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Abstract

Response times (RTs) are commonly used to assess cognitive abilities and have more
recently been employed to assess face recognition ability. However, it is unclear whether face
processing RTs predict recognition ability beyond accuracy. In the current study, we
examined accuracy and RT on a widely used face matching assessment modified to collect
meaningful RT data, the computerized Benton Facial Recognition Test (BFRT-c), and
measured whether RTs predicted face recognition ability and developmental prosopagnosia
(DP) vs. control group membership. 62 controls and 36 DPs performed the BFRT-c as well as
validated measures of face recognition ability: the Cambridge Face Memory Test (CFMT)
and a Famous Faces Memory Test (FFMT). We found little-to-no association between
BFRT-c accuracy and RT in both controls (r=.07, p=.59) and DPs (r=.03, p=.86). In controls,
BFRT-c accuracy robustly predicted CFMT performance (r=.49, p<.001), FFMT
performance (r=.43, p<.001), and a CFMT-FFMT composite (r=.54, p<.001), whereas BFRT-
¢ RT was not significantly associated with these measures (all r's<.16, p's>.21). We found
that BFRT-c accuracy significantly differed between DPs and controls, but RT failed to
differentiate the groups. Results in controls and DPs were unchanged after outlier removal.
Further, combined scores of BFRT-c accuracy and RT (inverse efficiency score and balanced
integration score) did not predict face recognition ability or DP vs. control group membership
better than accuracy alone. These results suggest that the BFRT-c RT is not useful for
characterizing individual differences in face recognition and, more generally, emphasizes the
importance of validating RT measures before using them as individual difference/diagnostic
measures.

Keywords: developmental prosopagnosia; face recognition; face perception; face matching;

response time; individual differences
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Not so fast! Response Times in the Computerized Benton Facial Recognition Test May
Not Reflect Face Recognition Ability
Studies have shown associations between faster response times (RT) and better

cognitive abilities across a variety of domains, including mathematical ability (e.g., Libertus
et al., 2013; Ratcliff, Thompson, & McKoon, 2015), general intelligence (IQ; e.g. Lewis et
al., 1968; Ratcliff, Schmiedek, & McKoon, 2008), numeracy tests (e.g., Gray & Reeve, 2016;
Ratcliff, Thompson, & McKoon, 2015), and others (e.g., Goldhammer, 2015; Kyllonen & Zu,
2016). In the past five years, there has been increasing interest in using RT to measure both
impairments (e.g., Geskin & Behrmann, 2018) and individual differences in face and object
processing ability (e.g., Rossion & Michel, 2018; Meyer et al., 2021). However, there are
drawbacks to using RTs such as potential speed-accuracy tradeoffs (for a review see Heitz et
al., 2014) and because of the process impurity of RT relative to accuracy measures (e.g.,
Miller & Ulrich, 2013; Wilhelm et al., 2010). Further, in nearly all cases in the domain of
face and object recognition, task RTs have not been validated as a measure of ability distinct
from accuracy. The goal of the current study was to examine the computerized Benton Facial
Recognition Test (BFRT-c), a version of a widely used diagnostic face matching task that
emphasizes both speed and accuracy (e.g., Mishra et al., 2021; Murray et al., 2021), and to
determine if RT on this task explains variance independent from accuracy in validated
measures of face recognition ability. We also sought to determine if BFRT-c RT
differentiates between controls and developmental prosopagnosics (DPs), individuals with

lifelong face recognition difficulties (Duchaine & Nakayama, 2004).

RTs have often been used to highlight face processing deficits in prosopagnosia. In an
earlier study of 5 DPs, 3 acquired prosopagnosics (APs), and 10 controls, Behrmann et al.
(2005) administered both face recognition and face matching tests. Notably, these tests were

given with unlimited stimulus presentation time and there were no explicit instructions to
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complete each trial as fast as possible. Results showed that, in addition to having impaired
accuracy on all three tests, APs and DPs were significantly slower than controls, taking on
average 1.5-2.5 times longer to respond. Duchaine and Nakayama (2005) similarly found that
7 DPs were both significantly less accurate and had significantly longer RTs than controls on
old/new face recognition tasks, even when instructing participants to respond as quickly as
possible. Duchaine and Weidenfeld (2003) suggested that, for face matching tasks, longer
RTs in prosopagnosics may be especially pronounced when a piecemeal approach to
matching is possible. Using a laborious feature-by-feature approach, DPs may be able to
perform better at face matching while sacrificing speed. Along similar lines, Rossion and
Michel (2018) suggested that prosopagnosics, by taking their time, can perform in the normal
range on the original non-speeded version of the BFRT, a widely used test of face matching
(Benton & Van Allen, 1968). Indeed, normal non-speeded BFRT performance was
demonstrated in 7 of 11 DPs by Duchaine and Nakayama (2004). With the goal of trying to
capture prosopagnosia-related slowing and using RT as a potential diagnostic criterion,
Rossion and Michel (2018) developed a computerized, speeded version of the BFRT (BFRT-
c), where subjects are instructed to respond as quickly and accurately as possible. They
recently published normative BFRT-c accuracy and RT! data (Rossion & Michel, 2018). A
recent study found that accuracy on this speeded version of the BFRT-c predicted DP group
membership better than other face matching tasks (Mishra et al., 2021). Further, Murray and
colleagues (2021) recently found that a computerized version of the BFRT with revised,
updated stimuli (BFRT-r) robustly differentiated DPs and controls. However, it remains to
be seen if BFRT-c or BFRT-r RT provides unique prosopagnosia diagnostic information

above and beyond accuracy and a goal of the current study is to assess this possibility.

! Rossion and Michel (2018) use the term “response time” to refer to the total completion time of the BFRT-c
and we use the same terminology for consistency. Note that this total completion time is perfectly correlated
with the more traditionally reported trial-averaged response time.
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Beyond using RT to capture face processing deficits, prosopagnosia researchers have
also used RT to try and determine the degree to which DPs' visual recognition deficits are
specific to faces (e.g., Geskin & Behrmann, 2018; Rivolta et al., 2017). In an influential and
highly debated meta-analysis, Geskin and Behrmann (2018) examined object recognition
performance in 716 DP cases using both accuracy and RT results from tasks that largely
emphasized accuracy rather than speed. They found that, of those studies that reported both
accuracy and RT measures, 66.8% (159/238) of DPs exhibited object recognition deficits
(either accuracy or RT z-scores < -2). However, the tasks examined were not optimized for
measuring RT (they were higher difficulty and/or did not emphasize RT) and none of these
studies validated RT as an independent measure of object recognition ability (i.e.,
demonstrated that RT explained unique variance in object recognition ability beyond
accuracy). When considering object recognition accuracy impairments alone (z < -2) and
excluding DPs with only an RT impairment, the number of DPs with object recognition
impairments decreases dramatically to 22.0% (101/459). This 3-fold increase in the estimated
prevalence of DP object recognition impairments when using RTs highlights the importance
of determining whether task RTs provide a valid measure to classify visual recognition

deficits.

