by a
speed-accuracy tradeoff.



Fig. 4. Results of the Cambridge Face Memory Test (A), part-whole task
(B), and composite task (C). The asterisk in the part-whole task indicates a
significant difference between part and whole trials (p < .05) and the
asterisk in the composite task indicates a significant alignment by
congruency interaction (p < .05).
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3.2. Reliability of face recognition ability and measures of
holistic face processing

Because our individual differences correlations will
scale with the reliability with which they are measured, it
is necessary to consider differences in reliability when com-
paring the magnitude of these correlations. An informative
statistic is the theoretical upper bound on a correlation.
Computed as the geometric mean of the reliabilities of the
measures being correlated (Schmidt & Hunter, 1996), the
upper bound is the correlation that would be expected
between these measures, once measurement error is taken
into account, if their true correlation was 1.0. Correlations
scale proportionally with this upper bound. For example,
the same underlying relationship that produces a 0.2
correlation with an upper bound of 0.4 would be expected
to produce a 0.3 correlation with an upper bound of 0.6
and a 0.5 correlation if it were possible for the upper bound
to reach 1.0 (Schmidt & Hunter, 1996).

Table 1 summarizes the results of our reliability analy-
sis (for additional rationale and details of methods, see
Supplementary Materials). The first column in Table 1
shows the reliability of each measure, including each sep-
arate condition in each task. As Table 1 shows, CFMT has
high reliability (k2 = .88) and the separate conditions in
PW and CT have fairly good reliability (all k2’s > .5, see
Table 1). As expected, the difference scores and residual
scores were overall less reliable (all k2’s < .31, Table 1)
(Peter, Gilbert, Churchill, & Brown, 1993). However, the
residual scores were considerably more reliable than the
difference scores and correspondingly had substantially
higher upper bound correlations with CFMT (Table 1).

Columns 2 and 3 show each measure’s observed corre-
lation with CFMT and the upper bound of those correla-
tions (see Section 3.4 below). We also calculated the
upper bound correlations between PW and CT holistic pro-
cessing measures and found them to be .08 for the subtrac-
tion approach and .27 for the regression approach. Note
that some of the correlations we report in Table 1 and be-
low exceed their estimated upper bound. This is not as par-
adoxical as it may at first seem, because both the
correlations and the upper bound are estimated with some
margin of error.

3.3. Holistic processing measures correlate with each other

After assessing the reliabilities of our measures, we next
sought to determine if the measures of holistic processing
are significantly related to each other. We first correlated
PW and CT holistic processing subtraction measures with
each other, and, similar to previous reports by Wang
et al. (2012) and Konar et al. (2010b) using subtraction,
found no significant relationship between these measures
(see Fig. 5, PW vs. CT complete analysis: r = .23, p = .14;
PW vs. CT partial analysis: r = .06, p = .70, see more on par-
tial analysis below). However, when using the regression
approach, PW and CT holistic processing scores did signif-
icantly correlate with each other (see Fig. 5, r = .44,
p < .005), suggesting that they measure overlapping as-
pects of holistic processing. For completeness we also cor-
related the residuals of CT with the difference scores of PW
(r = .28, p = .09) and the difference scores of CT with the
residuals of PW (r = .35, p < .05).

After finding a highly significant relationship between
CT and PW holistic processing using the regression ap-
proach, we sought to further probe the different methods
of analyzing the CT in order to determine whether the
CT’s relationship with the PW is driven more by the



Table 1
Measurement reliability and correlation with CFMT. Reliabilities are Guttman’s k2 with Cronbach’s a in parentheses. Upper bound is the highest possible
correlation, given the reliability of the two measures. Upper bound is calculated as the square root of the product of the two measures’ reliabilities. HP-holistic
processing.

Reliability CFMT Upper Bound
k2 (a) Correlation With CFMT

Cambridge Face Memory Test .88 (.88) – –
Part-whole task

Whole trials .70 (.65) .63⁄ .79
Part trials .52 (.43) .44⁄ .67
HP-differences scores .10 (�.06) .27 .30
HP-residuals .31 (.19) .46⁄ .52

Composite task
Aligned

Congruent .72 (.67) .50⁄ .80
Incongruent .69 (.60) .21 .78

Misaligned .84 (.81) .43⁄ .86
Congruent .74 (.70) .35⁄ .81
Incongruent .72 (.68) .43⁄ .80

