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Abstract

[l Attention is a neurocognitive mechanism that selects task-
relevant sensory or mnemonic information to achieve current be-
havioral goals. Attentional modulation of cortical activity has been
observed when attention is directed to specific locations, features,
or objects. However, little is known about how high-level catego-
rization task set modulates perceptual representations. In the
current study, observers categorized faces by gender (male vs.
female) or race (Asian vs. White). Each face was perceptually
ambiguous in both dimensions, such that categorization of one
dimension demanded selective attention to task-relevant infor-
mation within the face. We used multivoxel pattern classification
to show that task-specific modulations evoke reliably distinct

INTRODUCTION

Attention facilitates processing of task-relevant informa-
tion (Yantis, 2008; Corbetta & Shulman, 2002; Desimone
& Duncan, 1995). Evidence for attentional modulation of
cortical activity has been reported in humans using fMRI
in multiple perceptual domains. For example, covert visuo-
spatial attention modulates activity in the correspond-
ing retinotopic regions of extrastriate cortex (e.g., Kelley,
Serences, Giesbrecht, & Yantis, 2008; Yantis et al., 2002).
Similar effects of attention upon cortical activity have
been observed during attention to visual features (e.g.,
Liu, Slotnick, Serences, & Yantis, 2003; Saenz, Buracas, &
Boynton, 2002) and objects (e.g., Serences, Schwarzbach,
Courtney, Golay, & Yantis, 2004; O’Craven, Downing, &
Kanwisher, 1999).

These studies have documented attentional modulation
of visual properties that are processed or represented in
regions that are functionally well-characterized (e.g., reti-
notopic organization of visual cortex, category selectivity
of ventral temporal cortex). However, many common per-
ceptual tasks entail categorization on the basis of complex
combinations of visual attributes. The mechanisms of at-
tentional modulation of cortical activity based on high-level
perceptual categorization rules are unknown.

Here we devised a face categorization task during which
subjects categorized either the gender or the race of am-
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spatial patterns of activity within three face-selective cortical re-
gions (right fusiform face area and bilateral occipital face areas).
This result suggests that patterns of activity in these regions re-
flect not only stimulus-specific (i.e., faces vs. houses) responses
but also task-specific (i.e., race vs. gender) attentional modula-
tion. Furthermore, exploratory whole-brain multivoxel pattern
classification (using a searchlight procedure) revealed a network
of dorsal fronto-parietal regions (left middle frontal gyrus and
left inferior and superior parietal lobule) that also exhibit dis-
tinct patterns for the two task sets, suggesting that these regions
may represent abstract goals during high-level categorization
tasks. W

biguous face morphs. Each stimulus was created by morph-
ing together one Asian male face with one White female
face or one Asian female face with one White male face.
Therefore, each of them varied in both gender (male
vs. female) and race (Asian vs. White; see Figure 1A).
We investigated whether these two categorization tasks
evoked distinguishable patterns of activity in the cortical
face network.

We used face categorization tasks for two reasons. First,
race and gender are natural categorization tasks that
humans perform frequently, rapidly, and accurately. How-
ever, little is known about how people accomplish these
socially relevant face categorization tasks. Previous behav-
ioral studies have suggested that different feature com-
ponents as well as holistic information are critical for the
performance of different face categorization tasks (e.g.,
Smith, Fries, Gosselin, Goebel, & Schyns, 2009; Mangini &
Biederman, 2004; Schyns, Bonnar, & Gosselin, 2002). Al-
though allocation of attention to different types of infor-
mation within the face during the categorization task was
suggested as a possible neural mechanism (Schyns et al.,
2002), the role of attention in these socially relevant face
categorization tasks has yet to be investigated.