In addition to discriminating between controls and prosopagnosics, RTs have also
been used to characterize individual differences in face processing within the normal range of
performance. For example, Wilhelm and colleagues (2010) administered a broad battery of
face perception and memory tasks to two groups of healthy controls (N=151 and N=209),
with some tasks focusing on accuracy and others emphasizing speed when accuracy was
close to ceiling, as well as measures of object processing and general intelligence. Using
structural equation modeling, they found that the best model included separate factors for

face perception and memory accuracy as well as a general visual speed of processing factor.
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In other words, they found that face perception accuracy reflected a face-specific ability, but
face perception RT reflected more general visual processing speed. A follow-up study
replicated these findings and, using drift diffusion modeling of RT from face processing
speed tasks (where accuracy was close to ceiling), found that only the 'cautiousness of
information processing', or where participants set their speed-accuracy tradeoff balance, was
specific to faces (Meyer et al., 2019). Additional studies from this group have found that
sometimes face processing task RTs reflect face-specific mechanisms (e.g., Cepulié et al.,
2018) and other times they do not (e.g., Hildebrandt et al., 2013; Rostami et al., 2017). In a
recent review, Meyer et al. (2021) suggests that the recruitment of face specific mechanisms
reflected in RT or accuracy depends on whether the face task is easy (=90% accuracy) vs.
difficult (£75%). According to this model, for easy tasks face specificity is found when
modeling RTs in a single face processing task but not when modeling RTs across multiple,
different easy tasks. In contrast, in difficult face tasks that focus on accuracy, face specificity
occurs in both single task approaches and task batteries. A goal of the current study is to test
whether RTs provide information about individual differences in face recognition beyond
accuracy in a face matching task that falls in between the easy and difficult cutoffs (BFRT-c

control accuracy=83%, Rossion et al., 2018).

In addition to behavioral studies of RT, a recent electroencephalography study of
individual differences in face processing also highlights that face task RT and accuracy may
reflect different mechanisms (Dzhelyova et al., 2020). Dzhelyova and colleagues showed that
a fast-periodic visual stimulation measure of face individuation (rare novel faces shown in a
stream of the same repeated face identity) recorded from occipitotemporal regions was
significantly correlated with BFRT-c RT, but not accuracy. This suggests that it is possible
that BFRT-c RT provides distinct information to index individual differences in face

recognition ability. Though this study and the studies by Wilhelm and colleagues (2010, and
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others, e.g., Cepulié et al. 2018) highlight that face processing speed and accuracy dissociate,
they did not directly test whether face processing speed can explain additional variance in
validated measures of face recognition ability. A study by Arizpe et al. (2018) found that RTs
during different stages of the Cambridge Face Memory Test (CFMT, Duchaine & Nakayama,
2006) did indeed explain unique variance in famous face recognition above and beyond
accuracy. However, the relationship observed was complex, with RT during the introduction
stage negatively correlated with face recognition ability and RT during the noise stage
positively correlated with face recognition ability. This, along with a recent review by Meyer
and colleagues (2021), suggests that the relationship between RT and face recognition ability

may be highly task dependent.

Together, the existing literature paints an inconsistent picture in which RT can at
times provide useful information about face recognition abilities and prosopagnosia and other
times it is unclear or possibly provides information redundant with accuracy. Beyond Arizpe
et al. (2018), no studies to our knowledge have demonstrated that RT explains unique
variance in face recognition ability above and beyond accuracy. While the BFRT-c is a
highly sensitive face matching task (Mishra et al., 2021; as is the BFRT-r with updated
stimuli, Murray et al., 2021) that was designed to produce RT data useful for characterizing
individual differences in face recognition, BFRT-c RTs have yet to be validated using
standard measures of face recognition. To address this issue, we administered the BFRT-c
and two face recognition measures, a Famous Face Memory Test (FFMT, Mishra et al.,
2019) and the Cambridge Face Memory Test (CFMT; Duchaine & Nakayama, 2006), often
thought of as the gold standard of individual differences in face recognition (Richler et al,
2015). Participants included 62 healthy controls and a relatively large group of 36 DPs.
Given the established relationship between face perception (indexed by BFRT-c) and face

recognition ability (indexed by CFMT and FFMT, e.g., Rezlescu et al., 2017; Schwartz &
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Yovel, 2016; Young et al., 2012), the CFMT and FFMT should serve as excellent measures
to validate BFRT-c RT. We examined whether BFRT-c accuracy and RT uniquely predicted
DP vs. control group membership as well as individual differences in face recognition
abilities in the normal population. Because BFRT-c RT may reflect independent mechanisms
from accuracy (Dzhelyova et al., 2020) and because RTs for single, easier face tasks may
reflect face-specific mechanisms (Meyer et al., 2021), we predicted that BFRT-¢ RT would
explain additional variance from accuracy in individual differences in face recognition ability

as well as DP vs. control group membership.

Methods

Participants

Our sample included 98 adults between the ages of 18 and 70 years old (62 Controls
and 36 DPs). Individuals with DP were recruited from four sources: a) Our database of DPs
who previously participated in laboratory studies, b) DPs referred to us from Dr. Matthew
Peterson, who recently completed a DP study (Peterson et al., 2019), c) Individuals referred
to our lab from Dr. Brad Duchaine’s website, www.faceblind.org, and d) Individuals
responding to our advertisement posted on public transportation. Control subjects were
recruited from the community primarily through flyers and through the Harvard Decision
Science Lab.

Before coming into the lab for testing, all participants underwent a pre-visit phone
screening to ensure they did not meet any of the following exclusionary criteria: a history of a
significant neurological disorder, lifetime moderate or severe traumatic brain injury (TBI) or
mild TBI in the last 6 months, musculoskeletal or sensory impairments that would interfere
with performing computer tasks, lack of English proficiency, current psychiatric disorders,

diagnosed social cognitive disorders such as autism, and current dependence on alcohol or
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other substances. Prior to data collection, consent was obtained for all participants according
to the Declaration of Helsinki. The study was approved by the Institutional Review Board.

