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Abstract

Current research suggests that autism spectrum disorder (ASD) is characterized by asynchronous neural oscillations.
However, it is unclear whether changes in neural oscillations represent an index of the disorder or are shared more broadly
among both affected and unaffected family members. Additionally, it remains unclear how early these differences emerge
in development and whether they remain constant or change over time. In this study we examined developmental
trajectories in spectral power in infants at high- or low-risk for ASD. Spectral power was extracted from resting EEG recorded
over frontal regions of the scalp when infants were 6, 9, 12, 18 and 24 months of age. We used multilevel modeling to assess
change over time between risk groups in the delta, theta, low alpha, high alpha, beta, and gamma frequency bands. The
results indicated that across all bands, spectral power was lower in high-risk infants as compared to low-risk infants at 6-
months of age. Furthermore high-risk infants showed different trajectories of change in spectral power in the subsequent
developmental window indicating that not only are the patterns of change different, but that group differences are
dynamic within the first two years of life. These findings remained the same after removing data from a subset of
participants who displayed ASD related behaviors at 24 or 36 months. These differences in the nature of the trajectories of
EEG power represent important endophenotypes of ASD.
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Introduction

Understanding the development of psychopathology has re-

cently focused on the importance of endophenotypes. Particularly

in instances where the genetic and neurological etiology of the

disorder is not well characterized, endophenotypes serve as

‘intermediate phenotypes,’ which form a bridge between the

biological and the psychological aspects of neuropsychiatric

phenomena [1]. Endophenotypes are often biological markers

associated with a given disorder and provide insight to its origins.

One characteristic of endophenotypes is that they are often present

in the first-degree relatives of affected individuals. Endopheno-

types have been identified in family members of individuals with

a variety of neuropsychiatric disorder such as depression [2],

schizophrenia [3], bipolar disorder [4], and ADHD [5].

The study of endophenotypes is particularly helpful in un-

derstanding developmental disorders, such as Autism Spectrum

Disorder (ASD), that are defined behaviorally, but are neurobi-

ological in origin. In order to study endophenotypes of ASD and

their relation to developmental processes, recent studies have

focused on the infant siblings of children with ASD [6–8]. These

infants are considered to be at high-risk for developing ASD given

the high heritability and sibling recurrence rates of ASD [9], [10].

Despite the elevated incidence of ASD in this population (i.e. 1:5)

[6], [8], the majority (4:5) will likely not develop ASD, which

makes them a key group to examine the developmental nature of

endophenotypes. Some ASD endophenotypes that have been

identified in high-risk infants are differences in patterns of head

growth in the first year of life [11], ERP differences related to face

processing in 10-month olds [12], [13], and differences in

hemispheric asymmetry in alpha band EEG activity as early as

6 months of age [14]. Given that ASD is a heterogeneous disorder

at both ends of the causal chain–behavioral and genetic–it is likely

that there are many pathways in between that can lead to the

singular ASD diagnosis and endophenotypes may help chart that

intervening territory [15].

Several other candidate endophenotypes that may be function-

ally relevant to the etiology of ASD are related to the integration of

neural networks throughout the brain. A prominent idea in the

neurobiology literature is that ASD is a disorder of neural

synchrony, which has its origins in the functional connections

within and among regions of the brain [16–19]. Studies using

power spectra, a measure of oscillatory amplitude that contributes

to neural synchrony, have documented differences associated with

ASD. Adults with ASD have higher frontal and posterior theta and
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posterior beta power while they also have lower frontal and

posterior alpha power [20]. Children with ASD have been found

to have less delta activity in frontal, central, and posterior regions

and less beta activity in frontal and posterior regions [21].

Additionally, studies of event-related gamma activity have

demonstrated differences in adults and children with ASD,

although there are some inconsistencies in scalp location and in

the direction of the differences [22–25]. Together these studies

support the idea that neural oscillations are disrupted in ASD and

EEG power captures some of the dynamics associated with this

disruption.

Importantly, differences in power of resting EEG, particularly in

frontal regions, have been functionally linked to cognitive

functions that may be relevant to ASD. For example, variation

in low alpha activity is related to individual differences in

temperament [26]. Additionally, gamma power has been shown

to be negatively associated with language skills and general

intellectual abilities [27], while delta and theta power are inversely

related to default mode network activation [28], [29]. Differences

in each of these functions have also been documented in

individuals with ASD [30–32]. Furthermore, in the case of

temperament, variation therein is associated with resting EEG

power in children with ASD [33]. While this appears in a broad

range of cognitive and neural outcomes that are seemingly

unrelated in nature, there is evidence that each one is affected in

individuals with ASD [30], [32], [34]. Each metric of cognitive

function may be the result of a more general set of neural process,

encoded in the time-frequency domain of neural communication,

for which there is evidence of disruption in ASD.

It is unclear to what extent the differences in EEG power

associated with ASD are present specifically in individuals with the

disorder or whether they are also present among their first-degree

relatives. There is a substantial body of evidence showing that

EEG power is an endophenotype of other psychopathologies such

as schizophrenia [35], alcoholism [36], and depression [2], but the

evidence for ASD is limited. Studies from our project on infant

siblings of children with ASD have shown that properties of resting

EEG activity differentiate high- and low-risk infants [37], while

EEG asymmetry in alpha power is lower in high-risk infants [14].

