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Abstract 

Response times (RTs) are commonly used to assess cognitive abilities and have more 

recently been employed to assess face recognition ability. However, it is unclear whether face 

processing RTs predict recognition ability beyond accuracy. In the current study, we 

examined accuracy and RT on a widely used face matching assessment modified to collect 

meaningful RT data, the computerized Benton Facial Recognition Test (BFRT-c), and 

measured whether RTs predicted face recognition ability and developmental prosopagnosia 

(DP) vs. control group membership. 62 controls and 36 DPs performed the BFRT-c as well as 

validated measures of face recognition ability: the Cambridge Face Memory Test (CFMT) 

and a Famous Faces Memory Test (FFMT). We found little-to-no association between 

BFRT-c accuracy and RT in both controls (r=.07, p=.59) and DPs (r=.03, p=.86). In controls, 

BFRT-c accuracy robustly predicted CFMT performance (r=.49, p<.001), FFMT 

performance (r=.43, p<.001), and a CFMT-FFMT composite (r=.54, p<.001), whereas BFRT-

c RT was not significantly associated with these measures (all r's<.16, p's>.21). We found 

that BFRT-c accuracy significantly differed between DPs and controls, but RT failed to 

differentiate the groups. Results in controls and DPs were unchanged after outlier removal. 

Further, combined scores of BFRT-c accuracy and RT (inverse efficiency score and balanced 

integration score) did not predict face recognition ability or DP vs. control group membership 

better than accuracy alone. These results suggest that the BFRT-c RT is not useful for 

characterizing individual differences in face recognition and, more generally, emphasizes the 

importance of validating RT measures before using them as individual difference/diagnostic 

measures. 

Keywords: developmental prosopagnosia; face recognition; face perception; face matching; 

response time; individual differences



RT AND FACE RECOGNITION ABILITY  3 
 

Not so fast! Response Times in the Computerized Benton Facial Recognition Test May 

Not Reflect Face Recognition Ability 

Studies have shown associations between faster response times (RT) and better 

cognitive abilities across a variety of domains, including mathematical ability (e.g., Libertus 

et al., 2013; Ratcliff, Thompson, & McKoon, 2015), general intelligence (IQ; e.g. Lewis et 

al., 1968; Ratcliff, Schmiedek, & McKoon, 2008), numeracy tests (e.g., Gray & Reeve, 2016; 

Ratcliff, Thompson, & McKoon, 2015), and others (e.g., Goldhammer, 2015; Kyllonen & Zu, 

2016). In the past five years, there has been increasing interest in using RT to measure both 

impairments (e.g., Geskin & Behrmann, 2018) and individual differences in face and object 

processing ability (e.g., Rossion & Michel, 2018; Meyer et al., 2021). However, there are 

drawbacks to using RTs such as potential speed-accuracy tradeoffs (for a review see Heitz et 

al., 2014) and because of the process impurity of RT relative to accuracy measures (e.g., 

Miller & Ulrich, 2013; Wilhelm et al., 2010). Further, in nearly all cases in the domain of 

face and object recognition, task RTs have not been validated as a measure of ability distinct 

from accuracy. The goal of the current study was to examine the computerized Benton Facial 

Recognition Test (BFRT-c), a version of a widely used diagnostic face matching task that 

emphasizes both speed and accuracy (e.g., Mishra et al., 2021; Murray et al., 2021), and to 

determine if RT on this task explains variance independent from accuracy in validated 

measures of face recognition ability. We also sought to determine if BFRT-c RT 

differentiates between controls and developmental prosopagnosics (DPs), individuals with 

lifelong face recognition difficulties (Duchaine & Nakayama, 2004). 

RTs have often been used to highlight face processing deficits in prosopagnosia. In an 

earlier study of 5 DPs, 3 acquired prosopagnosics (APs), and 10 controls, Behrmann et al. 

(2005) administered both face recognition and face matching tests. Notably, these tests were 

given with unlimited stimulus presentation time and there were no explicit instructions to 
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complete each trial as fast as possible. Results showed that, in addition to having impaired 

accuracy on all three tests, APs and DPs were significantly slower than controls, taking on 

average 1.5-2.5 times longer to respond. Duchaine and Nakayama (2005) similarly found that 

7 DPs were both significantly less accurate and had significantly longer RTs than controls on 

old/new face recognition tasks, even when instructing participants to respond as quickly as 

possible. Duchaine and Weidenfeld (2003) suggested that, for face matching tasks, longer 

RTs in prosopagnosics may be especially pronounced when a piecemeal approach to 

matching is possible. Using a laborious feature-by-feature approach, DPs may be able to 

perform better at face matching while sacrificing speed. Along similar lines, Rossion and 

Michel (2018) suggested that prosopagnosics, by taking their time, can perform in the normal 

range on the original non-speeded version of the BFRT, a widely used test of face matching 

(Benton & Van Allen, 1968). Indeed, normal non-speeded BFRT performance was 

demonstrated in 7 of 11 DPs by Duchaine and Nakayama (2004). With the goal of trying to 

capture prosopagnosia-related slowing and using RT as a potential diagnostic criterion, 

Rossion and Michel (2018) developed a computerized, speeded version of the BFRT (BFRT-

c), where subjects are instructed to respond as quickly and accurately as possible. They 

recently published normative BFRT-c accuracy and RT1 data (Rossion & Michel, 2018). A 

recent study found that accuracy on this speeded version of the BFRT-c predicted DP group 

membership better than other face matching tasks (Mishra et al., 2021). Further, Murray and 

colleagues (2021) recently found that a computerized version of the BFRT with revised, 

updated stimuli (BFRT-r) robustly differentiated DPs and controls.  However, it remains to 

be seen if BFRT-c or BFRT-r RT provides unique prosopagnosia diagnostic information 

above and beyond accuracy and a goal of the current study is to assess this possibility. 

 
1 Rossion and Michel (2018) use the term “response time” to refer to the total completion time of the BFRT-c 
and we use the same terminology for consistency. Note that this total completion time is perfectly correlated 
with the more traditionally reported trial-averaged response time. 
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Beyond using RT to capture face processing deficits, prosopagnosia researchers have 

also used RT to try and determine the degree to which DPs' visual recognition deficits are 

specific to faces (e.g., Geskin & Behrmann, 2018; Rivolta et al., 2017). In an influential and 

highly debated meta-analysis, Geskin and Behrmann (2018) examined object recognition 

performance in 716 DP cases using both accuracy and RT results from tasks that largely 

emphasized accuracy rather than speed. They found that, of those studies that reported both 

accuracy and RT measures, 66.8% (159/238) of DPs exhibited object recognition deficits 

(either accuracy or RT z-scores < -2). However, the tasks examined were not optimized for 

measuring RT (they were higher difficulty and/or did not emphasize RT) and none of these 

studies validated RT as an independent measure of object recognition ability (i.e., 

demonstrated that RT explained unique variance in object recognition ability beyond 

accuracy). When considering object recognition accuracy impairments alone (z < -2) and 

excluding DPs with only an RT impairment, the number of DPs with object recognition 

impairments decreases dramatically to 22.0% (101/459). This 3-fold increase in the estimated 

prevalence of DP object recognition impairments when using RTs highlights the importance 

of determining whether task RTs provide a valid measure to classify visual recognition 

deficits. 