DP and Control Screening

Developmental prosopagnosics were screened using the 20-Item Prosopagnosia Index
(PI-20; Shah, Gaule, Sowden, Bird, & Cook, 2015), Famous Faces Memory Test (FFMT),
and the CFMT (Duchaine & Nakayama, 2006b). To qualify as a DP, participants had to
report lifelong face recognition deficits (all but three scored > 65 on the PI-20, see Table 1),
present with objective face recognition deficits on both the CFMT and FFMT (z < -1.5, as
calculated from the control group in Duchaine et al., 2006b), and have an absence of
significant neurological disorders (similar to recent studies, e.g., Stumps et al., 2020; Berger
et al., 2022). All but one DP scored 44 or below (z-score < -2) on the original CFMT
(Duchaine & Nakayama, 2006), indicating severe objective face recognition deficits. We also
included one participant that we consider to be a mild DP who scored 46 on the CFMT, since
the rest of their profile was consistent with prosopagnosia (e.g., PI-20 = 93, famous faces
=.47). Removing this participant had no appreciable effects on any of the key analyses.
Typically developing controls did not report any face recognition deficits in everyday life and
all scored 45 or above on the CFMT. All participants had normal or corrected-to-normal
vision and scored within the normal range on the Leuven Perceptual Organization Screening
Test (L-POST; Torfs et al., 2014) to rule out lower-level visual causes of poor face
recognition.

Testing Procedure

The experiments were implemented in PsychoPy v1.85.4 and JavaScript (for CFMT)
and run on a laptop computer (34.5 x 19.5 cm display, 1920 x 1080 pixels, 60 Hz).
Participants were seated 60 cm from the computer screen and instructed to indicate their

responses using either a keyboard or a computer mouse. The study had three different face



RT AND FACE RECOGNITION ABILITY 10

recognition tests (Figure 1). Written and spoken instructions were provided. The order of the
computerized tests was a) CFMT b) FFMT c) BFRT-c.

We used original CFMT (Duchaine & Nakayama, 2006) and the total score as our
measure of interest. For a description of this task, please see Figure 1A. Famous face
recognition was assessed using a set of 20 well-known celebrities from testmybrain.org (see
Mishra et al, 2019). For each famous face presented at the center of the screen (see Figure
1B), participants were asked to make their best guess about the identity of the person by
typing in the box provided and click ‘submit’, or to select “I don’t know”. For example, if the
face shown was of Tom Cruise, and they could not remember the name but typed that he was
the “Top Gun actor” OR “actor Cruise”, they were scored as correct. After they entered a
response, the correct answer/name of the person was displayed on the screen and they were
prompted to click on either of the following: “I got it Right” (this was confirmed by the
experimenter); “I got it wrong and I am familiar with this person”; or “I got it wrong and I am
not familiar with this person”. If the participant did not enter a guess but left the answer field
blank and chose the option “I do not know," they were then provided with the answer on the
next screen and asked to choose from either “I am familiar with this person” OR “I am not
familiar with this person." We used the percent correct out of the total number of people that
participants reported being familiar with.

The computerized Benton Facial Recognition Test (BFRT-c) was adapted from
Rossion and Michael (2018). It was very similar to the original BFRT (Benton, 1994), except
that RTs were recorded and the original instructions were changed to emphasize speed along
with accuracy (see below for the on-screen instructions from the current study’s BFRT-c part

2).
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“You will see one face at the top of the screen that you will have to match to three faces
presented below. Click on the 3 matching faces. Try to respond as quickly and accurately
as possible.”

The test uses grayscale photographs of unfamiliar faces (3 x 3.5 cm) presented with little
visible hair and all external information cropped out. As shown in Figure 1C, each trial

presents a target face at the top of the screen with six faces listed at the bottom of the screen

1n two rows.

Figure 1. Example of Tasks and Stimuli. A) Cambridge Face Memory Test: a) During the
learning phase, participants were shown three different images of six individuals which they
were asked to memorize and b) were immediately tested on the identical image vs. foils. ¢)
Next, participants studied the six individuals again for 20 seconds and were tested on novel
images of the individuals vs. foils. d) Finally, participants studied the six individuals again
for 20 seconds and were tested on novel images with visual noise vs. foils with noise. B)
Famous Faces Memory Test: Participants were shown a famous face and asked to guess who
this person was; after answering, the next page revealed the correct answer, and participants
were asked to indicate whether they were familiar with the person. Examples: a) Rowan
Atkinson, or Mr. Bean, b) Jennifer Aniston, or Rachel c¢) Bill Clinton, past U.S. president. C)
Computerized Benton Facial Recognition Test: Participants were shown a target face at the
top of the screen, and six faces at the bottom in two rows, from which participants were asked
to click on the face(s) that belonged to the same person (of the target face). Examples: a) pick
one out of six: one identical face of the sample person among the six options; b) pick three



RT AND FACE RECOGNITION ABILITY 12

out of six: three different-angled faces of the same person among the six options; c) pick
three out of six: three faces of the same person in different lightings among the six options

The test consists of two sections, with the first section (6 trials) asking participant to
select one out of the six faces that matches the target face (the rest of the faces had a small
change in size or contrast from the target face). The second section (16 trials) asks
participants to pick three out of the six options that matches the target face. In this section,
the six faces had either lighting/illumination changes or head-orientation/view-point changes.
The stimuli are displayed until the participant completes their response choices. Scoring was
calculated by receiving either a 1 or a 0 for the first 6 trials and a score of 3, 2, 1, or 0 on the
remaining trials based on how many faces were correctly identified as the target. The RTs
during the second section (select three out of six) were expected to be drastically longer than
RTs during the first section (select one out of six), so the total RT of all 22 trials was used
instead of taking an average, similar to Rossion and Michel (2018). Note that, like Rossion
and Michel (2018), we did not analyze RTs of only the correctly answered trials for two
reasons: 1) During the second section, participants often take longer to make their first
response than their second and third choices and because 2) Choices within a single trial are
not independent from one another.

For the BFRT-c accuracy, we used the total score out of 54 items. BFRT-c RT was
the total RT (6 one-response trials + 16 three-response trials) across trials. The log
transformed RT was taken for the current Benton RT data (n=98) to meet the normality
assumption. All statistical analyses regarding Benton RT were conducted on the natural log

transformed RT, except for when explicitly stated.

Statistical Methods

To better represent an individual subject’s overall face recognition ability, in addition

to examining the CFMT and FFMT individually, we also calculated a composite
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CFMT/FFMT score by averaging the z-scores of CFMT and FFMT. The z-scores for the
CFMT and the FFMT were calculated using the mean (M) and standard deviation (SD) of the
current study’s control group. These three scores (CFMT, FFMT, Composite) served as our

dependent measures to represent individual subject’s face processing ability.

To examine whether the BFRT-c RT can reflect individual differences in face
processing ability, we first used linear regressions to predict how BFRT-c accuracy and RT
relate to face recognition performance measured by CFMT, FFMT, and the composite within
the normal population. We report standardized beta coefficients. To examine whether BFRT-
¢ RT contributes to differentiating DPs from controls, we first conducted independent
samples t-tests between the two groups” BFRT-c accuracy and RTs. Next, we used logistic
regression to assess whether BFRT-c accuracy and RT predict unique variance in DP
diagnosis, or the likelihood that the participants will be categorized as a DP vs. control.
McFadden’s pseudo r-squared measures are reported for logistic regressions. We also report
the difference in adjusted R? between models that include accuracy and another predictor

(e.g., RT) and models that include accuracy as the only predictor.