Second, the cortical substrate for face perception is well
characterized and therefore provides a solid foundation
for addressing this question. Three main regions, the in-
ferior occipital face area (OFA; e.g., Allison et al., 1994),
the fusiform face area (FFA; e.g., Kanwisher, McDermott,
& Chun, 1997; Sergent, Ohta, & MacDonald, 1992), and
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Figure 1. (A) Psychophysical
procedure for obtaining the A
ambiguity threshold. The lower

(black) sequence illustrates
gender categorization. Using
a male-to-female sequence,
morph levels 1 through 10
were judged “male,” and level
11 was judged “female,” at Male

which point the sequence

was halted. Later in the session,
during a female-to-male
sequence (gray) with the B
same morph set, morph levels
20 through 10 were judged
“female,” and morph level 9 was
judged “male.” A male/female
ambiguous morph level for
this pair of faces was defined
as the midpoint of the two
judgments or level 10 in this
example. The same procedure
was applied to Asian/White
categorization (gray), and in this
example, level 11 was selected
as the ambiguous morph for the
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race categorization task. (B)
Face categorization task.

the STS (e.g., Fairhall & Ishai, 2007; Puce, Allison, Bentin,
Gore, & McCarthy, 1998), in both hemispheres have been
identified as the core face network mediating the visual
analysis of human faces and work together as a core system
for face perception (Haxby, Hoffman, & Gobbini, 2002).

We employed multivoxel pattern classification (MVPC) in
a hypothesis-driven ROI approach to investigate whether
cortical face-selective regions reflect not only what you
see (i.e., responding more to faces than to houses or ob-
jects) but also how you see it (i.e., responding differently
during gender vs. race categorization tasks). In a sub-
sequent exploratory analysis, we used a searchlight proce-
dure (Kriegeskorte, Formisano, Sorger, & Goebel, 2007) to
identify additional brain regions exhibiting distinct patterns
of activity for the two face categorization tasks.

METHODS
Subjects

Eight neurological healthy adults (all right-handed, four
women, age range = 19-33 years, mean = 22 years) gave
written informed consent, which was approved by the
Johns Hopkins Medicine institutional review board, to par-
ticipate in this study.

Stimuli and Procedure

Each of six male Asian faces were parametrically morphed
(20 levels) with each of six female White faces, and each
of six female Asian faces were morphed with each of
six male White faces, resulting in a total of 72 pairs of

morphs (for an example pair, see Figure 1A). The images
were taken from the CalTech database and the AR-face data-
base (Martinez & Benavente, 1998) as well as in-house
photography. All stimuli were rendered in grayscale and
cropped, leaving only eyes, nose, and mouth, and then
morphed using FantaMorph (version 4.0). The faces were
presented in the center of the display at a viewing distance
of 68 cm and subtended 6° of visual angle in both height
and width when viewed in the scanner.

Before the scanning session, subjects completed two ses-
sions on separate days (one categorization task per session)
of a preliminary psychophysical task to determine their
male—female and Asian—White morph thresholds (i.e.,
point of subjective ambiguity) for each of the 72 pairs of
faces. Subjects were asked to make male/female categori-
zation judgments by pressing one of the two keys on the
keyboard. No feedback was provided. Each face was pre-
sented until a response was registered. To efficiently obtain
subjective thresholds for each pair of stimuli, we used the
methods of limits (see Figure 1A). Different morph levels
for a pair were presented twice in each session, once in each
direction (e.g., once from 100% toward 0% male and once
from 0% toward 100% male). The sequence stopped as
soon as subjects changed their response (e.g., from male
to female). For each pair, the male—female morph threshold
was taken as the midpoint of the morph levels that were first
categorized as “female” during a male-to-female sequence
and as “male” during a female-to-male sequence. Sub-
jects completed the same procedure for the Asian—-White
morph pairs. The order of tasks in two sessions was counter-
balanced across subjects. By the end of the two sessions,
two morph levels (one for each task) were determined for
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each of the 72 pairs, resulting in a total of 144 ambiguous
morphed faces for each subject.

During the scanning session, subjects completed 12, 14,
or 16 runs of the face categorization task. Each run con-
sisted of eight blocks of 38 sec each (four blocks of the
gender task and four of the race task in alternating order).
The initial task in each run was counterbalanced across
runs. All 144 stimuli were used in each run, randomly as-
signed to one of the eight blocks. To ensure that the classi-
fication was not based on perceptual differences in the
stimuli, we used each face in both tasks across runs. There-
fore, the fMRI runs were acquired in pairs: If a face was
used in the gender task in the first run of a pair, it was
used in the race task in the second run of the pair.

Each of the eight task blocks within a run started with a
2-sec instruction screen indicating which face categoriza-
tion task to carry out in that block. Following the instruc-
tion screen were 18 trials, during each of which a face was
presented for 300 msec and a blank screen for 1700 msec
(Figure 1B). Subjects held one button in each hand and
indicated their categorization decisions by pressing one
of the two buttons (response assignments were counter-
balanced across subjects).