In addition to discriminating between controls and prosopagnosics, RTs have also 

been used to characterize individual differences in face processing within the normal range of 

performance. For example, Wilhelm and colleagues (2010) administered a broad battery of 

face perception and memory tasks to two groups of healthy controls (N=151 and N=209), 

with some tasks focusing on accuracy and others emphasizing speed when accuracy was 

close to ceiling, as well as measures of object processing and general intelligence. Using 

structural equation modeling, they found that the best model included separate factors for 

face perception and memory accuracy as well as a general visual speed of processing factor. 
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In other words, they found that face perception accuracy reflected a face-specific ability, but 

face perception RT reflected more general visual processing speed. A follow-up study 

replicated these findings and, using drift diffusion modeling of RT from face processing 

speed tasks (where accuracy was close to ceiling), found that only the 'cautiousness of 

information processing', or where participants set their speed-accuracy tradeoff balance, was 

specific to faces (Meyer et al., 2019). Additional studies from this group have found that 

sometimes face processing task RTs reflect face-specific mechanisms (e.g., Ćepulić et al., 

2018) and other times they do not (e.g., Hildebrandt et al., 2013; Rostami et al., 2017). In a 

recent review, Meyer et al. (2021) suggests that the recruitment of face specific mechanisms 

reflected in RT or accuracy depends on whether the face task is easy (≥90% accuracy) vs. 

difficult (≤75%). According to this model, for easy tasks face specificity is found when 

modeling RTs in a single face processing task but not when modeling RTs across multiple, 

different easy tasks. In contrast, in difficult face tasks that focus on accuracy, face specificity 

occurs in both single task approaches and task batteries. A goal of the current study is to test 

whether RTs provide information about individual differences in face recognition beyond 

accuracy in a face matching task that falls in between the easy and difficult cutoffs (BFRT-c 

control accuracy=83%, Rossion et al., 2018). 

In addition to behavioral studies of RT, a recent electroencephalography study of 

individual differences in face processing also highlights that face task RT and accuracy may 

reflect different mechanisms (Dzhelyova et al., 2020). Dzhelyova and colleagues showed that 

a fast-periodic visual stimulation measure of face individuation (rare novel faces shown in a 

stream of the same repeated face identity) recorded from occipitotemporal regions was 

significantly correlated with BFRT-c RT, but not accuracy. This suggests that it is possible 

that BFRT-c RT provides distinct information to index individual differences in face 

recognition ability. Though this study and the studies by Wilhelm and colleagues (2010, and 
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others, e.g., Ćepulić et al. 2018) highlight that face processing speed and accuracy dissociate, 

they did not directly test whether face processing speed can explain additional variance in 

validated measures of face recognition ability. A study by Arizpe et al. (2018) found that RTs 

during different stages of the Cambridge Face Memory Test (CFMT, Duchaine & Nakayama, 

2006) did indeed explain unique variance in famous face recognition above and beyond 

accuracy. However, the relationship observed was complex, with RT during the introduction 

stage negatively correlated with face recognition ability and RT during the noise stage 

positively correlated with face recognition ability. This, along with a recent review by Meyer 

and colleagues (2021), suggests that the relationship between RT and face recognition ability 

may be highly task dependent.   

Together, the existing literature paints an inconsistent picture in which RT can at 

times provide useful information about face recognition abilities and prosopagnosia and other 

times it is unclear or possibly provides information redundant with accuracy. Beyond Arizpe 

et al. (2018), no studies to our knowledge have demonstrated that RT explains unique 

variance in face recognition ability above and beyond accuracy. While the BFRT-c is a 

highly sensitive face matching task (Mishra et al., 2021; as is the BFRT-r with updated 

stimuli, Murray et al., 2021) that was designed to produce RT data useful for characterizing 

individual differences in face recognition, BFRT-c RTs have yet to be validated using 

standard measures of face recognition. To address this issue, we administered the BFRT-c 

and two face recognition measures, a Famous Face Memory Test (FFMT, Mishra et al., 

2019) and the Cambridge Face Memory Test (CFMT; Duchaine & Nakayama, 2006), often 

thought of as the gold standard of individual differences in face recognition (Richler et al, 

2015). Participants included 62 healthy controls and a relatively large group of 36 DPs. 

Given the established relationship between face perception (indexed by BFRT-c) and face 

recognition ability (indexed by CFMT and FFMT, e.g., Rezlescu et al., 2017; Schwartz & 
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Yovel, 2016; Young et al., 2012), the CFMT and FFMT should serve as excellent measures 

to validate BFRT-c RT. We examined whether BFRT-c accuracy and RT uniquely predicted 

DP vs. control group membership as well as individual differences in face recognition 

abilities in the normal population. Because BFRT-c RT may reflect independent mechanisms 

from accuracy (Dzhelyova et al., 2020) and because RTs for single, easier face tasks may 

reflect face-specific mechanisms (Meyer et al., 2021), we predicted that BFRT-c RT would 

explain additional variance from accuracy in individual differences in face recognition ability 

as well as DP vs. control group membership.  

Methods 

Participants 

 Our sample included 98 adults between the ages of 18 and 70 years old (62 Controls 

and 36 DPs). Individuals with DP were recruited from four sources: a) Our database of DPs 

who previously participated in laboratory studies, b) DPs referred to us from Dr. Matthew 

Peterson, who recently completed a DP study (Peterson et al., 2019), c) Individuals referred 

to our lab from Dr. Brad Duchaine’s website, www.faceblind.org, and d) Individuals 

responding to our advertisement posted on public transportation. Control subjects were 

recruited from the community primarily through flyers and through the Harvard Decision 

Science Lab.  

 Before coming into the lab for testing, all participants underwent a pre-visit phone 

screening to ensure they did not meet any of the following exclusionary criteria: a history of a 

significant neurological disorder, lifetime moderate or severe traumatic brain injury (TBI) or 

mild TBI in the last 6 months, musculoskeletal or sensory impairments that would interfere 

with performing computer tasks, lack of English proficiency, current psychiatric disorders, 

diagnosed social cognitive disorders such as autism, and current dependence on alcohol or 
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other substances. Prior to data collection, consent was obtained for all participants according 

to the Declaration of Helsinki. The study was approved by the Institutional Review Board. 