HP-differences scores .10 (�.06) .33⁄ .30
HP-residuals .24 (.10) .36⁄ .46

Note: Bold and ⁄ indicates that p < .05
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Fig. 5. Correlation between holistic processing measures correlations between holistic processing measures (CT and PW) using subtraction and regression.
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congruency effect in aligned trials (aligned congruent
minus aligned incongruent, advocated as a measure of
holistic processing by Richler, Mack, et al., 2009) or by
the commonly used partial analysis effect (misaligned
incongruent same trials vs. aligned incongruent same tri-
als). Consistent with the idea that the congruency effect
in aligned trials is a good measure of holistic processing,
we found a strong correlation between the PW holistic
advantage and the CT congruency effect for aligned trials
(PW residuals: r = .43, p < .005; PW difference scores:
r = .28, p = .07) but not misaligned trials (PW residuals:
r = .004, p > .9; PW difference scores: r = .0003, p > .9). On
the other hand, the partial effect analysis of the CT did
not show a significant relationship with PW holistic advan-
tage scores when measuring the partial effect using regres-
sion (PW residuals: r = .19, p = .21; PW difference scores:
r = .10, p = .51) or subtraction (PW residuals: r = .23,
p = .14; PW difference scores: r = .06, p = .70). This lack of
a significant relationship between the PW and CT when
using the partial analysis replicates previous findings of
Konar et al. (2010b) and Wang et al. (2012). Together,
these results suggest that the congruency effect in aligned
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trials drives the significant relationship between the CT
and PW rather than the partial effect.

3.4. Holistic face processing is strongly related to face
recognition ability

Now that we have established that our tasks are mea-
suring similar aspects of holistic face processing, we turn
to quantifying the relationship between holistic face pro-
cessing and face recognition ability. As can be seen in
Fig. 6, when using a subtraction approach only CT signifi-
cantly correlates with CFMT (r = .33, p < .05) and there is
only a trend towards a significant relationship between
PW and CFMT (r = .26, p = .09). This significant correlation
of CT with CFMT using the subtraction approach with the
complete design replicates recent work by Richler et al.
(2011a). Additionally, the lack of a significant correlation
of PW with CFMT using subtraction replicates the results
of Konar and colleagues (2010a, 2010b). In contrast to
the subtraction approach results, when using the regres-
sion approach both PW and CT show strong and significant
relationships with CFMT, indicating that greater holistic
processing correlates with greater face recognition ability
(PW: r = .46, p < .005; CT: r = .36, p < .05). The substantially
diminished relationship of PW with CFMT using the sub-
traction approach is likely because it creates a holistic
measure that is significantly negatively correlated with
the control condition (r = �.37, p < .05, see Fig. 2C),
whereas the regression measure shows zero correlation
with the control condition (see Fig. 2F).

The similar regression and subtraction results for CT
suggest that when using the complete design of CT, con-
tamination with control task variance (r = �.59, p < .05,
see Fig. 3C) has a relatively modest end result. However,
the regression approach still has an advantage over the
subtraction approach in that we have a better understand-
ing of the source of the variance in our holistic processing
measure. In particular, for the regression approach, we
know that the significant correlation of CT with CFMT is
driven by the theoretically relevant congruency effect in
aligned trials, and not by the (regressed out) congruency
effect in misaligned trials. In contrast, for the subtraction
approach, the relative contributions of the aligned and
misaligned trials are obscured by the subtraction computa-
tion, and therefore the subtraction results are more diffi-
cult to interpret (Edwards, 2001).

To further characterize the relationship between mea-
sures of holistic processing and face recognition, we com-
pared two multiple regressions predicting CFMT, one
with PW and CT holistic processing regression scores and
the other with PW and CT subtraction scores (see
Table 2A). Though both models significantly predicted
CFMT, the adjusted R2 for the regression based measures
(.21) was twice as large as the adjusted R2 for the subtrac-
tion based measures (.10), indicating that holistic process-
ing computed by regressing out control tasks better
predicts face recognition ability.

In the model containing the regression-based holistic
processing measures of PW and CT, PW predicted CFMT
variance above and beyond the variance that PW shared
with CT. Even after entering the CT into the regression
equation first, adding the PW demonstrated a significant
R2 change (R2 change = .12, p < .05). This suggests that the
PW may capture aspects of holistic processing that CT does
not. Alternatively, some researchers believe that sensitivity
to processing configural information is a separate ability
from holistic processing (e.g., Maurer, Grand, & Mondloch,
2002; though see Rossion, 2008 for a different view) and
the PW may, in addition to measuring holistic processing,
measure aspects of this configural processing ability
whereas the CT does not. Finally, CT may have explained
greater, more PW-independent variance in CFMT if our
CT had more closely matched the timing and stimulus for-
mat of Richler, Cheung, and Gauthier (2011b).