Independent Functional Localizers

We defined several ROIs to apply MVPC, including six
face-selective ROIs (three in each hemisphere; see Fig-
ure 2). Each participant completed one or two functional
localizer runs lasting 368 sec; these data were used to iden-
tify the OFA, the FFA, and the STS in both hemispheres (Fig-
ure 2). During each localizer run, subjects alternately
viewed 12 blocks (each lasting 30 sec) of intact morphed
faces (the 50% morph of 72 pairs) or houses (4 blocks each)
and phase-scrambled faces or houses (2 blocks each). Each

Figure 2. Distributed cortical network for face perception. Data from
a representative subject illustrate face-selective ROIs, including OFAs,
FFAs, and STS in Talairach space.
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image was presented for 300 msec and followed by a
1700-msec blank (Figure 1B). Subjects performed a one-
back working memory task and pressed a button when a
repetition was detected (three repetitions per block).

fMRI Data Acquisition and Analysis

MRI scanning was carried out on a 3-T Philips Gyroscan
scanner. High-resolution anatomical images were acquired
with a T1-weighted 200-slice magnetization prepared rapid
acquisition gradient-echo sequence with a SENSE (MRI
Devices, Inc., Waukesha, WI) eight-channel head coil (rep-
etition time = 8.2 msec, echo time = 3.7 mseg, flip angle =
8°, prepulse inversion time delay = 852.5 msec, SENSE
factor = 2, scan time = 385 sec), yielding 1-mm isotropic
voxels. Whole-brain echo-planar functional images were ac-
quired in 40 transverse slices (repetition time = 2000 msec,
echo time = 35 msec, flip angle = 90°, matrix = 64 X
64, with 3 X 3 mm in-plane resolution, slice thickness =
3 mm, SENSE factor = 2).

BrainVoyager QX (Brain Innovation, Maastricht, The
Netherlands) and the LIBSVM (Chang & Lin, 2001) for
MATLAB were used for analyses. EPI images from each
scanning run were slice time and motion corrected and
then high-pass filtered (three cycles per run) to remove
low-frequency noise in the time series. No spatial smooth-
ing was performed on the images.

Hypothesis-driven ROI MVPC

The localizer data were used to identify face-selective ROIs
for each participant using a contrast of faces versus houses
and scrambled stimuli. In each ROI, the 50 most selective
voxels (see Fox, laria, & Barton, 2009) during the preferred
stimulation period were included in the subsequent MVPC.
The following ROIs were identified, with the number of
participants (out of eight total participants) exhibiting sig-
nificant activation (voxelwise p < .01, uncorrected) in that
area: right FFA (8), left FFA (7), right OFA (8), left OFA (7),
right STS (8), and left STS (7). (One subject had no activa-
tion in the vicinity of fusiform gyrus, inferior occipital gyrus,
and STS in the left hemisphere with even lowered thresh-
old.) All subsequent ROI analyses were performed using
the independent data set from the experimental runs.
The raw time series from each voxel within each ROI was
first normalized on a run-by-run basis using a z transform.
The mean BOLD signal in each of the 50 voxels in each
ROI during a period extending from 12 to 38 sec after the
onset of the categorization task instruction screen was
taken as one instance for classification. The data were
passed through an arctan squashing function to diminish
the importance of outliers (Guyon, Weston, Barnhill, &
Vapnik, 2002). Thus, four voxel pattern instances were ex-
tracted for each task in each run. A leave-one-run-out cross-
validation procedure was used to train a linear support
vector machine on the basis of all but one run, and the
classifier was applied to the data from the left-out run to

Volume 23, Number 5



discriminate between the gender versus the race categori-
zation tasks. Overall classification accuracy was defined as
the mean classification accuracy across all possible per-
mutations of leaving one run out.

Note that the question of interest was whether there exist
multivoxel pattern differences in the face network evoked
during the gender and race discrimination tasks. Another
potentially interesting question would be to assess whether
the multivoxel patterns evoked by different stimuli (e.g.,
male vs. female faces or Asian vs. White faces) could be
decoded within those ROIs. Although our stimulus set
could be usefully applied to this question, the current block
design was not optimized for event-related analysis of stim-
ulus differences.