DP and Control Screening 

Developmental prosopagnosics were screened using the 20-Item Prosopagnosia Index 

(PI-20; Shah, Gaule, Sowden, Bird, & Cook, 2015), Famous Faces Memory Test (FFMT), 

and the CFMT (Duchaine & Nakayama, 2006b). To qualify as a DP, participants had to 

report lifelong face recognition deficits (all but three scored > 65 on the PI-20, see Table 1), 

present with objective face recognition deficits on both the CFMT and FFMT (z < -1.5, as 

calculated from the control group in Duchaine et al., 2006b), and have an absence of 

significant neurological disorders (similar to recent studies, e.g., Stumps et al., 2020; Berger 

et al., 2022). All but one DP scored 44 or below (z-score < -2) on the original CFMT 

(Duchaine & Nakayama, 2006), indicating severe objective face recognition deficits. We also 

included one participant that we consider to be a mild DP who scored 46 on the CFMT, since 

the rest of their profile was consistent with prosopagnosia (e.g., PI-20 = 93, famous faces 

=.47). Removing this participant had no appreciable effects on any of the key analyses. 

Typically developing controls did not report any face recognition deficits in everyday life and 

all scored 45 or above on the CFMT. All participants had normal or corrected-to-normal 

vision and scored within the normal range on the Leuven Perceptual Organization Screening 

Test (L-POST; Torfs et al., 2014) to rule out lower-level visual causes of poor face 

recognition.  

Testing Procedure  

 The experiments were implemented in PsychoPy v1.85.4 and JavaScript (for CFMT) 

and run on a laptop computer (34.5 x 19.5 cm display, 1920 x 1080 pixels, 60 Hz). 

Participants were seated 60 cm from the computer screen and instructed to indicate their 

responses using either a keyboard or a computer mouse. The study had three different face 
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recognition tests (Figure 1). Written and spoken instructions were provided. The order of the 

computerized tests was a) CFMT b) FFMT c) BFRT-c.   

 We used original CFMT (Duchaine & Nakayama, 2006) and the total score as our 

measure of interest. For a description of this task, please see Figure 1A. Famous face 

recognition was assessed using a set of 20 well-known celebrities from testmybrain.org (see 

Mishra et al, 2019). For each famous face presented at the center of the screen (see Figure 

1B), participants were asked to make their best guess about the identity of the person by 

typing in the box provided and click ‘submit’, or to select “I don’t know”. For example, if the 

face shown was of Tom Cruise, and they could not remember the name but typed that he was 

the “Top Gun actor” OR “actor Cruise”, they were scored as correct. After they entered a 

response, the correct answer/name of the person was displayed on the screen and they were 

prompted to click on either of the following: “I got it Right” (this was confirmed by the 

experimenter); “I got it wrong and I am familiar with this person”; or “I got it wrong and I am 

not familiar with this person”. If the participant did not enter a guess but left the answer field 

blank and chose the option “I do not know," they were then provided with the answer on the 

next screen and asked to choose from either “I am familiar with this person” OR “I am not 

familiar with this person." We used the percent correct out of the total number of people that 

participants reported being familiar with. 

 The computerized Benton Facial Recognition Test (BFRT-c) was adapted from 

Rossion and Michael (2018). It was very similar to the original BFRT (Benton, 1994), except 

that RTs were recorded and the original instructions were changed to emphasize speed along 

with accuracy (see below for the on-screen instructions from the current study’s BFRT-c part 

2).  
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“You will see one face at the top of the screen that you will have to match to three faces 

presented below. Click on the 3 matching faces. Try to respond as quickly and accurately 

as possible.” 

The test uses grayscale photographs of unfamiliar faces (3 x 3.5 cm) presented with little 

visible hair and all external information cropped out. As shown in Figure 1C, each trial 

presents a target face at the top of the screen with six faces listed at the bottom of the screen 

in two rows.  

 

 

Figure 1. Example of Tasks and Stimuli. A) Cambridge Face Memory Test: a) During the 
learning phase, participants were shown three different images of six individuals which they 
were asked to memorize and b) were immediately tested on the identical image vs. foils. c) 
Next, participants studied the six individuals again for 20 seconds and were tested on novel 
images of the individuals vs. foils. d) Finally, participants studied the six individuals again 
for 20 seconds and were tested on novel images with visual noise vs. foils with noise. B) 
Famous Faces Memory Test: Participants were shown a famous face and asked to guess who 
this person was; after answering, the next page revealed the correct answer, and participants 
were asked to indicate whether they were familiar with the person. Examples: a) Rowan 
Atkinson, or Mr. Bean, b) Jennifer Aniston, or Rachel c) Bill Clinton, past U.S. president. C) 
Computerized Benton Facial Recognition Test: Participants were shown a target face at the 
top of the screen, and six faces at the bottom in two rows, from which participants were asked 
to click on the face(s) that belonged to the same person (of the target face). Examples: a) pick 
one out of six: one identical face of the sample person among the six options; b) pick three 
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out of six: three different-angled faces of the same person among the six options; c) pick 
three out of six: three faces of the same person in different lightings among the six options     
  

 The test consists of two sections, with the first section (6 trials) asking participant to 

select one out of the six faces that matches the target face (the rest of the faces had a small 

change in size or contrast from the target face). The second section (16 trials) asks 

participants to pick three out of the six options that matches the target face. In this section, 

the six faces had either lighting/illumination changes or head-orientation/view-point changes. 

The stimuli are displayed until the participant completes their response choices. Scoring was 

calculated by receiving either a 1 or a 0 for the first 6 trials and a score of 3, 2, 1, or 0 on the 

remaining trials based on how many faces were correctly identified as the target. The RTs 

during the second section (select three out of six) were expected to be drastically longer than 

RTs during the first section (select one out of six), so the total RT of all 22 trials was used 

instead of taking an average, similar to Rossion and Michel (2018). Note that, like Rossion 

and Michel (2018), we did not analyze RTs of only the correctly answered trials for two 

reasons: 1) During the second section, participants often take longer to make their first 

response than their second and third choices and because 2) Choices within a single trial are 

not independent from one another. 

 For the BFRT-c accuracy, we used the total score out of 54 items. BFRT-c RT was 

the total RT (6 one-response trials + 16 three-response trials) across trials. The log 

transformed RT was taken for the current Benton RT data (n=98) to meet the normality 

assumption. All statistical analyses regarding Benton RT were conducted on the natural log 

transformed RT, except for when explicitly stated.  