Additionally, Elsabbagh and colleagues [38] documented higher

baseline and lower induced gamma power in high-risk infants

while Rojas and colleagues [39] documented no differences in

baseline gamma power but higher induced gamma power of MEG

activity in parents of children of ASD. Thus, despite the fact that

these studies document differences in first-degree relatives of

individuals with ASD, systematic study of spectral power has not

been done.

Furthermore, despite the fact that changes in spectral power are

evident in individuals with ASD, there are some discrepancies in

the nature of the differences as they relate to the age of the study

participants. For example, despite reporting similar trends in

power of 3–6 Hz resting EEG, Coben et al. [21] reported lower

levels of power in the 1.5–3.5 Hz range in children with ASD,

while Murias et al. [20] did not report differences in this frequency

range. Given that power of resting EEG changes over de-

velopmental time [40], [41], age differences of the participants

may explain some discrepancies in how power varies in relation to

ASD.

In the current study we examined developmental trajectories in

spectral power of resting EEG in infants at high-risk for ASD.

Specifically, we examined EEG activity in frontal regions of the

brain, as there is structural and functional evidence that these

areas are dysfunctional in ASD [42], [43] and because, as

described above, frontal EEG power is associated with cognitive

traits that are disrupted in individuals with ASD. We hypothesized

that having an older sibling with ASD would confer risk-related

differences in the levels of spectral power as well as on the rate at

which they change within the first two years of life. Examining

longitudinal trajectories of change, as opposed to differences at any

given time point, may provide an additional metric upon which to

evaluate the nature of EEG activity as an ASD endophenotype.

Furthermore, given that an infant at high-risk has a range of

potential outcomes [7], [44], understanding the development of

their neural activity may provide insight into why an individual

follows one developmental path and not another.

Methods

Participants
Participants were drawn from a larger sample of infants enrolled

in an ongoing, longitudinal study of early development in infant

siblings of children with ASD. Of the enrolled sample of 168

participants, 146 came in for a study visit, and 140 provided EEG

data. From this number, 122 participants contributed useable data

that are reported on in the present study. All infants had

a gestational age of 36 weeks or greater, no history of prenatal or

postnatal medical or neurological problems, and no known genetic

disorders (e.g., fragile-X syndrome, tuberous sclerosis). Written,

informed consent was provided by the parents or guardians prior

to their child’s participation in the study.

Two groups of infants were included in the sample, infants at

high- and low-risk for ASD. This research design builds on what

we know about the high heritability of ASD [10], [30], [45] and

infants are considered to be at elevated risk if they have at least one

older sibling with the disorder. Indeed, based on a recent report,

the prevalence of an ASD among such ‘‘high-risk’’ infants is

approximately 20 percent (vs. 1 percent among low-risk infants)

[6]. Accordingly, infants were categorized as high-risk for ASD

(HRA) if they had an older sibling with a clinical ASD diagnosis

(n=65). A member of the study staff confirmed with the parents

that the older sibling was exhibiting ASD symptomology using the

Social Communication Questionnaire (SCQ) [46]. The second

group of infants (n=57) was recruited as a low-risk control (LRC)

group. This group of infants had at least one older sibling, for

whom the SCQ was used to confirm that he or she was not

exhibiting ASD symptoms. None of the low-risk infants’ first-

degree relatives had a known developmental disorder.

Sample demographics are presented in Table 1, displaying

means for each group on characteristics of the infants and their

families (note that 24 out of the 122 families provided incomplete

information or declined to report it). In terms of characteristics

that are thought to influence the expression of ASD–parents’ age

at the infant’s birth and the infant’s birth weight–the groups were

largely similar. For father’s age and birth weight, the groups were

indistinguishable (p.0.10). However, the mothers of HRA infants

were on average 1.6 years older than mothers of the LRC infants

(t(120) =22.15, p=0.03). In terms of indices of socioeconomic

status, the groups were indistinguishable on parents’ levels of

education and household income (p.0.10; scales for these

measures are listed at the bottom of Table 1).

In terms of general cognitive abilities, which were assessed at 6,

12, 18, and 24 months, both groups performed similarly (Table 2).

Based on the Mullen Scales of Early Learning [47], there were no

differences in the composite standard score at 6, 12, and 24

months of age, although at 18 months, the LRC infants had

significantly higher scores (LRC=107.09 [SD=10.09];

HRA=94.10 [SD=15.26]; p=0.02). While the groups had

statistically different scores from one another at this age, it is
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important to note that both of these averages were well within one

standard deviation (15) of the population mean (100) for this

assessment.

Data Collection
EEG data were collected during the 6, 9, 12, 18, and 24 month

visits. The mean age of all infants at the 6-month visit was 6.33

months (SD=0.36), at the 9-month visit was 9.15 months

(SD=0.28), at the 12-month visit was 12.22 months (SD=0.39),

at the 18-month visit was 18.22 months (SD=0.47), and at the 24-

month visit was 24.19 months (SD=0.35).

