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Abstract

We present the Cumulative Sum (CUSUM) stopping rule,
applied to Computer Vision problems, to automatically de-
tect changes in either parametric or nonparametric distri-
butions, online or off-line. Our approach is based on us-
ing the previously received data of the sequence to detect
a change in data that are to be received. We assume that
no significant change has occurred up to an unknown time
instance. Then a change in the distribution of the observa-
tions occurs and the objective is to estimate this instance.
We test the hypotheses of no change occurs vs. a change
occurs at the current frame, which is done by the CUSUM
stopping rule. We apply our framework to the case of con-
tinuous 3D hand tracking, where the high dofs, the fast fin-
ger articulations, the large rotations and the frequent occlu-
sions often cause error accumulation. Also we illustrate the
performance of our approach in video segmentation, and
specifically in segmentation of fingerspelling in American
Sign Language (ASL) videos.

1. Introduction
The detection of abrupt changes is a crucial open prob-

lem. So far, methods using parametric distributions, such as
Kalman Filter [15], and nonparametric distributions, such
as the CONDENSATION algorithm [6], make assumptions
on temporal continuity, e.g. motion smoothness, and cannot
formally deal with abrupt changes. Therefore, the detection
of such changes and coupling or switching between differ-
ent methods is necessary.

We present an approach to detecting changes in videos
and coupling between different methods. The main moti-
vations of our work are: (i) to detect abrupt changes in se-
quences online, (ii) to detect change-points in noisy signals,
(iii) to obtain reliable temporal boundaries when we do not
have training samples, and (iv) in cases where training data
are available, to assist other methods, such as HMMs [12],
when abrupt changes occur and the continuity assumptions
do not hold [3].

We introduce to Computer Vision the Cumulative Sum
(CUSUM) stopping rule [4], a statistical procedure that de-
tects changes in both parametric and nonparametric distri-
butions, either online or off-line. CUSUM assumes that the
input signal is in-control, i.e. no significant change has oc-
curred up to an unknown time instance. Then a change
in the input signal occurs and the objective is to estimate
this instance. For each frame, we test the hypotheses of no
change occurs vs. a change occurs at the current frame,
which is done by the CUSUM stopping rule.

We focus on two major tasks of Computer Vision,
namely object tracking and video segmentation. For the
case of object tracking, we focus on the 3D hand tracking,
where the high dof s, the fast finger articulations, the large
rotations and the frequent occlusions cause error accumu-
lation, which is difficult to overcome; therefore, the need
for automatic tracker re-initialization emerges and this can
be done by using a discrete tracking method. For the case
of video segmentation, we focus on American Sign Lan-
guage (ASL) videos. In this case, we use the hand shape
changes to discriminate between different linguistic phases,
namely the fingerspelling and the continuous signing [19].



We chose to use this application for our approach due to the
large segmentation ground-truth information available. Fur-
thermore, fingerspelling segmentation is a crucial task for
the ASL (and all sign languages) recognition [20]. This is
because the internal linguistic structure of these two phases
differs significantly, and thus the strategies required for
recognition of these signs must differ accordingly. This is
an example where HMMs, which have been used in the past
for ASL recognition [20], and our approach can be coupled
into an integrated recognition scheme.

In Section 2 we describe the previous work on change-
point detection, 3D hand tracking and ASL recognition.
Due to the limited space, we could not include general lit-
erature on tracking and video segmentation. In Section 3
we describe the CUSUM framework, in 4 we describe the
two indicative applications, namely the hand tracking (4.1)
and the ASL video segmentation (4.2). In the same Section,
we show the results of our approach on the specific input
signals. Finally, in Section 5 we give our conclusions.

2. Previous Work
One of the major problems in Computer Vision is 3D

tracking of articulated objects, such as hands [13, 7, 18, 1].
Hand tracking is an indicative example of the difficulties
emerging, namely large rotations, fast movements (finger
articulations) and occlusions, mainly due to the hands’ high
dof s.