Statistical Methods  

 To better represent an individual subject’s overall face recognition ability, in addition 

to examining the CFMT and FFMT individually, we also calculated a composite 
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CFMT/FFMT score by averaging the z-scores of CFMT and FFMT. The z-scores for the 

CFMT and the FFMT were calculated using the mean (M) and standard deviation (SD) of the 

current study’s control group. These three scores (CFMT, FFMT, Composite) served as our 

dependent measures to represent individual subject’s face processing ability.  

 To examine whether the BFRT-c RT can reflect individual differences in face 

processing ability, we first used linear regressions to predict how BFRT-c accuracy and RT 

relate to face recognition performance measured by CFMT, FFMT, and the composite within 

the normal population. We report standardized beta coefficients. To examine whether BFRT-

c RT contributes to differentiating DPs from controls, we first conducted independent 

samples t-tests between the two groups’ BFRT-c accuracy and RTs. Next, we used logistic 

regression to assess whether BFRT-c accuracy and RT predict unique variance in DP 

diagnosis, or the likelihood that the participants will be categorized as a DP vs. control. 

McFadden’s pseudo r-squared measures are reported for logistic regressions. We also report 

the difference in adjusted R2 between models that include accuracy and another predictor 

(e.g., RT) and models that include accuracy as the only predictor. 

 After finding that RT did not explain unique variance in face recognition ability or DP 

vs. control group membership, we performed additional follow up tests to determine if 

combination scores of BFRT-c accuracy and RT could perform better than accuracy alone. 

Previously, studies have used inverse efficiency scores (IES, RT/accuracy) to examine if RTs 

can help explain unique or additional variance in DP vs. control performance (e.g., Rivolta et 

al., 2017), although other studies have suggested that IES should only be used under specific 

scenarios (e.g., when accuracy is very high, >.90, Bruyer & Brysbaert, 2011; 

Vandierendonck, 2017, 2018). Given this, we also include the Balanced Integrated Score 

(BIS), calculated using subtraction between the z-transformed values of RT and Accuracy 

(Liesefeld & Janczyk, 2019; Liesefeld et al., 2015). 

-c 
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Sample Size Justification 

 Our sample size was guided by previous studies comparing DPs and controls 

(Behrmann et al., 2005; Duchaine & Nakayama, 2005) as well as individual differences 

studies (Richler et al., 2011; DeGutis et al., 2013; Konar et al., 2010). Behrmann et al. (2005) 

found significant differences between the affected group (DPs and APs) and controls in face 

matching when using a sample of 10 in-lab controls, 5 DPs, and 3 APs, while Duchaine and 

Nakayama (2005) found significant DP and control differences in face recognition in a 

sample of 17 in-lab controls and 7 DPs. We included additional DPs in the current study to 

substantially increase our power to find group-level differences, since DP has shown to be 

such a heterogeneous group (Corrow et al., 2016). To test for individual differences 

associations with face recognition in controls, we used a similar-sized sample to studies that 

have found significant individual differences correlations with face recognition ability (N=38, 

Richler et al., 2011; N=43, DeGutis et al., 2013; N=48/N=77, Konar et al., 2010). Our sample 

size of 62 controls and 36 DPs, with alpha=.05 and power=.80, provided sensitivity to detect 

a medium between-groups effect size (Cohen's d=.52). Further, setting alpha=.05 and 

power=.80, 62 controls provided sensitivity to detect a small-to-moderate associations 

(Pearson's r=.25). 

Results 

Demographics and Diagnostic Test Performance   

 Participants included 36 DPs (29 female) with a mean age of 38.8 years (SD = 14.5), 

and 62 controls (37 female) with a mean age of 37.7 years (SD = 14.1). There were no 

significant differences between the two groups in age (p = .73), but there was a trend towards 

more females in the DP group (p = 0.06, χ2 Yates = 3.62). As expected, compared to controls, 
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DPs performed significantly worse on the CFMT and FFMT and had more self-reported face 

recognition difficulties on the PI-20 (all p's < .001, see Table 1).  

 

Table 1  

Individual DP Scores and Mean of DP and Control Group Scores (±SD): Demographics, 

Self-Reported Face Recognition Abilities, Objective Face Recognition, and Face Matching 

Performance. 

 

DP -c 
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Note: DP-developmental prosopagnosic; PI-20-Prosopagnosia Index-20; FFMT-Famous Face 
Memory Test; CFMT-Cambridge Face Memory Test; BFRT-c-Computerized Benton Facial 
Recognition Test; RT-Response time (total completion time); LogeRT-Natural log of 
response time (total completion time)  
 

 Our control group mean BFRT-c score (M = 45.55, SD = 3.66) was similar to, though 

numerically higher than, previously reported normative data (N= 307, M = 44.81, SD = 3.44; 

Rossion & Michel, 2018), though the BFRT-c total RT was longer for our controls (M = 

241.03 s, SD = 127.67 s) than the normative sample from Rossion and Michel (2018, N= 307, 

M = 180.85 s, SD = 59.87 s). This is likely because the age of the current control sample (age 

M = 37.73 years, range = 18–70 years, with 75% of participants above 26 years old) was 

significantly older than the normative data (age M = 22.62 years, range = 18–39 years, with 

5% of participants above 26 years old) and age has been shown to be consistently related to 

face processing RT (e.g., Hildebrandt et al., 2013). Importantly, all the following key 

analyses of BFRT-c RT held up after controlling for age (see supplementary materials).   

One of our control participants had particularly long RTs on the BFRT-c compared to 

the rest of the group, but their RT across the trials within the same section was evenly spread 

(i.e., no trial outliers), and their accuracy was 1.2 SD above the mean of our control group, 

suggesting that they had been focusing on accuracy and their data is valid. We therefore did 

not exclude any data points from the current analysis and took the natural log of BFRT-c RT 

to meet the normality assumption (see Figure 2). All statistical analyses regarding RT were 

performed with the natural log of BFRT-c RT except when explicitly noted.  
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Figure 2. Computerized Benton Facial Recognition Test (BFRT-c) reaction time (RT, total 
completion time) distribution in the control group. A) Histogram of raw BFRT-c total RT, B) 
Histogram of natural log off the raw total RT. 
 

Reliability and Association Between BFRT-c Accuracy and RT  

 We also examined the reliability of the BFRT-c measures using the same method as 

Rossion and Michel (2018), by measuring the correlation between performance on even items 

and odd items in the second section (pick three out of six) of the test. For BFRT-c accuracy, 

the interitem correlation was significant in both the control and DP groups (control: mean 

score even items = 19.74/24, SD = 1.99, mean score odd items = 19.85/24, SD = 2.09; p < 

.001; rSB [Spearman-Brown corrected] = .63; DP: mean score even items = 17.33/24, SD = 

1.90, mean score odd items = 16.72/24, SD = 2.50; p = .016; rSB = .57). For BFRT-c RT, the 

interitem correlation was also significant, and higher, in both groups (control: mean RT even 

items = 12.55 s, SD = 7.75 s, mean RT odd items = 14.72 s, SD = 8.58 s; p < .001; rSB = .97; 

DP: mean RT even items = 13.08 s, SD = 4.46 s, mean RT odd items = 14.37 s, SD = 5.19 s; 

p < .001; rSB = .95). Note that raw RTs were used in these analyses. 