To collect resting EEG data, infants were seated on their

mothers’ laps in a dimly lit room while a research assistant

engaged their attention by blowing bubbles during the entire

recording session. Typically, 2 minutes of resting EEG activity

were recorded. EEG data were recorded using a 64-channel

Geodesic Sensor Net System or a 128 HydroCel Sensor Net

System (EGI, Inc, Eugene OR). The net is comprised of an elastic

tension structure forming a geodesic tessellation of the head

surface that contains carbon fiber electrodes embedded in pedestal

sponges. At each vertex is a sensor pedestal housing an Ag/AgCl-

coated, carbon-filled plastic electrode and sponge containing saline

electrolyte. Prior to fitting the sensor net over the scalp, the

sponges are soaked in electrolyte solution (6cc KCl/liter distilled

water) in order to facilitate electrical contact between the scalp and

the electrode. In order to assure the safety and comfort of the

infant, the salinity of the electrolyte solution was the same as tears.

Prior to recording, measurements of channel gains and zeros

were taken to provide an accurate scaling factor for the display of

waveform data. The infant’s head was measured and marked with

a washable wax pencil in order to ensure accurate placement of

the net, which was then placed over the scalp. Scalp impedances

were checked on-line using NetStation (EGI, Inc, Eugene, OR).

EEG data were collected and recorded using NetAmps 200

Amplifiers (EGI, Inc, Eugene, OR) and the NetStation software.

The data were amplified, filtered (bandpass 0.1–100.0 Hz), and

sampled at a frequency of 250 Hz. They were digitized with a 12-

bit National Instruments Board (National Instruments Corp.,

Woburn MA).

At the start of the study, we employed the 64-channel Geodesic

Sensor Nets, but halfway through the study, changed to the 128-

channel Hydrocel Geodesic Sensor Nets because the company was

no longer making or supporting the original nets. Given the timing

of the implementation of the new electrode nets and the ongoing

nature of this study, differing numbers of participants were tested

on the 128-channel nets. The number of participants tested with

each net did not differ based on risk group. However, subjects

tested with the 128-channel net tended to contribute more sessions

of good data (p,0.05). In order to ensure that the change in

equipment did not influence the results of the analysis, we tested

net type in our analyses but we found no statistically significant

effects (p.0.10 in all cases).

Data Reduction
Within NetStation, EEG data were digitally filtered (2–50 Hz)

and re-referenced using an average reference that was applied

after having excluded channels in close proximity to the eyes. Data

were then exported to Matlab 7.6 and using EEGLAB [48] data

were visually inspected; movement and electrical artifact (as

evidenced by large amplitude fluctuations that exceeded +100 mV)
were removed. Data segments were a minimum of 10 seconds long

for inclusion in further analysis. The average segment length of

usable data for LRC infants was 50.91 s (S.D. = 26.09 s) and for

HRA infants was 46.39 s (S.D. = 22.35 s). As shown in Table 3,

segment length increased with the age of the infants and

consequently all models controlled for its effects. The number of

subjects who contributed data at a given age in each group and the

average amount of data they contributed is listed in Table 3. Fifty-

nine percent of the sample contributed data at multiple time

points. In this study, subjects contributed usable data for on

average 1.96 sessions (SD =1.01) with a range of 1–5. The

statistical methods described below accommodate both the

longitudinal and cross-sectional nature of these data.

Data were post-processed using in Matlab 7.6 wherein the psd

function was used to calculate the power spectral density (PSD),

Table 1. Comparison of infants in the low risk control group (LRC) and the high risk for autism group (HRA) on demographic
characteristics.

n LRC n HRA t(df) p

Infant’s birthweight 57 7.70 lbs (1.18) 65 7.75 lbs (0.98) 20.25(120) 0.80

Mother’s age at infant’s birth* 57 33.38 yrs (4.18) 65 35.17 yrs (4.93) 22.15(120) 0.03

Father’s age at infant’s birth 57 36.35 yrs (5.16) 65 37.98 yrs (5.34) 21.69(120) 0.09

Mother’s education levela 44 6.00 (1.61) 57 5.65 (1.79) 1.02(99) 0.31

Father’s education levela 44 5.68 (2.01) 57 5.55 (1.75) 0.74(99) 0.46

Household incomeb 42 7.07 (1.96) 55 7.38 (1.43) 20.90(95) 0.36

(a) Education was reported on a scale of 1–9. (1) some high school; (2) high school graduate; (3) some college; (4) community college or 2 yr degree; (5) 4 yr college
degree; (6) some graduate school; (7) master’s degree (8) doctoral degree; (9) professional degree.
(b) Income was reported on a scale of 1–8. (1) less than $15,000; (2) $15,000–25,000; (3) $25,000–35,000; (4) $35,000–45,000; (5) $45,000–55,000; (6) $55,000–65,000; (7)
$65,000–75,000 (8)more than $75,000. *Significant at p,0.05.
doi:10.1371/journal.pone.0039127.t001

Table 2. Amount of data contributed by each group at each
age.