There are generally two major approaches for tracking:
(i) parametric, such as Kalman Filter [15], where a single
parametric distribution models the input observations, and
(ii) nonparametric, where the input observations are mod-
eled based on nonparametric [6] or mixtures of parametric
distributions. Among these approaches, there are (i) contin-
uous methods [9, 22, 7, 13, 18, 17] that use both temporal
and static information from the input sequence, and (ii) dis-
crete methods [1, 16], which handle each frame separately,
using only static information and some kind of prior knowl-
edge. Continuous trackers provide high accuracy and low
complexity, exploiting the continuity constraints over time.
When the assumptions of smooth motion do not hold, con-
tinuous trackers may fail, and the they usually cannot re-
cover easily. On the other hand, discrete approaches do not
suffer from error accumulation over time, giving indepen-
dent solutions at each time instance, but their accuracy de-
pends on the generality of the prior knowledge they utilize
and they are usually time consuming. For robust continuous
tracking over long time, automatic tracker re-initialization
or coupling between continuous and discrete tracking is
necessary. Therefore the change-point, i.e. when the con-
tinuous tracker starts losing track, needs to be detected.

Another problem in Computer Vision is the video seg-
mentation. An example of video segmentation is found in
the recognition of Sign Language. So far, HMMs have been

used only for continuous signing recognition [20], whereas
recognition strategies for fingerspelling [5] must be funda-
mentally different. However, fingerspelling segmentation
within a fluent stream of signing is non-trivial, as many of
the same handshapes that are used as letters are also used in
the formation of other types of signs. Therefore the change-
points, i.e. when a fingerspelling phase begins and ends,
need to be detected.

Page [11] proposed the CUSUM test, in connection with
industrial quality control, for change-point detection. The
problem of optimal sequential change-point detection was
solved by Shiryaev [14], who proposed solution both for
discrete and continuous time in a Bayesian framework. The
CUSUM test was proven optimal, in the minmax Lorden
sense [8], by Moustakides in 1986 [10]. A good example
of the generality of the CUSUM procedure is the work of
Chen et. al. [3], where the change-point detection assists
the coupling (switching) between different HMMs.

3. Our Method
We apply the CUSUM procedure for the detection of

temporal changes in video sequences. We describe how this
framework is applied to (i) tracking, and specifically to the
case of the 3D hand tracking, and (ii) video segmentation,
focusing on the case of fingerspelling segmentation in ASL
videos.

The main advantages of our framework are: (i) it de-
tects change-points online, (ii) it exploits statistical mea-
surements of the input signal without the need of training
samples, (iii) it is robust to noise, (iv) it can assist exist-
ing dynamic learning methods when abrupt changes violate
continuity assumptions, and (iv) it can be used in a variety
of Computer Vision tasks, where changes in sequential data
need to be detected on- or off-line.

Consider the case of object tracking, where we have
X1, . . . , Xn observations from the input frames of a video.
Suppose our tracker is initially in-control, i.e., the varia-
tion of these observations is due to an assignable cause, and
hence the tracker can handle it. At an unknown instance
τ , the tracker goes out-of-control, i.e., starts failing. The
objective is to detect the change from in-control to out-of-
control as soon as possible.

3.1.1 Mathematical formulation

Assume that the tracker fails at an unknown time τ > 1.
Also assume that the input observations X1, . . . , Xτ−1 are
independent random variables with a probability density
function f0(Xi), while the observations Xτ , Xτ+1, . . . are
independent random variables with a probability density



function f1(Xi). The probabilistic setting of the problem
can be summarized as follows: (i) Pτ is the probability
that the change from f0 to f1 occurs at time τ , and (ii) P0

is the probability that the change from f0 to f1 never oc-
curs. Thus, our problem consists of testing the composite
hypotheses:





H0 : The tracker never fails

vs.

H1 : The tracker fails at time τ = 1,
or
H2 : The tracker fails at time τ = 2,
etc.

, (1)

3.1.2 The CUSUM stopping rule

Suppose that we have obtained X1, . . . , Xn observations up
to an instance n, and we test the above hypotheses for these
observations. According to the Neyman-Pearson lemma for
conducting any simple hypothesis test [2], the Uniformly
Most Powerful test is the one for which we reject the null
hypothesis (H0) whenever,

n∑

i=τ

log
f1(Xi)
f0(Xi)

> ν, (2)

assuming the observations are independent variables. This
suggests that for the testing of eq.(1), a reasonable test
would be to reject the null hypothesis whenever





either
∑n

i=1 log f1(Xi)
f0(Xi)

> ν,

or
∑n

i=2 log f1(Xi)
f0(Xi)

> ν,

. . .

or
∑n

i=n log f1(Xi)
f0(Xi)

> ν

(3)

The above is equivalent to rejecting the null hypothesis
whenever

max
0≤τ≤n

n∑

i=τ

log
f1(Xi)
f0(Xi)

> ν (4)

assuming the log likelihood ratio log f1(X0)
f0(X0)

= 0. This gives
rise to the following stopping rule,

Tc = min{n : max
0≤τ≤n

n∑

i=τ

log
f1(Xi)
f0(Xi)

> ν}, (5)

where Tc is the time when the tracker fails.