 Notably, we did not find any significant associations between BFRT-c accuracy and 

total RT in the control group (accuracy vs. RT r = .07, p = .59), DP group (accuracy vs. RT r 

= .03, p = .86), or for the combined Control and DP group (accuracy vs. RT r = -.04, p=.70). 

This suggests that there was not a significant speed-accuracy tradeoff on the task. 

A) Histogram of Raw BFRT-c Total RT B) Histogram of Natural log of BFRT-c Total RT 

(seconds) 
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BFRT-c Accuracy and RT Predicting Individual Differences in Face Recognition 

Ability 

 We first sought to determine if BFRT-c accuracy and RT were associated with 

individual differences in objective face recognition ability in the control group, and whether 

RT predicted face recognition ability above and beyond accuracy. This is critical in 

determining whether RT carries unique information from accuracy, as researchers have 

suggested (Rossion & Michel, 2018). As can be seen in Figure 3, in terms of zero-order 

correlations, BFRT-c accuracy was significantly associated with the CFMT (r = .49, p < 

.001), FFMT (r = .43, p < .001), and the composite score of these two measures (r = .54, p < 

.001). However, the BFRT-c RT was not significantly related to CFMT (r = -.13, p = .316), 

FFMT (r = .02, p = .889), or the face recognition composite score (r = -.05, p = .674).  

 

 
(% correct) (total score) (z-score) 
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Figure 3. Associations between Computerized Benton Facial Recognition Test (BFRT-c) 
accuracy and RT vs. face recognition measures in the control group: A) Scatterplots for 
BFRT-c total score (accuracy) vs. Famous Faces Memory Test (FFMT)/Cambridge Face 
Memory Test (CFMT)/Composite of CFMT and FFMT ; B) Scatterplots for BFRT-c RT vs. 
FFMT/CFMT/Composite. BF= Bayes Factor, r = Pearson correlation. 
 

 Given that we found no significant associations between RT and any of the face 

processing dependent measures, to reduce the chance of falsely accepting the null (Type II 

error, i.e., that there was no relationship between RT and each of the dependent measure), we 

further computed Bayesian statistics in JASP (JASP-Team, 2018). Bayes factors showed 

moderate evidence in support of the null, i.e., that there was no relationship between the 

BFRT-c RT and the CFMT (BF01= 6.25, i.e., moderate evidence for H0), the FFMT (BF01= 

3.83, i.e., moderate evidence for H0), or the Composite (BF01= 5.79, i.e., moderate evidence 

for H0).  

 When including both BFRT-c accuracy and RT as predictors of face recognition 

scores in a multiple regression, only accuracy was a significant predictor of CFMT (βacc = 

.49, t = 4.36, p < .001; βRT = -.13, t = -1.17, p = .248; F (2, 59) = 10.17, R2acc+RT = .26, 

R2acc+RT, adjusted = .23; ΔR2 = R2acc+RT - R2acc = .02), FFMT (βacc = .43, t = 3.64, p < .001; βRT = -

0.01, t = -.09, p = .928; F (2, 59) = 6.65, R2acc+RT = .18, R2acc+RT, adjusted = .16; ΔR2 = .00), and 

the composite score (βacc = .55, t = 5.01, p < .001; βRT = -.09, t = -.83, p = .408; F (2, 59) = 

12.67, R2acc+RT = .30, R2acc+RT, adjusted = .28; ΔR2 = .01). As shown by the change in R2, 

compared to the models with only BFRT-c accuracy as a predictor, including BFRT-c RT in 

the model did not improve the models by a noticeable amount.  

 

Comparing BFRT-c Accuracy and RT Between DPs and Controls 

 We next sought to determine whether RT would differentiate between membership in 

the DP (N=36) vs. control (N=62) groups and, importantly, whether RT would help 
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discriminate between DPs and controls above and beyond accuracy, as suggested by Rossion 

and Michel (2018). As can be seen in Figure 4, we found that the DP group performed much 

worse than the control group on the CFMT (t(96) = 12.8, p < .001, Mean difference, MD = 

0.44, Cohen’s d = 2.69), FFMT (t(96 = 14.7, p < .001, MD = 20.10, Cohen’s d = 3.08), and the 

composite of these measures (t(96) = 16.8, p < .001, MD = 2.55, Cohen’s d = 3.52). While 

DPs also showed drastically reduced scores on the BFRT-c (t(96) = 7.4, p < .001, MD = 5.74, 

Cohen’s d = 1.54), the natural log of BFRT-c RT exhibited no significant difference between 

DPs and the controls (t(96) = 1.3, p = .190, MD = .10, Cohen’s d = 0.276).  

 

 

Figure 4. Control and developmental prosopagnosic z-scores (computed from the mean and 
standard deviation of the current control group) for the Computerized Benton Facial 
Recognition Test (BFRT-c) accuracy, BFRT-c RT, Cambridge Face Memory Test (CFMT), 
Famous Faces Memory Test (FFMT), and CFMT/FFMT Composite. The error bars represent 
the standard error of the mean. *** indicates that the difference is significant at p<.001 
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 Though we did not find a significant DP vs. control BFRT-c RT difference, we did 

find that DPs were numerically slower. To reduce the chance of falsely accepting the null, we 

further employed the Bayesian independent samples t-test using JASP for the BFRT-c RT. 

The Bayes Factor showed anecdotal evidence in support of the null (BF01 = 2.13), i.e., that 

there was no difference between the two groups in their BFRT response time.  

 The binary logistic regression models predicting DP vs. control group membership 

showed that BFRT-c accuracy was a significant predictor (p < .001, pR2 = .32, AIC = 91.44), 

while BFRT-c RT did not predict categorization as a DP/control (p = .193, pR2 = .01, AIC = 

131.14). When including both BFRT-c accuracy and RT as predictors in the model, BFRT-c 

accuracy, but not RT, significantly predicted DP diagnosis (accuracy: p < .001, RT: p = .099; 

pR2 = .34, AIC = 90.69; ΔpR2 = pR2acc+RT - pR2acc = .02). As shown by the change in 

McFadden’s pseudo-R2 and in the AIC for model fit, compared to the logistic model that had 

BFRT-c accuracy as the only predictor, adding in the BFRT-c RT did not improve the model 

by a noticeable amount. 