Age (mos) n Low Risk Control n High Risk Autism

6 34 47.44 (26.30) 25 39.20 (18.25)

9 32 53.70 (26.98) 30 49.82 (21.58)

12 23 46.57 (23.63) 36 43.36 (23.77)

18 11 53.82 (26.01) 24 52.25 (22.67)

24 10 60.60 (26.45) 20 48.65 (22.93)

Amount of data in seconds, standard deviation in parentheses.
doi:10.1371/journal.pone.0039127.t002
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using a 50% overlapping, 4-second Hanning window with

a frequency bin of 0.25 Hz. The bands we analyzed were defined

as follows: delta (2–4 Hz), theta (4–6 Hz), low alpha (6–9 Hz),

high alpha (9–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz).

Here we report absolute PSD values, which were analyzed after

being natural log transformed. This transformation is necessary for

linearizing the 1/f scaling property that is characteristic of power

spectra in humans [49].

The analysis reported here focused on frontal regions of the

brain. One of the more consistent findings in the ASD literature

is that frontal regions display differences in spectral power [20],

[21], [50], [51] and activity in this area has been functionally

related to behaviors that are typically disrupted in ASD [52].

The electrodes that were selected for this analysis cover an area

of the scalp that is typically used in frontal EEG studies [53].

Each set of electrodes was centered on the F3and F4 electrodes

of the 10–20 system, which cover the same area of the scalp (64

channel net left: 8, 9, 13, 16 and right 3, 57, 58, 62; 128

channel net left: 18, 19, 20, 23, 24, 27 and right: 3, 4, 10, 118,

123, 124). PSD were calculated for the electrodes individually

and then averaged to give a mean PSD for each frequency

band for the left and right frontal areas.

Statistical Analysis
We employed multilevel modeling for change (also referred to as

hierarchical linear modeling or mixed linear modeling) to assess

the trajectories of change in band power. As mentioned previously,

not all infants contributed viable data at each study visit, either

because they did not complete the EEG portion of the study or

because of technical problems with the EEG recording. However,

the multilevel model for change is well suited for dealing with

longitudinal data that is unbalanced [54]. We used SAS PROC

MIXED and full maximum likelihood estimation for these

analyses.

The mean band power values at each age in the LRC and HRA

groups are listed in Table 4. In order to statistically assess the

differences in these values over time and between groups, the

multilevel model estimates two types of parameters that charac-

terize a trajectory: initial status and slope. This is tantamount to

regressing spectral power in a given frequency band on the main

effect of age (c10), the main effect of risk group (c01), and the

interaction between the two (c11). We also tested a quadratic form

of age (c20), as individual growth plots suggested a curvature in the

trajectories and because previous work has found quadratic effects

in EEG development [40]. We included hemisphere (c02), gender
(c03), and birthweight (c04) as covariates, none of which interacted

significantly with age. We also tested several other covariates that

might influence spectral power as related to ASD including

mother and father’s age at the infant’s birth. None of these

variables had significant effects for any of the frequency bands and

therefore were not included in the model. Thus, the hypothesized

model was:

Yij~c00zc10(AGE 6)ijzc20(AGE 6)2zc01RISKi

zc11(AGE 6)ij|RISKi

zc02HEMISPHEREijzc03GENDERi

zc04BIRTHWEIGHTizer

where Yij is the level of power spectral density in each band for

child i at time j and residuals e. Parallel analyses were conducted

for all frequency bands. The multilevel model for change can be

specified in either a level-1 (intra-individual)/level-2 (inter-in-

dividual) format or in a mathematically equivalent composite

format. Here, we used the composite format, which renders the

fitted models in the form of a single linear statistical model with

a complex error covariance structure. This approach permitted us

to specify the error covariance structure explicitly and to account

for the doubly repeated nature of the outcome, between hemi-

spheres and across time. We used a modified compound symmetry

covariance matrix that allowed the composite residuals to be

homoscedastic and autocorrelated across occasions between

hemispheres, with different intra-class correlations (see supporting

information S1 for full specification and explanation).

Results

Parameter estimates of fixed and random effects and associated

significance levels are listed for all bands in Table 5 and fitted

trajectories for each band are displayed in Figure 1. Differences

along these trajectories (at 9, 12, 18, and 24 months) were

evaluated with linear contrast tests using the Wald statistic [54].

Delta Power
There was a main effect of group (p=0.001) such that delta

power was significantly lower in HRA infants at 6 months as

compared to LRC infants. However, a significant group by age

interaction (p=0.059) indicated that the rate at which delta power

subsequently changed was faster for the HRA infants. For this

band, there was also no statistically significant quadratic term and

thus it was eliminated from the final model. The trajectory for

delta power in LRC infants had a slope that did not differ from

zero (p=0.929). Effectively, the LRC trajectory was flat, changing

only 0.71% between 6 and 24 months, a change that was not

significant as confirmed by post hoc tests (x2 = 0.01, p=0.929). For

HRA infants, the positive slope effectively meant that delta

increased by about 17%, between 6 and 24 months (x2 = 9.71,

p=0.002). Thus, despite starting off with lower power at 6 months,

the delta power trajectory for the HRA infants then converged

with that of the LRC infants’ over the subsequent 18 months

(Figure 1A). Post hoc tests indicated that the group differences in

delta power persisted at 9 months (x2 = 8.23, p=0.004), and 12

months (x2 = 5.85, p=0.010), but by 18 and 24 months they were

no longer different (x2 = 1.82, p=0.177 and x2 = 0.11, p=0.741

respectively). There was also a small, but statistically significant,

hemispheric difference in delta power. The left hemisphere had

about 0.75% more delta power than the right in both the LRC

and HRA groups (p=0.020).