After finding that RT did not explain unique variance in face recognition ability or DP
vs. control group membership, we performed additional follow up tests to determine if
combination scores of BFRT-c accuracy and RT could perform better than accuracy alone.
Previously, studies have used inverse efficiency scores (IES, RT/accuracy) to examine if RTs
can help explain unique or additional variance in DP vs. control performance (e.g., Rivolta et
al., 2017), although other studies have suggested that IES should only be used under specific
scenarios (e.g., when accuracy is very high, >.90, Bruyer & Brysbaert, 2011;
Vandierendonck, 2017, 2018). Given this, we also include the Balanced Integrated Score
(BIS), calculated using subtraction between the z-transformed values of RT and Accuracy

(Liesefeld & Janczyk, 2019; Liesefeld et al., 2015).
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Sample Size Justification

Our sample size was guided by previous studies comparing DPs and controls
(Behrmann et al., 2005; Duchaine & Nakayama, 2005) as well as individual differences
studies (Richler et al., 2011; DeGutis et al., 2013; Konar et al., 2010). Behrmann et al. (2005)
found significant differences between the affected group (DPs and APs) and controls in face
matching when using a sample of 10 in-lab controls, 5 DPs, and 3 APs, while Duchaine and
Nakayama (2005) found significant DP and control differences in face recognition in a
sample of 17 in-lab controls and 7 DPs. We included additional DPs in the current study to
substantially increase our power to find group-level differences, since DP has shown to be
such a heterogeneous group (Corrow et al., 2016). To test for individual differences
associations with face recognition in controls, we used a similar-sized sample to studies that
have found significant individual differences correlations with face recognition ability (N=38,
Richler et al., 2011; N=43, DeGutis et al., 2013; N=48/N=77, Konar et al., 2010). Our sample
size of 62 controls and 36 DPs, with alpha=.05 and power=.80, provided sensitivity to detect
a medium between-groups effect size (Cohen's d=.52). Further, setting alpha=.05 and
power=.80, 62 controls provided sensitivity to detect a small-to-moderate associations

(Pearson's 1=.25).
Results
Demographics and Diagnostic Test Performance

Participants included 36 DPs (29 female) with a mean age of 38.8 years (SD = 14.5),
and 62 controls (37 female) with a mean age of 37.7 years (SD = 14.1). There were no
significant differences between the two groups in age (p = .73), but there was a trend towards

more females in the DP group (p = 0.06, x° vaes = 3.62). As expected, compared to controls,
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DPs performed significantly worse on the CFMT and FFMT and had more self-reported face

recognition difficulties on the PI-20 (all p's <.001, see Table 1).

Table 1

Individual DP Scores and Mean of DP and Control Group Scores (£SD): Demographics,

Self-Reported Face Recognition Abilities, Objective Face Recognition, and Face Matching

Performance.

DP Sub # Gender  Age PI-20 FFMT CFMT BFRT-C BFRT-RT Loge(RT)

1 F 22 88 0.27 34 39 175 5.16

2 F 29 88 0.35 37 42 226 5.42

3 F 34 75 0.33 39 37 166 5.11

4 M 61 89 0.29 38 36 363 5.89

5 F 36 93 0.54 35 35 288 5.66

6 M 33 80 0.53 36 33 358 5.88

7 M 27 80 0.19 38 47 184 5.21

8 F 46 75 0.39 34 39 197 5.28

9 F 53 86 0.40 35 39 264 5.58

10 F 26 80 0.47 42 42 221 5.40

11 F 35 81 0.45 43 47 366 5.90

12 F 30 69 0.43 41 42 199 5.29

13 F 32 58 0.56 40 38 148 5.00

14 F 27 86 0.29 44 39 243 5.50

15 F 63 63 0.20 37 38 227 5.43

16 F 31 89 0.10 37 42 219 5.39

17 F 55 9% 0.47 33 34 201 5.30

18 F 39 78 0.47 33 42 245 5.50

19 F 28 80 0.27 42 47 300 5.70

20 M 37 91 0.35 33 40 152 5.03

21 F 28 80 0.47 39 42 354 5.87

22 F 64 85 0.25 43 43 273 5.61

23 F 52 87 0.12 38 41 182 5.20

24 F 25 88 0.27 44 42 136 491

25 M 50 82 0.20 44 39 315 5.75

26 F 33 89 0.35 39 39 191 5.25

27 F 23 92 0.38 32 35 238 5.47

28 F 70 83 0.13 36 39 479 6.17

29 F 27 76 0.08 42 38 171 5.14

30 F 38 87 0.18 44 35 211 5.35

31 F 52 92 0.40 43 34 380 5.94

32 F 64 82 0.35 39 40 319 5.76

33 M 57 87 0.47 44 48 416 6.03

34 M 20 72 0.13 40 44 227 5.42

35 F 23 93 0.47 46 39 366 5.90

36 F 25 80 0.30 44 37 255 5.54
DP (n=36) 29F 38.8+14.5 82.8+84 .33+.13 39.1+4.0 39.843.8 257+84 55%.3
Control (n=62) 37F 37.7+14.1 353+7.2 .77+.18 59.2+7.6 455+3.7 2414128 5.41t.4
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Note: DP-developmental prosopagnosic; PI-20-Prosopagnosia Index-20; FFMT-Famous Face
Memory Test; CFMT-Cambridge Face Memory Test; BFRT-c-Computerized Benton Facial
Recognition Test; RT-Response time (total completion time); Log.RT-Natural log of
response time (total completion time)

Our control group mean BFRT-c score (M =45.55, SD = 3.66) was similar to, though
numerically higher than, previously reported normative data (N= 307, M = 44.81, SD = 3.44;
Rossion & Michel, 2018), though the BFRT-c total RT was longer for our controls (M =
241.03 s, SD = 127.67 s) than the normative sample from Rossion and Michel (2018, N= 307,
M =180.85 s, SD = 59.87 s). This is likely because the age of the current control sample (age
M = 37.73 years, range = 18-70 years, with 75% of participants above 26 years old) was
significantly older than the normative data (age M = 22.62 years, range = 18-39 years, with
5% of participants above 26 years old) and age has been shown to be consistently related to
face processing RT (e.g., Hildebrandt et al., 2013). Importantly, all the following key
analyses of BFRT-c RT held up after controlling for age (see supplementary materials).