Alternative Methods of Examining Response Time 

 To further confirm the robustness of our finding of BFRT-c RT not explaining unique 

variance in individual differences in face recognition ability or DP vs. control group 

membership, we considered the BFRT-c RT data using several alternative methods. These 

included statistical tests on the raw, non-transformed RTs as well as removal of the RT 

outlier (one data point from the control group > 3SD across both groups). In addition, to test 

whether combined measures of accuracy and RT performed better than accuracy alone, we 

also examined the inverse efficiency and balanced integration scores. More details on these 

results can be found in the supplementary materials.  

 In brief, when analyzing the raw RTs as well as excluding the one outlier from the 

control group, we found highly similar results, where BFRT-c RT did not predict face 
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recognition ability above and beyond accuracy (e.g., raw RTs: CFMT ΔR2 < .001/FFMT ΔR2 

= .004, p's  > .580; outlier exclusion: CFMT ΔR2 < .045/FFMT ΔR2 = .002, p's >.066). When 

combining BFRT-c RT and accuracy into either the inverse efficiency score (IES) or 

balanced integration score (IES), we found that these combined measures did significantly 

predict face recognition ability (e.g., IES: CFMT r = -.47/FFMT r = -.33, p's < .009; BIS: 

CFMT r = .44/FFMT r = .30, p's < .018). However, neither measure explained unique 

variance beyond accuracy alone (IES: CFMT ΔR2 = .02/FFMT ΔR2 < .001, p's  > .20; BIS: 

ΔR2 = .02/FFMT ΔR2 < .001, p's  > .25). 

Discussion 

 Despite the rising interest in using RT to examine individual differences in face 

processing ability and as a diagnostic measure for face and object recognition deficits, the 

evidence for the validity of using RT in this manner is surprisingly limited. In the current 

study, we examined the associations between face recognition ability with accuracy and RT 

from the BFRT-c, a widely used face-matching test that has been modified to create more 

meaningful RT data. In contrast to suggestions by the developers of this speeded, 

computerized version (Rossion & Michel, 2018), the current study showed no evidence that 

RT on the BFRT-c provides unique information about individual differences in face 

recognition ability above and beyond accuracy on the CFMT, FFMT, or a composite of these 

measures. The current study also found that BFRT-c RT did not provide any additional 

information beyond accuracy in diagnosing prosopagnosia, nor did the inverse efficiency or 

balanced integration scores (see supplementary materials), which have been recommended as 

an approach to incorporating RT and accuracy (e.g., Geskin & Behrmann, 2018). These 

results suggest that BFRT-c RT may not be a valid measure of face recognition ability and 

emphasize the importance of validating RT measures before using them to assess individual 

differences in face and object recognition abilities.  
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 The current findings extend Meyer et al.'s (2021) model suggesting that RTs from 

easy face tasks (90% or greater accuracy) and accuracy from more difficult face tasks (75% 

or lower accuracy) are most predictive of face-specific recognition abilities. In the BFRT-c, 

which has an intermediate level of difficulty (M=84% for controls in the current study; 

M=83% for controls in Rossion et al., 2018), we found that accuracy significantly and 

robustly predicted individual differences in face recognition (r=.54) whereas RTs did not 

show any appreciable association with face recognition (r=-.06). This suggests that accuracy 

can be an excellent predictor of face recognition abilities in a medium-level difficulty task 

and further, that RTs may only be informative of face recognition abilities when accuracy is 

above 90%. In other words, RTs from tasks with accuracy below ceiling performance may 

not be particularly useful for characterizing individual differences in face recognition 

abilities.  

 The current findings suggest that recent results using RT as an indicator of face and 

object recognition abilities may need to be re-interpreted or at least may require additional 

validation (e.g., Geskin & Behrmann, 2018, Dzhelyova et al., 2020). For example, Dzhelyova 

et al. (2020) observed a significant association between BFRT-c RT (but not accuracy) and 

EEG fast periodic visual stimulation identity responses from occipito-temporal regions. The 

current results suggest that this association may not necessarily reflect individual differences 

in face recognition ability, but alternatively may reflect more general speed of visual 

processing abilities (Wilhelm et al., 2010). Further, Geskin and Behrmann (2018) found that 

when examining RT and accuracy measures in object recognition tasks, 66.8% of DPs had 

object recognition deficits on accuracy or RT (z-score < -2). This is much higher than the 

object deficit rate of 22% when only considering accuracy alone (z-score < -2). Notably, 

nearly all of the tasks included in Geskin and Behrmann's meta-analysis were designed to 

focus on accuracy rather than RT (e.g., accuracy was well below ceiling). The current results 
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emphasize the importance of evaluating each measure for whether RT can explain unique 

variance in face/object processing and further caution that it should not be assumed that RT 

will also provide unique information, even in tasks that are designed to produce meaningful 

RT data such as the BFRT-c.  

Why did RT in the BFRT-c tell us so little about face recognition ability, while 

BFRT-c accuracy told us so much? It may be that instructing participants to “Try to respond 

as quickly and accurately as possible” paradoxically made the task more sensitive to 

accuracy and minimized RT differences in comparison to the traditional BFRT, which 

includes no speed-related instructions. Under the traditional BFRT instructions, it could be 

that to be as accurate as possible, participants would spend as much time as they needed to 

achieve high accuracy or high levels of confidence. This may have led to more ceiling-like 

effects on accuracy across the participants, which would make it less able to capture 

individual differences or prosopagnosia-related face matching deficits (see Duchaine & 

Nakayama, 2004). However, RT from the traditional BFRT (without speeded instructions) 

may be more meaningful than the current BFRT-c with speeded instructions, which could be 

empirically tested in future studies. With the instruction of speed as well as accuracy in the 

current BFRT-c, this may have acted as a motivational factor for the participants that 

minimized the differences in RT while improving accuracy in its effectiveness to reflect 

individual differences in facial processing ability. In support of this, the traditional BFRT has 

demonstrated higher average accuracies (Albonico et al., 2017; Wang et al., 2020) than the 

BFRT-c. Importantly, the BFRT-c accuracy did a substantially better job at distinguishing 

between DPs and controls in the current experiment than the traditional BFRT (Duchaine & 

Nakayama, 2004; see Mishra et al., 2021). 

The current BFRT-c RT findings raise the question of under what circumstances 

should RT be used as a measure of face and object processing abilities. One reason why the 
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BFRT-c RT may not have explained face recognition performance is because the task is not 

optimized for collecting meaningful RT data, having too low of accuracy (Meyer et al., 2021) 

and an inability to analyze correct RTs only. To make RTs more meaningful it may be 

helpful for future studies to use data-limited tasks where a face is shown for a brief duration 

(e.g., Barragan-Jason et al., 2015). Alternatively, to better get at face-related speed of 

processing one could perform staircase thresholding procedures (e.g., Xu & Biederman, 

2014), such as having faces be displayed for briefer durations as accurate responses are made. 