Table 3. Mean standard composite scores on the Mullen
Scales of Early Learning MSEL for infants at low and high risk
for autism.

Targeted Age n Low Risk Control n High Risk Autism

6 mos 33 94.45 (9.42) 25 96.12 (11.04)

12 mos 23 108.78 (14.11) 34 101.18 (15.37)

18 mos* 11 107.09 (10.09) 21 94.10 (15.26)

24 mos 10 108.10 (12.75) 19 107.26 (13.00)

Standard deviation in parentheses.
*Indicates significant at p,0.05.
doi:10.1371/journal.pone.0039127.t003
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Theta Power
Theta power showed different trends than those observed for

delta power. In terms of initial status at 6 months, there was a main

effect of group (p,0.001) such that theta power was significantly

lower in HRA infants. In terms of slope, LRC infants had

significant linear (p,0.001) and quadratic (p,0.001) rates of

change during this period. Only the linear term interacted with

group with a marginal effect of this interaction (p=0.066). The

resultant trajectories (Figure 1B) show that, between 6 and 24

months, power increased by about 25% in the LRC infants and by

38% in the HRA infants. Due to the converging trajectories, post

hoc tests indicated group differences in theta power were not

significant at later time points (9 months: x2 = 3.14, p=0.077; 12

months: x2 = 0.00, p=0.952; 18 months: x2 = 2.29, p=0.130; 24

months: x2 = 1.04, p=0.309).

Alpha Power
Alpha power was divided into low (6–9 Hz) and high (9–13 Hz)

bands given previous research on the frontal alpha rhythm in

infants.53 For low alpha, there was a main effect of group

(p=0.0005) such that HRA infants had lower power at 6 months

of age as compared to LRC infants. The statistically significant

linear (p,0.001) and quadratic (p,0.001) age terms indicated that

the trajectory for the LRC infants was increasing quadratically.

There was an interaction between the linear age term and group

(p=0.058) indicating that the HRA trajectory differed slightly in

shape. This difference can be more readily visualized Figure 1C.

Both the LRC and HRA trajectories demonstrated quadratic

increases in low alpha power. The LRC infants increased by 37%

but the faster linear rate of change in the HRA group effectively

meant that low alpha power increased by 49%. In terms of the

amount of power at each time point, low alpha activity remained

lower in the HRA infants throughout this period with the

exception of 9 months (9 months x2 = 1.05, p = 0.306; 12 months

(x2 = 16.93, p,0.001; 18 months x2 = 42.27, p,0.001; 24 months

x2 = 18.98 p,0.001).

For high alpha power, the main effect of group (p=0.002)

indicated that in HRA infants it was lower than the LRC infants at

6 months of age. Both linear and quadratic age terms were

significant (p=0.0007 and p=0.006 respectively) indicating that

the trajectory of change in high alpha power in LRC infants was

increasing quadratically. The significant interaction between the

linear age term and group (p=0.015) suggested that HRA infants’

linear rate of change increased even faster than that of the LRC

infants. Effectively, high alpha increased by 23% in LRC infants

and by about 40% in HRA infants between 6 and 24 months of

age. The result was that high alpha power in HRA infants started

off lower than in LRC infants, but then appeared to cross over the

LRC trajectory between 18 and 24 months (Figure 1D). Post hoc

tests indicated that the amount of high alpha power was not

different at 9, 12, and 18 months, but that at 24 months, the HRA

infants showed more high alpha power (x2 = 6.29, p=0.013).

Beta Power
For beta power, there was a main effect of group (p=0.0003)

indicating that beta power was lower in the HRA infants than

LRC infants at 6 months. There were significant linear (p=0.044)

and quadratic (p=0.002) rates of change in the LRC infants.

Together these parameters define a beta trajectory that is curved

but decreasing (Figure 1E) and results in decline of beta power of

about 28% between 6 and 24 months. The interaction between

group and the linear age term (p=0.0007) indicates a difference in

slope of the HRA beta trajectory and, as seen in Figure 1E,

effectively means that beta power was changing less quickly.

Across this time period, beta power declined 11% in the HRA

infants. Taken together, these trajectories appear to converge and

post hoc tests indicate that in terms of group differences in the

amount of beta power at given time points, beta power continues

to be lower in HRA infants at 9 months (x2 = 4.64, p=0.032), but

is not longer different at 12 months (x2 = 0.96, p=0.327), 18

months (x2 = 0.00, p=0.977) or 24 months (x2 = 0.20, p=0.668).

In addition to these group differences, we found main effects of

hemisphere, gender, and birthweight in the modeling of beta

power. For both groups, the right hemisphere had more beta

Table 4. Mean power spectral density for each group for
each frequency range at each age collapsed across
hemisphere.