3.5. Non-holistic processing independently predicts face
recognition ability

To clarify whether individual differences in holistic face
processing are the main determinant of face recognition
ability, we also measured whether non-holistic mecha-
nisms are also related to face recognition ability. To accom-
plish this, for PW we calculated the relationship of CFMT
(a) with overall part trials, (b) with the overlapping vari-
ance between part and whole trials, and (c) with the vari-
ance in part trials that is independent from whole trials. To
calculate the overlapping variance between part and whole
trials, we took the overall part trial performance and sub-
tracted the variance in part trials that did not overlap with
whole trials. To calculate the variance in part trials that is
independent from whole trials we regressed whole trials
from part trials. Overall part trial performance was signif-
icantly correlated with CFMT (r = .44, p < .005) and inter-
estingly, the variance in part trials that overlaps with
whole trials was highly correlated with CFMT (r = .63,
p < .001), whereas the variance in part trials independent
of whole trials was not (r = �.09, p = .85). In other words,
the aspect of part trial performance that is related to face
recognition ability is that which overlaps with perfor-
mance when shown the whole face. This likely reflects
general object discrimination abilities engaged by both
part and whole trials.

To obtain a measure of non-holistic discrimination abil-
ity in CT, we used participants’ overall performance on
misaligned trials. This is the same approach taken to mea-
sure non-holistic processing in the complete design CT as
Richler et al. (2011a). In doing so we found that misaligned
trials significantly correlated with CFMT (see Table 1, mis-
aligned trials: r = .43, p < .005), further reinforcing the non-
holistic processing/face recognition association.

Finally, to test whether non-holistic and holistic pro-
cessing predict unique or overlapping aspects of face recog-
nition ability, we ran multiple regressions with non-holistic
processing and holistic processing predicting CFMT (see Ta-
ble 2). A previous report using a similar analysis showed
that holistic processing, as measured by CT, significantly
independently predicted CFMT accuracy but that non-
holistic processing did not (Richler et al., 2011a). In contrast
to these results, for PW we found that both part trials and
holistic processing significantly independently predicted
CFMT performance (see Table 2B). This was true regardless
of whether subtraction or regression measures of holistic
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processing were used and this was also true if we used the
variance in part trials that overlaps with whole trials as our
measure of parts processing (see above). For CT, we found
similar results when using misaligned trials and CT holistic
processing as predictors (see Table 2C). Both independently
predicted CFMT performance and again this was true for
both the subtraction and regression measures. Taken to-
gether, this provides compelling evidence that both holistic
processing and non-holistic processing uniquely contribute
to face recognition ability.

4. Discussion

The current results demonstrate that holistic face pro-
cessing measures significantly correlate with each other
and with an established measure of face recognition abil-
ity. In contrast to previous work in this area, we compute
specific measures that isolate holistic processing by
regressing out the influence of well-matched control con-
ditions. While prior studies included such control condi-
tions, they did not statistically remove their influence.
Rather, they computed subtraction measures that are con-
founded with the control condition in an individual differ-
ences context. Together, these findings place the construct
of holistic face processing and the connection between
holistic face processing and face recognition ability on so-
lid ground, helping to clarify the recent debate in this liter-
ature (Konar et al. 2010a, 2010b; Richler et al. 2011a;
Wang et al., 2012). The results also show that holistic face
processing and non-holistic processing independently



Table 2
Multiple regressions predicting CFMT. The results of 6 multiple regression models (across in columns) predicting CFMT score. The first two models (A) predict
CFMT scores from part-whole and composite task holistic processing scores calculated either via subtraction or regression. The next two models (B) predict
CFMT scores from part-whole part scores and holistic advantage scores calculated via subtraction or regression. The final two models (C) predict CFMT scores
from composite misaligned scores and holistic processing scores calculated via subtraction or regression. b-standardized beta.