It would also be useful for future studies to perform drift diffusion analysis of face processing 

task RTs, as this has shown to reveal face-specific RT effects (e.g., Meyer et al., 2019), 

though this is often at the expense of requiring participants to perform many trials. 

Additionally, several studies from Wilhelm and colleagues (e.g., Wilhelm et al., 2010; 

Hildebrandt et al., 2013) have taken the approach of examining RT measures using a much 

easier set of face tasks with very high accuracy and separately assessing face accuracy with a 

harder set of perception and memory tasks. Having separate tasks may be necessary to isolate 

RT effects because tasks where accuracy is well-below ceiling (< 90%) may suffer from 

differential speed-accuracy tradeoffs across participants, limiting the usefulness of RT 

measures (see Draheim et al., 2019).  

While integrative measures of RT and accuracy, such as IES and BIS, may be useful 

and can sometimes account for speed-accuracy interactions, in the current study these 

measures did not provide any additional information beyond accuracy in predicting 

prosopagnosia group membership or individual differences in face recognition in the control 

group. This may be due to methodological concerns with these measures. IES may only be 

appropriate when accuracy is very high (> 90%) and there is evidence of a speed-accuracy 

tradeoff (Bruyer & Brysbaert, 2011; Vandierendonck, 2017, 2018). Unfortunately, the current 

study met neither of these requirements. IES and BIS may have been uninformative in the 
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current study because BFRT-c RT and accuracy could reflect distinct cognitive mechanisms 

in the task (see more on this below), in which case integrating accuracy and RT in these 

measures may not be valid (Liesefeld & Janczyk, 2019). Further, IES and BIS are both 

derived measures and may have lower reliability and questionable utility in individual 

differences contexts (Draheim et al., 2019).  

Even if a face processing task was constructed to more ideally measure RT, another 

reason why RT may not robustly relate to face recognition ability is that face accuracy and 

RT may reflect separate mechanisms and the current definitions of face recognition ability 

and DP group membership are based on accuracy measures (Corrow et al., 2016; Rezlescu et 

al., 2017; DeGutis et al., 2013). In particular, studies using structural equation modeling have 

shown that face RT and accuracy load on separate, largely independent factors (Wilhelm et 

al., 2010; Hildebrandt et al., 2013; Meyer et al., 2019), with face accuracy more consistently 

demonstrating face-specific loadings and RT often showing more general visual object 

processing loadings (though see Ćepulić et al., 2018 for an exception). This begs the question 

of whether face task RTs should be used as a measure of individual differences in face 

recognition ability and DP group membership. Face task RTs often provide independent 

information from accuracy (as in the current study as well as Dzhelyova et al., 2020), but it 

remains unclear if this extra information can be relevant to individual differences in face 

recognition. Recent work by Arizpe et al. (2018) found that overall CFMT accuracy and RTs 

during the 18 trials of the introduction stage of the CFMT (where accuracy is close to ceiling) 

explained unique variance in FFMT accuracy, though RTs explained < 5% of additional 

variance in FFMT. There have also been a limited number of studies that have shown RT 

differences between DPs and controls on face tasks with appropriately high accuracy (e.g., 

face detection, Garrido et al., 2008), though these effect sizes have often been much smaller 

than with accuracy-based tasks (e.g., Mishra et al., 2021). Thus, an important area of future 
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research will be to determine whether face RT tasks can reflect meaningful aspects of 

individual differences in face and object recognition abilities.  

Though the current results provide convincing converging evidence that BRFT-c RT 

does not reflect face recognition abilities, there are some limitations. First, though the DP 

group was relatively sizable, the healthy control group could have been larger, and it would 

be good to replicate the current results in a larger sample of controls. Additionally, even 

though the current study suggests that BFRT-c RT is not explaining additional variance in 

face recognition, it does not mean that all face task RTs are completely uninformative. It is 

important for future studies to carefully examine face processing task RTs for potential 

outliers (e.g., similar to Dzhelyova et al., 2020) as well as potential speed/accuracy tradeoffs 

to better interpret the accuracy results. Finally, the current study evaluated one face task 

predicting face recognition ability and it would be important for future studies to examine 

additional face tasks along with analogous object tasks to further examine whether 

relationships reflect face-specific mechanisms. That being said, RTs from single face 

processing tasks have been shown to reflect face-specific mechanisms more than batteries of 

face tasks (Meyer et al., 2021), and for the current study it would be unlikely that adding an 

analogous object matching task to the analyses would reveal significant RT/face recognition 

associations.  

In sum, the current results demonstrate that though the BFRT-c was modified from 

the original version to produce a meaningful RT measure, that BFRT-c RT failed to predict 

individual differences in face recognition ability or DP vs. control group membership. These 

results are relevant to researchers using RTs to assess visual recognition abilities and 

highlight the importance of testing the validity of RTs before using them as outcome 

measures. 
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Supplementary Materials 

Results 

Associations between Face Recognition and BFRT-c RT/Accuracy when Controlling for 

Age 

 When including age as a predictor of face recognition scores in a multiple regression 

in addition to accuracy and RT of BFRT-c, only accuracy was a significant predictor of 

CFMT (βacc = .43, t = 3.66, p < .001; βRT = -.11, t = -.94, p = .35; βage = -.21, t = -1.75, p = 

.086; F (3, 57) = 8.04; R2 = .26) and FFMT (βacc = .33, t = 2.82, p = .0065; βRT = .034, t = .30, 

p = .77; βage = -.31, t = -2.56, p = .013; F (3, 58) = 7.03; R2 = .23), while accuracy and age 

were significant predictors of the composite score (βacc = .45, t = 4.165, p < .001; βRT = -.047, 

t = -.45, p = .66; βage = -.31, t = -2.75, p = .0079; F (3, 58) = 11.92; R2 = .35). The binary 

logistic regression models predicting DP vs. control group membership with age included as 

a predictor showed that BFRT-c accuracy, but not RT or age, significantly predicted DP 

diagnosis (accuracy: p < .001, RT: p = .032, age: p = .066; pR2 = .37, AIC = 88.92). Overall, 

controlling for age did not affect the finding that BFRT-c accuracy, but not RT predicted face 

recognition ability and DP diagnosis.  