Low Risk Control High Risk Autism

Delta

6 7.60 (0.41) 7.33 (0.47)

9 7.76 (0.43) 7.49 (0.36)

12 7.57 (0.39) 7.43 (0.44)

18 7.63 (0.34) 5.58 (0.36)

24 7.59 (0.32) 7.45 (0.33)

Theta

6 6.69 (0.49) 6.47 (0.50)

9 6.93 (0.45) 6.61 (0.35)

12 6.97 (0.40) 6.72 (0.51)

18 6.93 (0.42) 6.88 (0.50)

24 7.02 (0.54) 6.65 (0.38)

Low Alpha

6 5.74 (0.47) 5.53 (0.46)

9 6.02 (0.42) 5.80 (0.40)

12 6.39 (0.46) 6.06 (0.50)

18 6.25 (0.44) 6.21 (0.47)

24 6.33 (0.35) 6.08 (0.43)

High Alpha

6 4.81 (0.49) 4.54 (0.44)

9 4.94 (0.43) 4.74 (0.36)

12 4.96 (0.42) 4.83 (0.42)

18 5.06 (0.42) 4.92 (0.31)

24 5.18 (0.27) 5.03 (0.38)

Beta

6 4.16 (0.51) 3.81 (0.41)

9 4.29 (0.49) 4.09 (0.42)

12 4.28 (0.42) 4.07 (0.54)

18 4.17 (0.40) 4.14 (0.42)

24 4.71 (0.39) 4.13 (0.41)

Gamma

6 3.31 (0.59) 2.97 (0.44)

9 3.45 (0.54) 3.22 (0.48)

12 3.38 (0.52) 3.13 (0.59)

18 3.14 (0.39) 3.13 (0.59)

24 3.23 (0.50) 3.03 (0.49)

Values presented in natural log of power spectral density. Standard deviation in
parentheses.
doi:10.1371/journal.pone.0039127.t004
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power than the left hemisphere (p,0.001). This difference

translates into about 3% more beta power in the right hemisphere

than the left. There were gender differences too such that boys, on

average, had higher beta power than did girls (p,0.048). Again

this difference was small; boys had about 3% more beta power

than girls did. There was an effect of birth weight where infants

with higher birth weight tended to have lower beta power

(p=0.004). There were no statistical interactions between these

covariates and group nor did these covariates have effects that

changed over time.

Gamma Power
The main effect of group indicated that HRA infants had lower

gamma power than LRC infants at 6 months (p=0.001). The

linear age term was negative and statistically significant (p=0.036).

There was no significant quadratic effect of age. Together, these

two parameters indicate that gamma power in LRC infants was

decreasing between 6 and 24 months, which resulted in a 24%

decline. The interaction between the age term and group

(p=0.060) indicates that the trajectory of gamma power in HRA

infants had a marginally different slope. Effectively, gamma power

was not declining as rapidly in the HRA infants, and in fact

increased by about 3.5%. Because of these different rates of

change, the gamma power trajectories of these two groups appear

to be converging during this time period. Despite these converging

trajectories, post hoc tests indicated that the lower gamma power

in HRA infants persisted through 24 months (9 months x2 = 8.21,

p=0.044; 12 months x2 = 5.17, p=0.024; 18 months x2 = 4.16,

p=0.042; and 24 months x2 = 7.74, p=0.006).

Similarly to beta power, there were main effects of hemisphere,

gender, and birth weight in the modeling of gamma power. For

both groups, the right hemisphere had more gamma power than

the left hemisphere (p,0.001). This difference translates into about

5.5% more gamma power in the right hemisphere than the left.

There were gender differences in that boys had higher gamma

power than did girls (p=0.004). Again this difference was small;

boys had about 6% more gamma power than girls did. There was

an effect of birth weight where infants with higher birth weight

tended to have lower gamma power (p=0.001). There were no

statistical interactions between these covariates and risk status nor

did these covariates have effects that changed over time.

Sensitivity Analysis
In order to confirm that these results were not being driven by

the subset of infants who developed ASD, each model was fitted

after removing data from 4 participants who met ASD criteria at

24 or 36 months. The Autism Diagnostic Observation Scale

(ADOS) [55], a standardized and semi-structured assessment of

ASD, was scored by a trained and reliable study staff member. At

the time of this study, 82 infants had been assessed on the ADOS

at one or both of the time points, 4 of whom met criteria for ASD

(all of whom were HRA infants). After having removed data from

these 4 participants, all results remained essentially the same. The

only difference was that the age by group interaction became

stronger for theta (p=0.037) and gamma (p=0.033). Therefore,

the trajectories described above remained the same confirming

that these effects are characteristic of high-risk infants in general,

not simply driven by the subset who go on to develop ASD

symptoms.

Discussion

General Findings
This is the first study to explore the development of EEG in

infants at high risk for ASD. The main findings are that, in

comparison to infants at low-risk for ASD, infants at high risk have

lower spectral power in all frequency bands at 6 months of age and

that the subsequent rates of change in spectral power differ

between the two groups in all frequency bands. Based on the

differences in these two parameters that define the trajectories,

differences in the amount of power between the two groups are

dynamic across this period of development. While group

differences in delta, theta, and beta power disappear by 24

months of age, power in low alpha, high alpha, and gamma bands

remains different in the high-risk infants. Thus, EEG power is

a promising endophenotype, but because it is age dependent,

group differences at any given age, or lack thereof, may be

misleading. Rather, properties of the trajectories of change in EEG

Table 5. Estimates of fixed and random effects from individual growth models in which ASD risk predicts initial status and the rate
of change in spectral power in infants between 6 and 24 months.