A. Part-Whole & Composite Task
            Holistic Processing

 B. Part-Whole Holistic Processing 
                 & Part Trials

C. Composite Task Holistic 
Processing & Misaligned Trials 

Subtraction Regression Subtraction Regression Subtraction Regression

Predictor β p β p β p β p β p β p

     Difference Scores .20 .19 .50* .00
     Residuals .38* .02 .46* .00
     Part Trials .63* .00 .44* .00

     Difference Scores .28 .07 .31* .03
     Residuals .19 .22 .31* .03
     Misaligned Trials .42* .00 .39* .01

R2 (adjusted) .10* .21* .38* .38* .24* .25*

Part-Whole: 

Composite:

Note: Bold and ⁄ indicates that p < .05
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predict face recognition ability, suggesting that holistic
processing is not the sole determinant of face recognition
ability.

This study illustrates the advantage of regression over
subtraction for isolating individual differences in specific
face processing mechanisms. First, using regression to cal-
culate holistic processing produced more valid measures in
that they did not correlate with the control task (see
Figs. 2E and 3E), whereas using subtraction showed signif-
icant negative correlations with control tasks (see Figs. 2C
and 3C). This illustrates a theoretical assumption of the
subtraction approach that is typically not intended by the
researcher. This assumption becomes evident after
inspecting the way a subtraction is computed. Subtraction
linearly combines the negative control condition variance
(e.g., part trials in PW) with the positive variance from
the condition of interest (e.g., whole trials in PW). Given
that subtraction weights the contribution of the control
condition equally and oppositely to the contribution of
the condition of interest, it is not surprising that the result-
ing subtraction measures correlated negatively with the
control condition. In contrast, the regression approach
mathematically factors out the control condition so that
its variance has no contribution to the measurement of
interest, which is what the researcher typically intends of
a control condition. This creates a more specific, more the-
oretically interpretable measure. For example, in the cur-
rent results the CT subtraction holistic processing
measure significantly correlated with CFMT. However,
there could be several ways this could mathematically
arise, many of which are theoretically uninterpretable. In
contrast, by using regression we constrained the source
of variance in our CT holistic processing measure, and
though we obtained similar CFMT correlations to the sub-
traction approach, we can be confident that these results
are theoretically relevant. As well as being more valid,
regression measures also showed greater reliability than
subtraction measures (see Table 1), likely because regres-
sion measures did not include noise from the control tasks.

In providing more valid and reliable measures of holis-
tic processing, the regression approach illuminates the
holistic face processing/face recognition debate in several
important ways. First, it demonstrates a strong correlation
between PW and CT holistic measures, supporting the idea
that holistic face processing is a unitary construct (Farah,
Wilson, Drain, & Tanaka, 1998; Rossion, 2008) rather than
a collection of distinct task-specific processes (e.g., Wang
et al., 2012). The strong relationship between these tasks,
despite that the PW measures holistic processing by an
enhancement effect and the CT by an interference effect,
supports the notion that holistic face processing involves
both the interdependence among facial components (PW)
as well as processing the whole face in an obligatory fash-
ion (CT) (Farah et al., 1998; Richler, Cheung, et al., 2009
Rossion, 2008). The current study also adds to existing evi-
dence that holistic processing is robust over time (see
Richler, Mack, et al., 2009) as we observe the PW/CT corre-
lation despite these tasks having different stimulus dura-
tions (1000 ms presentation in PW, 400 ms presentation
in CT). The current findings further demonstrate that holis-
tic processing as measured by PW residuals is most related
to the aligned congruency effect in the CT (aligned congru-
ent minus aligned incongruent trials), advocated by Richler
and colleagues (Richler, Mack, et al., 2009), and is less re-
lated to the more commonly reported CT partial effect
(misaligned incongruent same minus aligned incongruent
same trials). This suggests that the complete design pro-
vides a preferable holistic processing measure to the par-
tial design. Considering this, Konar et al. (2010b) and
Wang’s et al. (2012) failure to find a significant PW/CT link
may be because they used subtraction rather than regres-
sion to measure the PW holistic advantage and also be-
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cause they employed the partial design of the CT rather
than the complete design. Taken together, the current re-
sults reinforce that there exists a reliable, robust, and uni-
tary holistic face processing mechanism that is consistent
with both current (Rossion, 2008) and more classic concep-
tions of holistic face processing (Farah et al., 1998).