Definition 1 Let Sj =
∑j

i=1 log f1(Xi)
f0(Xi)

and S0 = 0.
Then we have:

1. The CUSUM statistic process:

Sn − min
0≤k≤n

Sk (6)

2. The CUSUM stopping rule:

Tc = min{n : Sn − min
0≤k≤n

Sk > ν} (7)

Moreover, let us introduce a computation-friendly ver-
sion of the CUSUM stopping rule. Let g(Xi) = log f1(Xi)

f0(Xi)

and define Dn = max{0, Dn−1 + g(Xn)} with D0 = 0.
Then the stopping rule of eq. (7) becomes,

Tc = min{n : Dn > ν} (8)

3.1.3 Optimality of the CUSUM stopping rule

The objective is to detect a change from successful track-
ing (in-control) to loss of track (out-of-control), as soon as
possible, while controlling the frequency of false alarms γ.
Thus, our aim is to minimize over all stopping rules the
worst detection delay [8],

J(T ) = sup
τ

Eτ [(T − (τ −1))+ | σ{X1, . . . , Xτ−1}], (9)

subject to the frequency of false alarm constraint (γ > 0),
E0[T ] ≥ γ, where E0[T ] denotes the expectation of having
false alarm while in-control (distribution f0).

In the above formulation, (T − (τ − 1))+ is the de-
tection delay of our stopping rule and it is (T − (τ −
1))+ = max{0, (T − (τ − 1))}. Also, σ{X1, . . . , Xτ−1}
is the sigma algebra generated by the observations, i.e., it
is the information carried after having observed everything
up to time τ − 1. In this expression the detection delay
(T − (τ − 1))+ is projected based on what is observed
up to time τ − 1. Obviously, the conditional expectation
Eτ [(T − (τ − 1))+ | σ{X1, . . . , Xτ−1}] is a random vari-
able, since it depends on the observations X1, . . . , Xτ−1.
Thus, the above expression gives us the essentially largest
value that one can get for the expected delay given the dif-
ferent X1, . . . , Xτ−1 one can have as observations.

Notice that, due to the fact that the CUSUM statistic is
always non-negative (see definition 1), the worst detection
delay over all possible observations up to time τ , and all
possible change points τ , will occur whenever, at time τ ,
the CUSUM statistic takes the value 0.

As proven by Moustakides in 1986 [10], the CUSUM
stopping rule is the optimal solution to the above problem,
where the threshold ν is chosen so that E0[T ] = γ.

3.1.4 Parametric Considerations

Consider the case that f0(Xi) and f1(Xi) belong to the
one-parameter exponential family of distributions. In other



words, let f0(Xi) = h(Xi) · exp{θ0t(Xi) − ψ(θ0)} and
f1(Xi) = h(Xi) · exp{θ1t(Xi) − ψ(θ1)}, where t(Xi) is
the sufficient statistic. Then, the CUSUM stopping rule is
calculated from eq. (7) (for l = n, k),

Sl = (θ1 − θ0)
l∑

i=0

t(Xi)− l · (ψ(θ1)− ψ(θ0)), (10)

In particular, if fi is a gaussian N(θi, σ
2), for i = 0, 1,

where σ2 is assumed to be known, then the sufficient statis-
tic t(Xi) = Xi and ψ(θi) = θ2

i , and the CUSUM stopping
rule is calculated from eq. (7) (l = n, k),

Sl = 2(θ1 − θ0)
l∑

i=0

Xi − l · (θ2
1 − θ2

0), (11)

In order to computationally simplify eq. (7) under these
assumptions, we distinguish the following two cases:
1. θ1 > θ0: Let dn = max{0, dn−1 + (Xn − θ1+θ0

2 )} and
d0 = 0, then

Tc = min{n : dn > ν} (12)

2. θ1 < θ0: Let en = max{0, en−1 − (Xn − θ1+θ0
2 )} and

e0 = 0, then
Tc = min{n : en > ν} (13)

3.1.5 Nonparametric distributions

Notice that the above computational forms are applicable
even in the case that there are no distributional assump-
tions. In particular, we apply the above CUSUM stopping
rules (12), (13) by only assuming that E[Xi] = θ0 for
i = 1, 2, . . . , τ − 1 and E[Xi] = θ1 for i = τ, τ + 1, . . ..