Parameter Delta Theta Low Alpha High Alpha Beta Gamma

Fixed Effects

Intercept c00 7.95*** 7.25*** 5.88*** 5.09*** 4.92*** 4.34***

Age c10 0.0004 0.052*** 0.116*** 0.033*** 0.022* 20.012*

Age2 c20 20.002*** 20.005*** 20.001** 20.002**

ASD Risk c01 20.220** 20.300*** 20.262*** 20.212** 20.274*** 20.285***

ASD Risk*Age c11 0.010* 0.011, 0.012* 0.014* 0.021*** 0.014,

Hemisphere c02 20.057* 20.027 20.003 0.037 0.131*** 0.177***

Gender c03 20.086 20.067 0.032 20.021 20.129* 20.209**

Birthweight c04 20.033 20.060, 20.021 20.037 20.093** 20.117**

Variance Components

s2 0.079*** 0.100*** 0.098*** 0.076*** 0.092*** 0.147***

s1
2 0.096*** 0.112*** 0.109*** 0.099*** 0.119*** 0.129***

s2
2 0.104*** 0.122*** 0.118*** 0.098*** 0.109*** 0.108***

, p,.10; * p,.05; ** p,.01; *** p,.001.
doi:10.1371/journal.pone.0039127.t005
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power may be more robust in their capacity as intermediate

phenotypes that link genetic and behavioral variation.

In addition to documenting that EEG power changes over time

in these infants, we also documented that, in all cases except delta

and gamma power, the shape of trajectories of change are curved.

Thus, the change in these frequencies is not simply a linear shift

that extends uniformly across development. The result of the

differences in slope associated with risk for ASD underscores the

idea that group differences in power are also dynamic. The fact

that group differences in power are observed at 6 months, but not

12 or 18 months as in the case of delta, theta and beta power, that

group differences disappear and then reemerge in the case of high

alpha, and that group differences persist but appear to be on

converging trajectories as in the case of low alpha and gamma

power all foreshadow the fact that if we were to conduct this

analysis later in childhood, we may observe very different patterns

of relative amounts of power in each group. There are two

hypotheses about what may happen. First, the patterns that we

observe here are ones of normalization in which early differences

in the high-risk infants disappear and later show patterns similar to

those of low risk infants. Second, EEG power continues on these

differential trajectories beyond 2 years of age such that group

differences remain dynamic throughout development.

The patterns of early differences followed by convergence of

power trajectories in delta, theta, and beta power may reflect an

early maturational delay that is rectified by 24 months (or

Figure 1. Fitted trajectories of change over time in band power (Low risk control displayed as solid line; High risk for autism
displayed as dotted line). Age (in months) is on the x-axis and the natural log of spectral power (in microvolts squared) is on the y-axis.
doi:10.1371/journal.pone.0039127.g001

Developmental Trajectories EEG Power

PLoS ONE | www.plosone.org 7 June 2012 | Volume 7 | Issue 6 | e39127



potentially shortly thereafter in the case of low alpha and gamma

power). Importantly, the patterns we describe here are represen-

tative of the high-risk group and are not specific to those who

develop ASD. Consequently, the convergence of power values

may reflect the fact that the large majority of HRA infants (i.e.

approximately 80%) will not go on to develop the disorder itself.

However whether the trajectories are normative may be answered

in what lies beyond the points of convergence, which will be

determined by future studies that extend beyond 24 months. Many

studies have documented that brain activity in siblings of

individuals with ASD is different from that of the affected

individual [38], [56], while there is also evidence that brain

structure and function in siblings is still different from typically

developing individuals [57]. Thus, reconciling whether there is

normalization between high risk and typically developing infants

or further differentiation along these trajectories will require

further study of at risk children.

Discussion of Band Specific Findings
Although this study is the first longitudinal analysis of resting

EEG power as it relates to risk for ASD, we can evaluate the

findings of the low-risk infants to previous studies of typically

developing infants. In that context, the results of delta power are

somewhat at odds with previous findings, while the results of low

alpha power are consistent. We found that there was effectively no

change between 6 and 24 months in the low risk control infants in

frontal delta power, whereas Fox and Bell [53] found a decrease

between 7 and 12 months of age. One potential explanation is that

their delta range was defined as 1–4 and ours was 2–4 Hz. The

inclusion of that extra hertz activity–which is generally of high

amplitude–may have been enough to push the trend to a significant

decrease. In terms of low alpha power, Fox and Bell [53]

documented an increase in power of this frequency range between

7 and 12 months of age, and we not only confirm this finding, but

provide evidence that the trend continues into the second year of

life. Further investigation of resting frontal alpha power in the high

risk group is of interest because it is correlated with joint attention

[52], a cognitive function that is disrupted in ASD [58], [59] and

in infants at risk for ASD [60]. Therefore, understanding the

development of activity in this frequency range may have

important explanatory power for cognitive functions affected in

the broader ASD phenotype.