One of our control participants had particularly long RTs on the BFRT-c compared to
the rest of the group, but their RT across the trials within the same section was evenly spread
(i.e., no trial outliers), and their accuracy was 1.2 SD above the mean of our control group,
suggesting that they had been focusing on accuracy and their data is valid. We therefore did
not exclude any data points from the current analysis and took the natural log of BFRT-c RT

to meet the normality assumption (see Figure 2). All statistical analyses regarding RT were

performed with the natural log of BFRT-c RT except when explicitly noted.
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A) Histogram of Raw BFRT-c Total RT B) Histogram of Natural log of BFRT-c Total RT
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Figure 2. Computerized Benton Facial Recognition Test (BFRT-c) reaction time (RT, total
completion time) distribution in the control group. A) Histogram of raw BFRT-c total RT, B)
Histogram of natural log off the raw total RT.

Reliability and Association Between BFRT-c Accuracy and RT

We also examined the reliability of the BFRT-c measures using the same method as
Rossion and Michel (2018), by measuring the correlation between performance on even items
and odd items in the second section (pick three out of six) of the test. For BFRT-c accuracy,
the interitem correlation was significant in both the control and DP groups (control: mean
score even items = 19.74/24, SD = 1.99, mean score odd items = 19.85/24, SD =2.09; p <
.001; rsg [Spearman-Brown corrected] = .63; DP: mean score even items = 17.33/24, SD =
1.90, mean score odd items = 16.72/24, SD = 2.50; p = .016; rsg = .57). For BFRT-c RT, the
interitem correlation was also significant, and higher, in both groups (control: mean RT even
items = 12.55 s, SD = 7.75 s, mean RT odd items = 14.72 s, SD = 8.58 s; p <.001; rsg = .97;
DP: mean RT even items = 13.08 s, SD = 4.46 s, mean RT odd items = 14.37 s, SD =5.19 s;
p <.001; rsg = .95). Note that raw RTs were used in these analyses.

Notably, we did not find any significant associations between BFRT-c accuracy and
total RT in the control group (accuracy vs. RT r=.07, p =.59), DP group (accuracy vs. RT r
=.03, p =.86), or for the combined Control and DP group (accuracy vs. RT r = -.04, p=.70).

This suggests that there was not a significant speed-accuracy tradeoff on the task.
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BFRT-c Accuracy and RT Predicting Individual Differences in Face Recognition

Ability

We first sought to determine if BFRT-c accuracy and RT were associated with

18

individual differences in objective face recognition ability in the control group, and whether

RT predicted face recognition ability above and beyond accuracy. This is critical in

determining whether RT carries unique information from accuracy, as researchers have

suggested (Rossion & Michel, 2018). As can be seen in Figure 3, in terms of zero-order

correlations, BFRT-c accuracy was significantly associated with the CFMT (r = .49, p <

.001), FFMT (r = .43, p <.001), and the composite score of these two measures (r = .54, p <

.001). However, the BFRT-c RT was not significantly related to CFMT (r =-.13, p =.316),

FFMT (r = .02, p = .889), or the face recognition composite score (r = -.05, p = .674).
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Figure 3. Associations between Computerized Benton Facial Recognition Test (BFRT-c)
accuracy and RT vs. face recognition measures in the control group: A) Scatterplots for
BFRT-c total score (accuracy) vs. Famous Faces Memory Test (FFMT)/Cambridge Face
Memory Test (CFMT)/Composite of CFMT and FFMT ; B) Scatterplots for BFRT-c RT vs.
FFMT/CFMT/Composite. BF= Bayes Factor, r = Pearson correlation.

Given that we found no significant associations between RT and any of the face
processing dependent measures, to reduce the chance of falsely accepting the null (Type II
error, i.e., that there was no relationship between RT and each of the dependent measure), we
further computed Bayesian statistics in JASP (JASP-Team, 2018). Bayes factors showed
moderate evidence in support of the null, i.e., that there was no relationship between the
BFRT-c RT and the CFMT (BFo1= 6.25, i.e., moderate evidence for Ho), the FFMT (BFoi=
3.83, i.e., moderate evidence for Ho), or the Composite (BFo1=5.79, i.e., moderate evidence
for Ho).

When including both BFRT-c accuracy and RT as predictors of face recognition
scores in a multiple regression, only accuracy was a significant predictor of CFMT (facc =
49,t=4.36,p <.001; frr=-.13,t=-1.17, p = .248; F (2, 59) = 10.17, R%ycc+rT = .26,
R2ace+RT, adjusted = 233 AR? = R%acc+rT - R?%ace = .02), FFMT (Bace= .43, t = 3.64, p < .001; Brr=-
0.01, 1=-.09, p=.928; F (2, 59) = 6.65, R?%xcc+rT = .18, R%ucc+RT, adjusted = -16; AR? = .00), and
the composite score (Bucc=.55,t=5.01, p <.001; frr=-.09, t =-.83, p = .408; F (2, 59) =
12.67, R%ccrT = .30, R%accirT, adjusted = -28; AR? = .01). As shown by the change in R?,

compared to the models with only BFRT-c accuracy as a predictor, including BFRT-c¢ RT in

the model did not improve the models by a noticeable amount.

Comparing BFRT-c Accuracy and RT Between DPs and Controls

We next sought to determine whether RT would differentiate between membership in

the DP (N=36) vs. control (N=62) groups and, importantly, whether RT would help
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discriminate between DPs and controls above and beyond accuracy, as suggested by Rossion
and Michel (2018). As can be seen in Figure 4, we found that the DP group performed much
worse than the control group on the CFMT (#¢96) = 12.8, p <.001, Mean difference, MD =
0.44, Cohen’s d = 2.69), FEFMT (t96 = 14.7, p <.001, MD = 20.10, Cohen’s d = 3.08), and the
composite of these measures (#95) = 16.8, p <.001, MD = 2.55, Cohen’s d = 3.52). While
DPs also showed drastically reduced scores on the BFRT-c (#9¢) = 7.4, p <.001, MD = 5.74,
Cohen’s d = 1.54), the natural log of BFRT-c RT exhibited no significant difference between

DPs and the controls (#96 = 1.3, p =.190, MD = .10, Cohen’s d = 0.276).

Developmental Prosopagnosic vs. Control Group Performance
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Figure 4. Control and developmental prosopagnosic z-scores (computed from the mean and
standard deviation of the current control group) for the Computerized Benton Facial
Recognition Test (BFRT-c) accuracy, BFRT-c RT, Cambridge Face Memory Test (CFMT),
Famous Faces Memory Test (FFMT), and CFMT/FFMT Composite. The error bars represent
the standard error of the mean. *** indicates that the difference is significant at p<.001
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Though we did not find a significant DP vs. control BFRT-c RT difference, we did
find that DPs were numerically slower. To reduce the chance of falsely accepting the null, we
further employed the Bayesian independent samples t-test using JASP for the BFRT-c RT.
The Bayes Factor showed anecdotal evidence in support of the null (BFo; = 2.13), i.e., that
there was no difference between the two groups in their BFRT response time.