4. CUSUM in Video Sequences
To describe how this framework applies to video pro-

cessing tasks, we use two indicative examples, namely ob-
ject tracking and video segmentation. In both cases there
is a need of change-point detection. For the case of track-
ing, we detect the time instances when a continuous tracker
loses track, and thus we must re-initialize it. For the video
segmentation case, we need to detect temporal boundaries
or equivalently time (frame) windows of interest.

For the case of hand tracking, we primarily use the
model-based continuous tracker of [9], to obtain hand con-
figurations fast and accurately. In this case, the high dof s,
the fast finger articulations, the large rotations and the fre-
quent occlusions cause error accumulation, difficult to over-
come, leading to the loss of track. Thus, our aim is to detect
the time instances when the continuous tracker starts los-
ing track, so that we can re-initialize it. As an example of

this re-initialization, we used the appearance-based discrete
tracking method of [19]. Note that we use these two track-
ers as an example, and their detailed description is beyond
the purposes of this paper.

An important task to achieve accurate tracking by cou-
pling two different trackers, such as [9] and [19], is to de-
fine a criterion that will determine whether the continuous
tracker performs well or may fail. Based on the mathemat-
ical formulation as described in 3.1, this criterion should
play the role of the observations Xi’s, in which we aim
to detect the change-points. For the 3D hand tracking ap-
plication, as observations we use the differences between
the hand contour in two successive frames. More specif-
ically, let Ci−1 = [Ci−1(p) | p = 1, . . . , P ] be the ex-
tracted 2D hand contour on the image plane, at frame
i − 1, for a pre-defined number of points P . Similarly, let
Ci = [Ci(p) | p = 1, . . . , P ] be the extracted hand contour
at the next frame i. Obviously, since these contours are the
result of a 2D tracking, there is correspondence between the
contour point sets Ci−1 and Ci.

We define as observation Xi for the CUSUM procedure
and for each frame i, the difference between two successive
hand contours,

Xi = ‖Ci −Ci−1‖ =

√√√√
P∑

p=1

[Ci(p)− Ci−1(p)]2 (14)

Notice that the above distance between successive con-
tours does not only denote how much the hand shape
changes but also estimates the contour displacement on
the image plane. In both abrupt displacements and shape
changes, any continuous tracker may fail as explained be-
fore.

Fig. 1 illustrates an example of 3D hand tracking using
the trackers of [9] and [19], in 450 frames of a sequence
(seven key-frames are shown). The first column shows the
original frame, the second column shows the continuous
tracking ([9]) results, whereas the third column shows the
discrete tracking ([19]) results. In frame 250 we can see that
the continuous tracker starts losing track. In this frame, we
need to re-initialize the continuous tracker, therefore we use
the discrete tracker result. After the model re-initialization,
we can see that the continuous tracker performs well.

The corresponding hand contour changes, used as obser-
vations Xi’s in the CUSUM procedure, are illustrated in the
plot of Fig. 2, where the estimated change-point is the frame
247. The corresponding observation value (contour change)
is X247 = 6.1336. In this plot we also show that the con-
tinuous tracker needs to be re-initialized at more than one
frames. The window in which the discrete tracker gives so-
lutions is defined by the horizontal line X = 6.1336 shown
in the plot.



frame]40

frame]110

frame]250

frame]320

frame]370

frame]390

frame]450

Figure 1. Continuous tracking results and tracker re-initialization (frame ]250) from the discrete tracker.

For the case of video segmentation, and to illustrate the
performance of our approach on specific segmentation cri-
teria, we focus on American Sign Language (ASL) videos.

Most signs in American Sign Language (ASL) and other
signed languages are articulated through the use of particu-
lar handshapes, orientations, locations of articulation rel-
ative to the body, and movements. However, a subclass

of signs in ASL, the fingerspelled signs - generally proper
names and other borrowings from the spoken language -
are instead produced by concatenating handshapes that cor-
respond to the 26 letters of the alphabet [21].

Recognition strategies for fingerspelling [5] must be fun-
damentally different from those used for other signs. How-
ever, fingerspelling segmentation within a fluent stream of
signing is non-trivial, as many of the same handshapes that
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Figure 2. CUSUM results for the change-point detection in the
case of Fig. 1.

are used as letters are also used in the formation of other
types of signs.