The only other longitudinal study of theta was conducted in

much older children and found a decreasing amount of theta

power [40]. Our results would be consistent with that finding if the

quadratic rates of change continued beyond 2 years. In other

words, the increasing trajectory we found may not be discrepant

with the decreasing trajectory documented by Gasser and

colleagues [40], rather they may represent different parts of

a common quadratic trajectory.

We found that beta (13–30 Hz) power is lower in high-risk

infants early on, but is no longer distinguishable from that of low

risk infants after 18 months of age. In another study of infants at

high risk, Elsabbagh et al. [38] found no differences in beta (20–

30 Hz) in 10-month-old infants in the frontal regions. However,

their baseline segments were taken from an event related paradigm

in which faces were serially presented to the participants. The

repetition in stimuli presentation may have had an effect that

modulated the frequency content of their baselines as well.

Studies of resting gamma activity have documented that, in

childhood, there are fluctuations in gamma power. For example,

Takano & Ogawa documented that frontal gamma power

increases between the ages of 3 and 4, but shows multiple periods

of decreasing between 5 and 12 years of age [61]. Our findings

that gamma power decreased between 6 and 24 months of age in

low risk infants are consistent with this dynamic change over time.

Elsabbagh et al. [38] found no differences in baseline gamma

power in the frontal regions in 10-month-old high-risk infants. As

in the case of the differences in beta power findings described

previously, one possible explanation is that the baselines were

affected by the serial presentation of the stimuli. Alternatively, it

could be due to the structure of the baseline condition itself. Given

that gamma power is sensitive to perceptual properties involved in

object representation [62], a finding that appears to extend into

infancy [63], one possible explanation for this discrepancy could

be due the perceptual difference in the visual stimuli involved in

these conditions. The participants in our study were watching

bubbles, while in Elsabbagh et al. [38] they watched a fixation

cross. The difference in movement and social content associated

with a researcher blowing the bubbles may account for this

difference, but it does not undermine the finding that the infants

showed difference patterns of change in gamma power based on

the genetically conferred risk for ASD.

Importantly, the changes in gamma power described here are

consistent with other studies that look at the relationship between

frontal gamma power in resting EEG and endophenotypes of risk

for autism [39] and language impairments [27], [64]. Rojas et al.

[39] found that parents of children with ASD also have lower

gamma power, while Benasich and colleagues [27] found that

lower gamma power in children at risk for language impairments

and that this difference in correlated with language performance

and IQ.

Future Directions
Given that there is important neurocognitive development

during this period [65], [66], there may be long-term con-

sequences of these early differences in neural oscillations. The

synaptic changes that characterize this period of development

mean that the organization and synchrony of cortical networks is

continuously changing. With synaptic pruning, myelination, and

the reinforcement of synaptic connections through the period of

development, the relative contribution to short range and long-

range connections change over time [67]. Importantly, synchro-

nous activity is not only the consequence of maturational and

developmental processes, but helps shape such processes as well

[68], thus early perturbations of neural oscillations may be

disruptive of long-term cognitive outcomes. Because siblings of

individuals with ASD are at higher risk not only for ASD, but also

for symptoms of the broader ASD phenotype [69], disruption of

neural oscillations may be related to subclinical outcomes, not just

clinical outcomes.

The underlying mechanisms that account for oscillatory

dynamics and the differences we document here are important

topics for future research. In terms of gamma power, there is some

genetic evidence that implicates inhibitory interneurons in

generation and regulation of oscillations in this frequency range

[70], [71]. Furthermore, interneurons have been implicated in the

pathophysiology of neurodevelopmental disorders generally [72]

and in ASD more specifically [73], [74]. Both computational and

functional studies of gamma activity have demonstrated that

interneurons are involved in the generation of neural activity

within this frequency range via gap junction and GABA activation

pathways [75], [76]. It is unclear whether it is through these

synaptic pathways that gamma activity is affected in ASD and the

broader phenotype, although some research suggests that synaptic

communication is at the heart of ASD related pathophysiology

[77]. Research on GABA function suggests that mutations in genes

associated with GABA receptors are found in some individuals
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with ASD [78] and that GABA levels are abnormally high in some

children with ASD [79]. Furthermore, Rubenstein and Merzenich

[80] describe ASD as a disorder in the ratio of excitatory/

inhibitory activity in cortical networks. Their research has

identified a reduction in GABAergic signaling as a possible

mechanism through which this imbalance occurs.

The extent to which these cellular mechanisms relate to

endophenotypes of ASD or whether they are specific to an ASD

diagnosis are issues that remain unexplored. However their

resolution may provide critical information for the understanding

of the biological processes that determine whether risk for ASD

leads to typical or atypical outcomes. In conclusion, this paper

reports that infants at elevated risk for developing autism show

atypical neural oscillations across several frequency bands during

the first two years of life. During this developmental window,

siblings of children with ASD show markedly different de-

velopmental trajectories of change of EEG power. Characteristics

of these trajectories serve as potentially important endophenotypes

of ASD.
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