Not only do the present regression-based results sup-
port the construct of holistic face processing, they also
reinforce the connection between holistic processing and
face recognition ability. Our two holistic processing
measures, when calculated via regression, each signifi-
cantly predicted face recognition ability, and together ex-
plained 21% of the variance in face recognition ability. In
contrast, when calculated via subtraction, only CT signifi-
cantly predicted face recognition ability, and the two holis-
tic processing measures together only explained 10% of the
variance in face recognition ability. Likewise, these effect
sizes are much larger than those recently reported by
Wang and colleagues (2012) using difference scores (cur-
rent results: PW R2 = .21, CT R2 = .13; Wang et al., 2012:
PW R2 = .02, CT R2 = .02). These larger effect sizes enabled
us to find significant effects with a substantially smaller
sample size (current study: 43 participants; Wang et al.,
2012: 337 participants), confirming that regression is a
more powerful approach than subtraction and may allow
researchers to perform effective individual differences
analyses with fewer subjects. Moreover, the robust effect
sizes found here with multiple measures of holistic pro-
cessing confirm the hypothesized link between the ability
to perceive the interdependence among facial components
and face recognition ability. This re-affirms the holistic
processing/face recognition connection that is tacitly as-
sumed by studies of the development of face processing
(Cashon, 2003), prosopagnosia (Busigny et al., 2010; Ra-
mon et al., 2011), the other-race effect (Michel et al.,
2006; Rhodes et al., 1989), and computer models of face
processing (Cottrell, Dailey, Padgett, & Adolphs, 2001).

Having provided evidence for a unitary holistic face
processing construct and the fundamental connection be-
tween holistic face processing and face recognition ability,
the foundation is now laid for further examinations of this
connection. One possibility is that greater holistic face pro-
cessing ability allows one to more efficiently build and
store a more distinctive face representation in long-term
memory, leading to better face recognition performance.
Evidence supporting this possibility is from the current
PW results, which in addition to having a large perceptual
component, also requires visual short-term memory
(VSTM). From a VSTM perspective, the significant relation-
ship of PW with CFMT could indicate that those who build
a more holistic face representation in VSTM (or do so more
rapidly) have better general face memory abilities. Provid-
ing additional evidence for this notion, Curby and col-
leagues (2007) found significantly greater VSTM capacity
for upright faces and objects of expertise than for inverted
faces or cars, suggesting that the more holistically an ob-
ject is processed the more efficiently and richly coded it
is in VSTM. Recent evidence also suggests that the distinc-
tiveness of face representations in long-term memory, as
can be measured by the strength of face-specific adapta-
tion effects, is predictive of face recognition ability (Den-
net, McKone, Edwards, & Susilo, 2011). It would be
informative to test if holistic perceptual processing abili-
ties correlate with these face-specific adaptation effects
and if so, whether holistic processing mediates the rela-
tionship of face-specific adaptation with face recognition
ability.

Though the main focus of this study was holistic face
processing and its connection to face recognition ability,
we also found that non-holistic processing is an important
aspect of face recognition ability. For both PW and CT, part
trial and misaligned trial performance explained a signifi-
cant amount of CFMT variance above and beyond holistic
processing. This is counter to Richler et al. (2011a) who
found, when predicting CFMT scores from their CT task,
that misaligned trials had no significant predictive ability
beyond holistic processing. The origin of this differing re-
sult is unclear. Our findings do, however, replicate across
both PW and CT, and they also converge with other recent
studies supporting the importance of non-holistic process-
ing to face recognition ability. For example, prosopagnosics
have a deficit in discriminating face parts, particularly
when judging shapes of facial features (Le Grand et al.,
2006; Yovel & Duchaine, 2006). Additionally, the own-race
face recognition advantage is significantly related to how
much better subjects are at remembering own-race facial
features (Hayward, Rhodes, & Schwaninger, 2008). While
our results clearly suggest that holistic face processing is
a key mechanism involved in skilled face recognition, they
also leave room for important contributions from non-
holistic face processing and/or non-face processing
mechanisms.
5. Conclusion

Using a regression-based approach, we validate the
construct of holistic face processing by demonstrating that
part-whole and composite task holistic processing mea-
sures correlate with each other. Additionally, using this ap-
proach we provide strong converging evidence of the link
between holistic processing and face recognition ability,
as individually both part-whole and composite measures
showed robust correlations with face recognition ability.
Finally, we provide evidence that non-holistic factors also
strongly correlate with face recognition ability. Together,
these results put the link between holistic face processing
and face recognition on firm ground and more broadly
illustrate the utility of a regression-based approach for
associating and dissociating individual differences in hu-
man cognition.
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