In our framework, we exploit an identical property of
fingerspelling to facilitate its segmentation, i.e., the more
rapid movements of individual fingers that occur during this
phase, than the finger movements that are typically found
in other types of signs. Thus, we apply the CUSUM pro-
cedure to detect faster finger articulations, using the hand
shape changes. Note that fast finger articulations corre-
spond to great changes of the projected hand contour. On
the other hand, the contour changes defined in eq. (14) can-
not be used in this case, since we are only interested in shape
changes and not the displacements of the hand.

We define as observation Xi for the CUSUM procedure
and for each frame i, the difference between the curvatures
of two successive hand contours Ci−1 and Ci,

Xi = ‖Ki −Ki−1‖ =

√√√√
P∑

p=1

[Ki(p)−Ki−1(p)]2, (15)

where Ki−1 = [Ki−1(p) | p = 1, . . . , P ] and Ki =
[Ki(p) | p = 1, . . . , P ] are the curvatures of the contours
Ci−1 and Ci respectively. Also, it is Kl = ẋlÿl−ẍlẏl

[ẋl
2+ẏl

2]3/2 , for
l = i − 1, i, where (xl, yl) are the cartesian coordinates of
the contour on the image plane.

Table 1 shows the segmentation results for eight ASL
videos. As mentioned in the introduction, the videos we
used are annotated, so that we know what is said (signed)
and we have as ground-truth the actual frames where fin-
gerspelling is performed. The first column shows the video
number, the second column shows the actual number of the
fingerspelling segments in the sequence, the third column
represents the ground-truth fingerspelling frame windows,
and the fourth column shows the CUSUM results using the
hand curvature change of eq. (15). The main reason for
the difference between the actual and estimated boundaries
is that before and after the actual fingerspelling, there is in-
creased finger articulation, which does not correspond to the

vid. seg. ground− truth CUSUM

(1) 1 (43− 55) (36− 57)
(2) 1 (151− 181) (146− 185)
(3) 1 (43− 65) (45− 69)
(4) 1 (71− 81) (69− 85)
(5) 2 (53− 67, 87− 101) (55− 71, 85− 101)
(6) 2 (51− 69, 83− 101) (46− 73, 81− 101)
(7) 2 (25− 47, 145− 173) (21− 45, 143− 175)
(8) 2 (21− 29, 125− 159) (19− 31, 121− 163)

Table 1. Fingerspelling segmentation results for eight ASL videos
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Figure 3. CUSUM results for the fingerspelling segmentation in
videos (1) and (5) of Table 1.

fingerspelling phase, but it is just a transition to and from
this phase.

Two graphical examples of the fingerspelling segmen-
tation are shown in Fig. 3. Both plots represent the in-
put observations as defined in eq. (15), and the estimated
fingerspelling boundaries are shown with the lighter lines.
In Fig. 3(a), we show the results for video (1) of Table 1,
where there is only one fingerspelling phase. In Fig. 3(b),
we show the results for video (5) of Table 1, where both
fingerspelling segments are successfully detected and their
boundaries are accurately estimated.



5. Conclusions
In this work, we presented the statistical CUSUM

change-point detection procedure applied to video se-
quences to detect motion changes and switch between dif-
ferent methods. Our motivation came from problems where
temporal continuity assumptions are violated. Two indica-
tive examples of such problems is the continuous tracking
of articulated objects and the video segmentation. In the
first case, abrupt movements, fast articulations, large ro-
tations and occlusions lead to abrupt changes that usually
cannot be handled by continuous trackers. In the second
case, although some of the existing dynamic classification
methods perform well, abrupt changes in the observations
need to be detected for switching between different models.
The main advantages of our framework are: (i) it can detect
changes online, (ii) it is robust to noisy observations, (iii)
it does not require training, (iv) it is general enough to be
used by recognition/classification methods, when training
data are available and abrupt changes occur. We applied our
framework to the case of continuous 3D hand tracking to re-
initialize the tracker when it fails, using a discrete tracker. In
this case, the high dofs, the fast finger articulations, the large
rotations and the frequent occlusions cause error accumula-
tion. Also we illustrated the performance of our approach
in video segmentation, and specifically on segmentation of
fingerspelling in American Sign Language (ASL) videos.
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