The binary logistic regression models predicting DP vs. control group membership
showed that BFRT-c accuracy was a significant predictor (p < .001, pR? = .32, AIC = 91.44),
while BFRT-c RT did not predict categorization as a DP/control (p = .193, pR? = .01, AIC =
131.14). When including both BFRT-c accuracy and RT as predictors in the model, BFRT-c
accuracy, but not RT, significantly predicted DP diagnosis (accuracy: p<.001, RT: p=.099;
pR? = .34, AIC = 90.69; ApR? = pR?xcc+rT - pR%cc = .02). As shown by the change in
McFadden’s pseudo-R? and in the AIC for model fit, compared to the logistic model that had
BFRT-c accuracy as the only predictor, adding in the BFRT-c RT did not improve the model
by a noticeable amount.

Alternative Methods of Examining Response Time

To further confirm the robustness of our finding of BFRT-c RT not explaining unique
variance in individual differences in face recognition ability or DP vs. control group
membership, we considered the BFRT-c RT data using several alternative methods. These
included statistical tests on the raw, non-transformed RTs as well as removal of the RT
outlier (one data point from the control group > 3SD across both groups). In addition, to test
whether combined measures of accuracy and RT performed better than accuracy alone, we
also examined the inverse efficiency and balanced integration scores. More details on these

results can be found in the supplementary materials.

In brief, when analyzing the raw RTs as well as excluding the one outlier from the

control group, we found highly similar results, where BFRT-c RT did not predict face
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recognition ability above and beyond accuracy (e.g., raw RTs: CFMT AR? < .001/FFMT AR?

=.004, p's > .580; outlier exclusion: CFMT AR? < .045/FFMT AR? = .002, p's >.066). When

combining BFRT-c RT and accuracy into either the inverse efficiency score (IES) or
balanced integration score (IES), we found that these combined measures did significantly
predict face recognition ability (e.g., IES: CFMT r = -.47/FFMT r = -.33, p's <.009; BIS:
CFMT r = .44/FFMT r = .30, p's < .018). However, neither measure explained unique
variance beyond accuracy alone (IES: CFMT AR? = .02/FFMT AR? < .001, p's > .20; BIS:

AR? = .02/FFMT AR? < .001, p's > .25).
Discussion

Despite the rising interest in using RT to examine individual differences in face
processing ability and as a diagnostic measure for face and object recognition deficits, the
evidence for the validity of using RT in this manner is surprisingly limited. In the current
study, we examined the associations between face recognition ability with accuracy and RT
from the BFRT-c, a widely used face-matching test that has been modified to create more
meaningful RT data. In contrast to suggestions by the developers of this speeded,
computerized version (Rossion & Michel, 2018), the current study showed no evidence that
RT on the BFRT-c provides unique information about individual differences in face
recognition ability above and beyond accuracy on the CFMT, FFMT, or a composite of these
measures. The current study also found that BFRT-c RT did not provide any additional
information beyond accuracy in diagnosing prosopagnosia, nor did the inverse efficiency or
balanced integration scores (see supplementary materials), which have been recommended as
an approach to incorporating RT and accuracy (e.g., Geskin & Behrmann, 2018). These
results suggest that BFRT-c RT may not be a valid measure of face recognition ability and
emphasize the importance of validating RT measures before using them to assess individual

differences in face and object recognition abilities.
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The current findings extend Meyer et al.'s (2021) model suggesting that RTs from
easy face tasks (90% or greater accuracy) and accuracy from more difficult face tasks (75%
or lower accuracy) are most predictive of face-specific recognition abilities. In the BFRT-c,
which has an intermediate level of difficulty (M=84% for controls in the current study;
M=83% for controls in Rossion et al., 2018), we found that accuracy significantly and
robustly predicted individual differences in face recognition (r=.54) whereas RTs did not
show any appreciable association with face recognition (r=-.06). This suggests that accuracy
can be an excellent predictor of face recognition abilities in a medium-level difficulty task
and further, that RTs may only be informative of face recognition abilities when accuracy is
above 90%. In other words, RTs from tasks with accuracy below ceiling performance may
not be particularly useful for characterizing individual differences in face recognition

abilities.

The current findings suggest that recent results using RT as an indicator of face and
object recognition abilities may need to be re-interpreted or at least may require additional
validation (e.g., Geskin & Behrmann, 2018, Dzhelyova et al., 2020). For example, Dzhelyova
et al. (2020) observed a significant association between BFRT-c¢ RT (but not accuracy) and
EEG fast periodic visual stimulation identity responses from occipito-temporal regions. The
current results suggest that this association may not necessarily reflect individual differences
in face recognition ability, but alternatively may reflect more general speed of visual
processing abilities (Wilhelm et al., 2010). Further, Geskin and Behrmann (2018) found that
when examining RT and accuracy measures in object recognition tasks, 66.8% of DPs had
object recognition deficits on accuracy or RT (z-score < -2). This is much higher than the
object deficit rate of 22% when only considering accuracy alone (z-score < -2). Notably,
nearly all of the tasks included in Geskin and Behrmann's meta-analysis were designed to

focus on accuracy rather than RT (e.g., accuracy was well below ceiling). The current results
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emphasize the importance of evaluating each measure for whether RT can explain unique
variance in face/object processing and further caution that it should not be assumed that RT
will also provide unique information, even in tasks that are designed to produce meaningful

RT data such as the BFRT-c.

Why did RT in the BFRT-c tell us so little about face recognition ability, while
BFRT-c accuracy told us so much? It may be that instructing participants to “7ry to respond
as quickly and accurately as possible” paradoxically made the task more sensitive to
accuracy and minimized RT differences in comparison to the traditional BFRT, which
includes no speed-related instructions. Under the traditional BFRT instructions, it could be
that to be as accurate as possible, participants would spend as much time as they needed to
achieve high accuracy or high levels of confidence. This may have led to more ceiling-like
effects on accuracy across the participants, which would make it less able to capture
individual differences or prosopagnosia-related face matching deficits (see Duchaine &
Nakayama, 2004). However, RT from the traditional BFRT (without speeded instructions)
may be more meaningful than the current BFRT-c with speeded instructions, which could be
empirically tested in future studies. With the instruction of speed as well as accuracy in the
current BFRT-c, this may have acted as a motivational factor for the participants that
minimized the differences in RT while improving accuracy in its effectiveness to reflect
individual differences in facial processing ability. In support of this, the traditional BFRT has
demonstrated higher average accuracies (Albonico et al., 2017; Wang et al., 2020) than the
BFRT-c. Importantly, the BFRT-c accuracy did a substantially better job at distinguishing
between DPs and controls in the current experiment than the traditional BFRT (Duchaine &

Nakayama, 2004; see Mishra et al., 2021).