Exploratory Whole-brain MVPC

A 9-mm-cubic searchlight (i.e., 27 voxels) was defined to
move through the whole acquired volume (individual na-
tive space), centered on each voxel in turn, again using
the one-run left out procedure. After obtaining the classifi-
cation accuracy for each voxel neighborhood in each sub-
ject, we applied a Talairach transformation to combine
the resulting statistical maps across the eight subjects.
The group mean classification accuracy of the searchlight
centering on each voxel was then tested against chance
(50% accuracy) with a right-tailed ¢ test and corrected for
multiple comparisons with a cluster threshold correction
(Forman et al., 1995). The final statistical map reported be-
low uses a corrected alpha = .001 with voxelwise nominal

p of 003, 1(7) = 38.

RESULTS
Univariate Analyses

We first conducted a univariate ROI-based analysis in the
core face network using independent localizer runs (see
Methods). We first examined whether the mean BOLD sig-
nal in these ROIs differed for the two tasks. To do this, we
computed the mean magnitude of the sustained response
(i.e., 12-38 sec after the onset of the task instruction screen)
during the two task conditions (gender vs. race) across all
voxels in each ROI and performed a paired # test between
them. None of the ROIs exhibited significant mean differ-
ences for the two tasks (all ps > .14). This is not surprising;
these face-selective areas were, on average, about equally
engaged during the two face categorization tasks.

Multivariate Pattern Analyses

A linear support vector machine classifier was trained
(separately for each subject) to discriminate multivoxel
patterns evoked while subjects carried out the race and
gender categorizations, respectively, using data from all
the face-selective regions combined for each subject (i.e.,

300 voxels for all subjects except for S8, who contributed
150 voxels, all from the right hemisphere). The mean clas-
sification rate was 61% and was significantly greater than
chance across subjects, #(7) = 2.5, p < .05. Second, we
trained a classifier for each ROI separately. Figure 3 shows
the mean pattern classification rate of the group in each
face-selective ROIL. Chance classification performance was
50%. Right OFA, right FFA, and left OFA exhibited classi-
fication performances that were significantly greater than
chance (ps < .05), with mean classification accuracies of
61%, 58%, and 57%, respectively.

As another check that the results were not due to chance,
we used a randomization procedure in which runs were
randomly labeled as gender task or race task before classi-
fication. In each region, classification accuracy during cross
validation was near 50% (i.e., 48.9-50.8%), as expected.
When these values were used as an empirical measure of
chance, the same regions (i.e., bilateral OFA and right
FFA) exhibited significant classification accuracy.

Although there were no significant overall differences
in mean signal across the two tasks in each of these ROIs
(see above univariate analyses), to ensure the classification
was not driven by mean differences (see Esterman, Chiu,
Tamber-Rosenau, & Yantis, 2009), we additionally con-
ducted the same analysis with removal of mean differences.
We continued to observe significant classification perfor-
mance in right OFA, right FFA, and left OFA (63%, 57%,
and 57%, respectively, ps < .05) but not in other ROIs.
The classification rate for all the face-selective regions com-
bined was also significantly better than chance (i.e., 64%,
p < .05). This mean-centering procedure ensured that a
nonspecific difference (e.g., in efforts) was not driving pat-
tern classification; instead, specific multivoxel patterns of
activity were reliably different for the two task sets.

We then used an exploratory MVPC searchlight to exam-
ine classification on the basis of patterns from 3 X 3 X 3 =
27-voxel clusters centered at each voxel across the whole

70

Classification accuracy (%)
2

L L L
OFA FFA STS All face
5 Cortical face network )
ROI

Figure 3. Classification performance in the cortical face-selective
ROIs. Mean classification accuracy (%) for each ROI and for all
face-selective ROIs combined. Chance is 50%. OFA = occipital face
area; FFA = fusiform face area.
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brain to identify additional regions that contain distinct
signals for the two face categorization tasks. This proce-
dure revealed a set of frontal and parietal regions in the
left hemisphere, including middle frontal gyrus, superior
and inferior parietal lobule, and insula as well as several
clusters in the middle and inferior temporal (IT) cortex
(see Table 1). Several of the identified regions in the IT
cortex were in and near the fusiform gyrus in both hemi-
spheres as shown in Figure 4, although these were not
identical to the independently localized face-selective re-
gions (i.e., FFA, shown in green in Figure 4, and OFA).