 

Examining BFRT-c Raw RT and RT with Outlier Removed 

Since previous face recognition studies have only used the raw RT of the 

computerized Benton test, we performed the same set of analysis with the untransformed raw 

RT data. In the main body of the paper, we took the natural log of Benton RT to better 

approximate a normal distribution. Results in the control group showed that while BFRT-c 

accuracy significantly predicted each of the dependent measure (all ps < .001 as reported in 

the main body of the results section), raw Benton RT was not significantly associated with 
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CFMT (r = -.03, p = .825), FFMT (r = .05, p = .655), or the composite CFMT-FFMT scores 

(r = .02, p = .863). Neither did the raw RT explain additive variance beyond accuracy for 

CFMT (p = .580, ΔR2 < .001), FFMT (p = .907, ΔR2 = .004), or the composite score (p = 

.761, ΔR2 = .001). To examine whether raw RT can differentiate DPs from the controls, we 

examined whether raw BFRT-c RT predicted DP/control group membership and examined 

whether it explained additive variance beyond accuracy in logistic regressions. Results 

showed that while accuracy was a significant predictor (p < .001 as reported in the main body 

of the paper) for DP diagnosis, raw BFRT response time was not a significant predictor (p = 

.505, pR2 = .003). Neither did RT explain unique variance beyond BFRT accuracy (p = .194, 

ΔpR2 = .011).  

In the current Benton RT data, one data point from the control group exceeded 3 

standard deviations above the mean of the entire sample (i.e., combined DPs and the controls, 

n=98). We here provide the same set of analysis reported in the main body of the manuscript 

with the outlier removed RT data (natural log applied to meet normality). In the main body of 

the paper, we did not exclude any data based on the RT, because 1) RT was what we were 

aiming to validate, so exclusion criteria should not be based on this measure (exclusion is 

best based on the robustly validated measures); 2) excluding the outlier from only one group 

can artificially push the result towards one direction, and we did not want to bias our results; 

and 3) we examined the trials within that participant and verified that the subject was fully 

focused on the test, so this should be a valid data point. When examining BFRT-c RT with 

the outlier excluded, we found that while accuracy was significantly associated with each 

dependent measure (all ps < .001 as reported in the main body of the results section), Benton 

RT was only significantly associated with CFMT (r = -.26, p = .049), but not FFMT (r = -.05, 

p = .729), or the composite score (r = -.16, p = .215). Neither did the RT explain additive 

variance beyond accuracy for CFMT (p = .066, ΔR2 < .045), FFMT (p = .742, ΔR2 = .002), 
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or the composite score (p = .166, ΔR2 = .024). We next examined whether BFRT-c RT with 

the outlier excluded can differentiate DPs from the controls. Results showed that while 

accuracy was a significant predictor (p < .001 as reported in the main body of the paper) of 

DP vs. control group membership, BFRT-c RT was not a significant predictor (p = .077, pR2 

= .032). Neither did RT explain unique variance beyond BFRT accuracy (p = .088, ΔpR2 = 

.024).  

 

Examining Combinations of BFRT-c Accuracy and RT: Inverse Efficiency and 

Balanced Integration Scores 

When calculating the inverse efficiency score (IES, log transformed RT/Accuracy), 

we found that IES did significantly predict DP vs. control group membership (p < .001, pR2 = 

.302, AIC = 121.75, see Supplementary Figure S1), but adding accuracy scores in the model 

resulted in accuracy being the only significant predictor (accuracy: p = .0310, IES: p = .0984; 

pR2 = .343, AIC = 90.623; ΔpR2 = .02). Further, as can be seen in Supplementary Figure S2, 

IES was significantly correlated with FFMT (r = -.33, p = .009), CFMT (r = -.47, p < .001), 

and the composite of these measures (r = -.47, p < .001). However, when including both 

BFRT-c IES and accuracy as predictors of face recognition scores in a multiple regression, 

only accuracy was a significant predictor of CFMT (βacc = .32, t = 1.895, p = .063; βIES = -.22, 

t = -1.30, p = .198; F (2, 59) = 10.39, R2acc+IES = .26, R2acc+IES, adjusted = .24; ΔR2 = .02), FFMT 

(βacc = .41, t = 2.34, p = .0225; βIES = -.03, t = -.18, p = .861; F (2, 59) = 6.67, R2acc+IES = .18, 

R2acc+IES, adjusted = .16; ΔR2 = .00), and the composite score (βacc = .43, t = 2.66, p = .010; βIES = 

-.16, t = -.971, p = .335; F (2, 59) = 12.85, R2acc+IES = .30, R2acc+IES, adjusted = .28; ΔR2 = .01). 

As shown by the change in R2, compared to the model with only BFRT-c accuracy as a 

predictor, including BFRT-c RT in the model did not improve the model by a noticeable 

amount, if at all. 
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Supplementary Figure S1. Z-scores (computed from the mean and standard deviation of our 
control group) for developmental prosopagnosic and control groups on the BFRT-c accuracy, 
BFRT-c RT, BFRT-c IES, and BFRT-c BIS.  The error bars represent the standard error of 
the mean. *** indicates that the difference is significant at p<.001 
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Supplementary Figure S2. Associations between face recognition measures and BFRT-c 
accuracy, IES, and BIS within the control group. A) Scatterplots for BFRT-c score/accuracy 
against FFMT/CFMT/Composite; B) Scatterplots for BFRT IES against 
FFMT/CFMT/Composite; C) Scatterplots for BFRT BIS against FFMT/CFMT/Composite. 

 

We next examined the balanced integration score (BIS), calculating RT and accuracy 

z scores for all subjects using the Mean and SD of the control group. As shown in 

Supplementary Figure S1 and S2, the BIS (p < .001; pR2 = .276, AIC = 97.254) on its own 

did predict DP vs. control group membership in logistic regressions and was significantly 

correlated with FFMT (r = .30, p = .018), CFMT (r = .44, p < .001), and the composite of 

these measures (r = .44, p < .001). But when accuracy was modeled along with BIS, only 
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accuracy was significant in predicting DP group membership (accuracy: p = .00737, BIS: p = 

.0987; pR2 = .343, AIC = 90.689; ΔpR2 = .02). Similarly, only accuracy was a significant 

predictor of CFMT (βacc = .36, t = 2.274, p = .0267, βBIS = .19, t = 1.167, p = .2481; F (2, 59) 

= 10.17, R2acc+BIS = .26, R2acc+BIS, adjusted = .23; ΔR2 = .02), FFMT (βacc = .42, t = 2.601, p = 

.0117; βBIS = .015, t = .090, p = .928; F (2, 59) = 6.651, R2acc+BIS = .18, R2acc+BIS, adjusted = .16; 

ΔR2 = .00), and the composite score (βacc = .46, t = 3.056, p = .00336; βBIS = .12, t = .834, p = 

.408; F (2, 59) = 12.67, R2acc+BIS = .30, R2acc+BIS, adjusted = .28; ΔR2 = .01).  

Together, these results suggest that, compared to accuracy alone, integrating RT and 

accuracy using either IES or BIS does not explain additional variance in DP vs. control 

diagnosis, nor does it explain additional variance in predicting face recognition scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