The current BFRT-c RT findings raise the question of under what circumstances

should RT be used as a measure of face and object processing abilities. One reason why the
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BFRT-c RT may not have explained face recognition performance is because the task is not
optimized for collecting meaningful RT data, having too low of accuracy (Meyer et al., 2021)
and an inability to analyze correct RTs only. To make RTs more meaningful it may be
helpful for future studies to use data-limited tasks where a face is shown for a brief duration
(e.g., Barragan-Jason et al., 2015). Alternatively, to better get at face-related speed of
processing one could perform staircase thresholding procedures (e.g., Xu & Biederman,
2014), such as having faces be displayed for briefer durations as accurate responses are made.
It would also be useful for future studies to perform drift diffusion analysis of face processing
task RTs, as this has shown to reveal face-specific RT effects (e.g., Meyer et al., 2019),
though this is often at the expense of requiring participants to perform many trials.
Additionally, several studies from Wilhelm and colleagues (e.g., Wilhelm et al., 2010;
Hildebrandt et al., 2013) have taken the approach of examining RT measures using a much
easier set of face tasks with very high accuracy and separately assessing face accuracy with a
harder set of perception and memory tasks. Having separate tasks may be necessary to isolate
RT effects because tasks where accuracy is well-below ceiling (< 90%) may suffer from
differential speed-accuracy tradeoffs across participants, limiting the usefulness of RT

measures (see Draheim et al., 2019).

While integrative measures of RT and accuracy, such as IES and BIS, may be useful
and can sometimes account for speed-accuracy interactions, in the current study these
measures did not provide any additional information beyond accuracy in predicting
prosopagnosia group membership or individual differences in face recognition in the control
group. This may be due to methodological concerns with these measures. IES may only be
appropriate when accuracy is very high (> 90%) and there is evidence of a speed-accuracy
tradeoff (Bruyer & Brysbaert, 2011; Vandierendonck, 2017, 2018). Unfortunately, the current

study met neither of these requirements. IES and BIS may have been uninformative in the
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current study because BFRT-c RT and accuracy could reflect distinct cognitive mechanisms
in the task (see more on this below), in which case integrating accuracy and RT in these
measures may not be valid (Liesefeld & Janczyk, 2019). Further, IES and BIS are both
derived measures and may have lower reliability and questionable utility in individual

differences contexts (Draheim et al., 2019).

Even if a face processing task was constructed to more ideally measure RT, another
reason why RT may not robustly relate to face recognition ability is that face accuracy and
RT may reflect separate mechanisms and the current definitions of face recognition ability
and DP group membership are based on accuracy measures (Corrow et al., 2016; Rezlescu et
al., 2017; DeGutis et al., 2013). In particular, studies using structural equation modeling have
shown that face RT and accuracy load on separate, largely independent factors (Wilhelm et
al., 2010; Hildebrandt et al., 2013; Meyer et al., 2019), with face accuracy more consistently
demonstrating face-specific loadings and RT often showing more general visual object
processing loadings (though see Cepulié et al., 2018 for an exception). This begs the question
of whether face task RTs should be used as a measure of individual differences in face
recognition ability and DP group membership. Face task RTs often provide independent
information from accuracy (as in the current study as well as Dzhelyova et al., 2020), but it
remains unclear if this extra information can be relevant to individual differences in face
recognition. Recent work by Arizpe et al. (2018) found that overall CFMT accuracy and RTs
during the 18 trials of the introduction stage of the CFMT (where accuracy is close to ceiling)
explained unique variance in FFMT accuracy, though RTs explained < 5% of additional
variance in FFMT. There have also been a limited number of studies that have shown RT
differences between DPs and controls on face tasks with appropriately high accuracy (e.g.,
face detection, Garrido et al., 2008), though these effect sizes have often been much smaller

than with accuracy-based tasks (e.g., Mishra et al., 2021). Thus, an important area of future
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research will be to determine whether face RT tasks can reflect meaningful aspects of

individual differences in face and object recognition abilities.

Though the current results provide convincing converging evidence that BRFT-c RT
does not reflect face recognition abilities, there are some limitations. First, though the DP
group was relatively sizable, the healthy control group could have been larger, and it would
be good to replicate the current results in a larger sample of controls. Additionally, even
though the current study suggests that BFRT-c RT is not explaining additional variance in
face recognition, it does not mean that all face task RTs are completely uninformative. It is
important for future studies to carefully examine face processing task RTs for potential
outliers (e.g., similar to Dzhelyova et al., 2020) as well as potential speed/accuracy tradeoffs
to better interpret the accuracy results. Finally, the current study evaluated one face task
predicting face recognition ability and it would be important for future studies to examine
additional face tasks along with analogous object tasks to further examine whether
relationships reflect face-specific mechanisms. That being said, RTs from single face
processing tasks have been shown to reflect face-specific mechanisms more than batteries of
face tasks (Meyer et al., 2021), and for the current study it would be unlikely that adding an
analogous object matching task to the analyses would reveal significant RT/face recognition

associations.

In sum, the current results demonstrate that though the BFRT-c was modified from
the original version to produce a meaningful RT measure, that BFRT-c RT failed to predict
individual differences in face recognition ability or DP vs. control group membership. These
results are relevant to researchers using RTs to assess visual recognition abilities and
highlight the importance of testing the validity of RTs before using them as outcome
measures.
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Supplementary Materials
Results

Associations between Face Recognition and BFRT-¢ RT/Accuracy when Controlling for

Age

When including age as a predictor of face recognition scores in a multiple regression
in addition to accuracy and RT of BFRT-c, only accuracy was a significant predictor of
CEMT (Bacc= 43, t=3.66, p <.001; frr="-.11,¢t=-94, p = 35; fuge=-21,t=-1.75,p =
.086; F (3, 57) = 8.04; R? = .26) and FFMT (Bucc= .33, t = 2.82, p = .0065; frr= 034, t = .30,
p=77; Bage=-31,t=-2.56, p=.013; F (3, 58) = 7.03; R?> = .23), while accuracy and age
were significant predictors of the composite score (Buce = .45, t =4.165, p <.001; frr=-.047,
t=-45,p=.66; fuge=-31,1=-2.75,p=.0079; F (3, 58) = 11.92; R? = .35). The binary
logistic regression models predicting DP vs. control group membership with age included as
a predictor showed that BFRT-c accuracy, but not RT or age, significantly predicted DP
diagnosis (accuracy: p<.001, RT: p=.032, age: p = .066; pR? = .37, AIC = 88.92). Overall,
controlling for age did not affect the finding that BFRT-c accuracy, but not RT predicted face

recognition ability and DP diagnosis.