Behavioral Analyses

To ensure that the results were not driven by differences in
mental effort or personal preference for one category or
response versus the other, we analyzed the response times
as well as the relative proportion of each response type.
Mean response time for the gender and race categoriza-
tion tasks was 913 and 939 msec, respectively (p > .13, data
from six subjects; behavioral data from two subjects were
lost because of technical issues). There were also no re-
sponse biases in either task. All eight subjects categorized
faces as female as often as male during the gender task
(51% vs. 49%, respectively, p > .8). The same pattern was
observed in the race task (46% vs. 54% for Asian, White,
respectively, p > .1). These results were as expected be-
cause the stimuli used during the scanning sessions were
selected to be subjectively ambiguous in both tasks (see

Table 1. Regions Containing Task-specific Signals Revealed
by the MVPC Searchlight

Peak Voxel
Side Region No. Voxels X Y Z
Right Middle temporal gyrus 432 57 =31 -5
Right Postcentral gyrus 583 42 —-28 34
Right Insula 598 30 11 1
Right Fusiform gyrus 455 24 —46 -17
Cingulate gyrus/ 920 0 —22 46
paracentral lobule
Cuneus 392 0 =82 25
Left  Superior parietal lobule 386 —24 —46 46
Left  Inferior parietal lobule 1134 —36 —43 49
Left ~ Middle frontal gyrus 466 -36 47 =2
Left  Inferior temporal gyrus 1199 -51 —-55 —14
Left  Fusiform gyrus 734 —-24 —068 -8
Left  Fusiform gyrus 414 -39 =37 =20
Left  Inferior occipital gyrus/ 619 -33 -76 -11
FFA
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Figure 4. Task-specific signals revealed by the MVPC searchlight.
Exploratory whole-brain MVPC revealed regions exhibiting classification
that was significantly better than chance for the group (yellow/orange).
These included a subset of the fronto-parietal attentional control
network, including middle frontal gyrus (MFG), and superior parietal
lobule (SPL)/intraparietal sulcus (IPS) as well as several clusters in the
IT cortex. Some ventral temporal regions in fusiform gyrus in both
hemispheres are adjacent to the group locus of the functionally defined
FFA (shown in green). These ROIs are projected onto an averaged
anatomical brain in Talairach space.

Methods). In addition, there was no consistent activity
that was greater for one task versus the other (see above),
further suggesting that the tasks were well matched for
difficulty and processing demands.

DISCUSSION

The data reported here reveal modulation of the cortical
face network evoked by high-level categorization task set.
Critically, because the stimuli were identical during the
two tasks, classification could not be based on intrinsic
sensory differences in the physical stimuli. Under these
conditions, among all the face-selective brain regions,
we found three (right FFA and bilateral OFA) that exhib-
ited distinct, task-specific multivoxel patterns evoked by
the two task sets. Our results suggest that these regions
represent the diagnostic features or combinations of fea-
tures that are critical for these categorizations. Furthermore,
our findings echo studies of prosopagnosic patients or
TMS-induced neurodisruption of face-selective areas (for a
review, see Rossion, 2008). For example, Minnebusch,
Suchan, Koster, and Daum (2009) found that the failure
to process faces in subjects suffering from developmental
prosopagnosia was linked to the lack of activation in bilat-
eral OFA and FFA. Pitcher, Walsh, Yovel, and Duchaine
(2007) found that repetitive TMS of right OFA disrupted
accurate discrimination of face parts; however, no effect
of repetitive TMS was observed in left OFA. Because the
categorization tasks used here relied on high-level face
perception rather than on low-level judgments such as size
or luminance, our finding of OFA and FFA is in line with
previous literature.