Examining BFRT-¢ Raw RT and RT with Outlier Removed

Since previous face recognition studies have only used the raw RT of the
computerized Benton test, we performed the same set of analysis with the untransformed raw
RT data. In the main body of the paper, we took the natural log of Benton RT to better
approximate a normal distribution. Results in the control group showed that while BFRT-c
accuracy significantly predicted each of the dependent measure (all ps <.001 as reported in

the main body of the results section), raw Benton RT was not significantly associated with
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CFMT (r=-.03, p = .825), FFMT (r = .05, p = .655), or the composite CFMT-FFMT scores
(r=.02, p =.863). Neither did the raw RT explain additive variance beyond accuracy for
CFMT (p = .580, AR? < .001), FEMT (p = .907, AR? = .004), or the composite score (p =
761, AR? = .001). To examine whether raw RT can differentiate DPs from the controls, we
examined whether raw BFRT-c RT predicted DP/control group membership and examined
whether it explained additive variance beyond accuracy in logistic regressions. Results
showed that while accuracy was a significant predictor (p <.001 as reported in the main body
of the paper) for DP diagnosis, raw BFRT response time was not a significant predictor (p =
.505, pR? = .003). Neither did RT explain unique variance beyond BFRT accuracy (p = .194,
ApR? = .011).

In the current Benton RT data, one data point from the control group exceeded 3
standard deviations above the mean of the entire sample (i.e., combined DPs and the controls,
n=98). We here provide the same set of analysis reported in the main body of the manuscript
with the outlier removed RT data (natural log applied to meet normality). In the main body of
the paper, we did not exclude any data based on the RT, because 1) RT was what we were
aiming to validate, so exclusion criteria should not be based on this measure (exclusion is
best based on the robustly validated measures); 2) excluding the outlier from only one group
can artificially push the result towards one direction, and we did not want to bias our results;
and 3) we examined the trials within that participant and verified that the subject was fully
focused on the test, so this should be a valid data point. When examining BFRT-c RT with
the outlier excluded, we found that while accuracy was significantly associated with each
dependent measure (all ps <.001 as reported in the main body of the results section), Benton
RT was only significantly associated with CFMT (r = -.26, p = .049), but not FFMT (r = -.05,
p =.729), or the composite score (r =-.16, p = .215). Neither did the RT explain additive

variance beyond accuracy for CFMT (p = .066, AR? < .045), FEMT (p = .742, AR? = .002),
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or the composite score (p = .166, AR? = .024). We next examined whether BFRT-c¢ RT with
the outlier excluded can differentiate DPs from the controls. Results showed that while
accuracy was a significant predictor (p <.001 as reported in the main body of the paper) of
DP vs. control group membership, BFRT-¢ RT was not a significant predictor (p = .077, pR?
=.032). Neither did RT explain unique variance beyond BFRT accuracy (p = .088, ApR? =

024).

Examining Combinations of BFRT-c Accuracy and RT: Inverse Efficiency and

Balanced Integration Scores

When calculating the inverse efficiency score (IES, log transformed RT/Accuracy),
we found that IES did significantly predict DP vs. control group membership (p <.001, pR? =
302, AIC = 121.75, see Supplementary Figure S1), but adding accuracy scores in the model
resulted in accuracy being the only significant predictor (accuracy: p=.0310, IES: p=.0984;
pR? = .343, AIC = 90.623; ApR? = .02). Further, as can be seen in Supplementary Figure S2,
IES was significantly correlated with FFMT (r =-.33, p =.009), CFMT (r =-.47, p <.001),
and the composite of these measures (r = -.47, p <.001). However, when including both
BFRT-c IES and accuracy as predictors of face recognition scores in a multiple regression,
only accuracy was a significant predictor of CFMT (facc= .32, t = 1.895, p = .063; fies=-.22,
t=-1.30,p=.198; F (2, 59) = 10.39, R%cc+ies = .26, R2ucctES, adjusted = .24; AR? = .02), FEMT
(Bace= 41, 1=2.34, p=.0225; Bies=-.03,t=-.18, p = .861; F (2, 59) = 6.67, R%uccties = .18,
R2acc+ES, adjusted = -16; AR? = .00), and the composite score (Bacc= .43, t =2.66, p = .010; Bies=
-16,¢t=-.971, p=.335; F (2, 59) = 12.85, R%xccties = .30, R%ace+ES, adjusted = -28; AR? = .01).
As shown by the change in R?, compared to the model with only BFRT-c accuracy as a
predictor, including BFRT-c RT in the model did not improve the model by a noticeable

amount, if at all.
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Developmental Prosopagnosic vs. Control Group Performance
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Supplementary Figure S1. Z-scores (computed from the mean and standard deviation of our
control group) for developmental prosopagnosic and control groups on the BFRT-c accuracy,
BFRT-c RT, BFRT-c IES, and BFRT-c BIS. The error bars represent the standard error of

the mean. *** indicates that the difference is significant at p<.001
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Supplementary Figure S2. Associations between face recognition measures and BFRT-c
accuracy, IES, and BIS within the control group. A) Scatterplots for BFRT-c score/accuracy
against FFMT/CFMT/Composite; B) Scatterplots for BFRT IES against
FFMT/CFMT/Composite; C) Scatterplots for BFRT BIS against FFMT/CFMT/Composite.

We next examined the balanced integration score (BIS), calculating RT and accuracy
z scores for all subjects using the Mean and SD of the control group. As shown in
Supplementary Figure S1 and S2, the BIS (p <.001; pR? = .276, AIC = 97.254) on its own
did predict DP vs. control group membership in logistic regressions and was significantly
correlated with FFMT (r = .30, p = .018), CFMT (r = .44, p <.001), and the composite of

these measures (r = .44, p <.001). But when accuracy was modeled along with BIS, only
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accuracy was significant in predicting DP group membership (accuracy: p=.00737, BIS: p=
.0987; pR? =.343, AIC = 90.689; ApR? = .02). Similarly, only accuracy was a significant
predictor of CFMT (Buce = .36, t =2.274, p = .0267, fpis= .19, t=1.167, p = .2481; F (2, 59)
=10.17, R2%ucctBis = .26, R%acetBIS, adjusted = .23; AR? = .02), FFMT (Bacc= .42, t=2.601, p =
0117; Beis=.015,¢=.090, p = .928; F (2, 59) = 6.651, R2%ucc+nis = .18, R2%uccrBIS, adjusted = . 16;
AR? = .00), and the composite score (Bucc= .46, t = 3.056, p = .00336; Beis=.12,t=.834,p =

408, F (2, 59) = 1267, Rzacc+BIS = 30, Rzacc+BIS, adjusted = 28, AR? = 01)

Together, these results suggest that, compared to accuracy alone, integrating RT and
accuracy using either IES or BIS does not explain additional variance in DP vs. control

diagnosis, nor does it explain additional variance in predicting face recognition scores.