This conclusion is also consistent with previous studies,
also suggesting that different diagnostic sensory informa-
tion is critical for different face categorization tasks. Smith
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et al. (2009) and Schyns et al. (2002) used a psychophysi-
cal subsampling technique to demonstrate that gender
categorization relied more on the eyes and mouth whereas
identification relied on almost the whole face. Indepen-
dently, Mangini and Biederman (2004), using classification
images, concluded that different aspects of the face stimuli
were critical for different categorization tasks. It is likely
that the differences between race and gender categoriza-
tion depends on both individual face components (e.g.,
eyes, nose, and mouth) and configural information (e.g.,
eye separation, eye—nose distance, etc.), but not on other
socially relevant information (e.g., gaze), which are thought
to be processed in STS (e.g., Fairhall & Ishai, 2007).
Furthermore, Sigala and Logothetis (2002) used single
neuron recording in monkeys to measure the neural rep-
resentations of task-specific diagnostic information in the
IT cortex following categorization learning (of line draw-
ings of faces). After learning, neurons in IT became tuned
to diagnostic aspects of the face (e.g., eye height) to cor-
rectly categorize face stimuli.

It is possible that subjects used a purely component-
based strategy for discrimination. For example, one could
fixate on the eyes during one categorization task and fix-
ate on the mouths during the other categorization task. If
this strategy were employed, our MVPC results could be
partially driven by low-level visual properties that differ at
fixation (e.g., two elliptical contours vs. one). However,
this is unlikely for two reasons. First, the searchlight anal-
ysis failed to classify patterns in early visual cortex, where
distinct foveal stimulation would most likely lead to distinct
patterns of responses. Second, regions that did contain
distinct multivoxel patterns (i.e., FFA, OFA) are regions
known to have large receptive fields, which should be rel-
atively insensitive to small changes in the retinal position of
the stimulus. It is possible, however, that regions in intra-
parietal sulcus (IPS) that support reliable MVPC could be
associated with different overt (or covert) states of atten-
tion to different facial features because IPS has been as-
sociated with different locations of covert attention and
saccades (e.g., Schluppeck, Glimcher, & Heeger, 2005).

Although the ROI-based MVPC results reflect task-specific
modulation of face-selective cortex (FFA and OFA), the
exploratory searchlight approach revealed several fronto-
parietal regions (see Figure 4) that contain task-specific
patterns of activity. These signals may represent sources of
top—down control during task set maintenance, in contrast
to the effects of control in target regions like FFA and OFA.
The fronto-parietal findings echo many studies suggesting
that both pFC and parietal cortex play a role in maintaining
behavioral goals, intentions, and abstract task rules (e.g.,
Badre, 2008; Koechlin & Summerfield, 2007; Miller, 2000).
Converging evidence for this idea can be found in several
recent studies, including single neuron recording in mon-
keys (e.g., Asaad, Rainer, & Miller, 2000), human fMRI with
univariate analysis (e.g., Bengtsson, Haynes, Sakai, Buckley,
& Passingham, 2009; Chiu & Yantis, 2009; Braver, Reynolds,
& Donaldson, 2003; Sohn, Ursu, Anderson, Stenger, &

Carter, 2000), and MVPC decoding studies (e.g., Bode &
Haynes, 2009; Esterman et al., 2009; Haynes et al., 2007).

The searchlight analysis revealed several regions in IT
cortex that partially overlap and neighbor the localizer-
defined face-selective regions (see Figure 4). Several rea-
sons for inexact correspondence in these two results are
possible. First, the precise anatomical location of face-
selective cortex is variable across subjects, and the Talairach
transformation is not optimal for combining data across
subjects in this case; the searchlight analysis was conducted
separately in each subject and then combined. Second, and
more importantly, voxels that are revealed by the search-
light reflect visual analysis relevant to categorizations with
ambiguous stimuli (i.e., the main gender/race task); in con-
trast, the face localizer task reflects basic level categoriza-
tion and stimulus matching (see also Nestor, Vettel, & Tarr,
2008).

In summary, we used MVPC to successfully decode spe-
cific face categorization tasks in a subset of the cortical
face network, revealing task-specific attentional modula-
tion of face representations. Within the core face network,
right FFA and bilateral OFA contained discriminable task-
dependent signals. We also observed distinct task-specific
signals in the left dorsal fronto-parietal network (i.e., mid-
dle frontal gyrus, IPS, superior parietal lobule), which may
play a role in abstract goal maintenance. We postulate that
these regions may be sources of the task-specific control
signals that evoke the distinct patterns observed in the
ventral face-selective cortical regions. These results pro-
vide further evidence for the importance of FFA and OFA
in face processing and expand our knowledge of how top—
down attention can flexibly bias information processing to
meet task goals.
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