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Abstract: Methods for estimating assigned, binary sex at birth from skeletonized remains have
primarily been developed for specific population groups in the U.S. (e.g., African American, Eu-
ropean American, Hispanic) and, thus, inherently rely on ancestry estimation as a foundational
component for constructing the biological profile. However, ongoing discussions in forensic anthro-
pology highlight pressing issues with ancestry estimation practices. Therefore, this research provides
population-inclusive assigned-sex estimation models for cases where ancestry is not estimated or is
truly unknown. The study sample (n = 431) includes 3D volume-rendered skull computed tomog-
raphy scans from the novel New Mexico Decedent Image Database of African, Asian, European,
Latin, and Native Americans. Five standard nonmetric traits were scored, and eighteen standard
measurements were obtained. Binary logistic regressions and discriminant function analyses were
employed to produce models and classification accuracies, and intraobserver reliability was assessed.
The population-inclusive nonmetric and metric models produced cross-validated classification accu-
racies of 81.0–87.0% and 86.7–87.0%, respectively, which did not differ significantly from the accuracy
of most population-specific models. Moreover, combined nonmetric and metric models increased
accuracy to 88.8–91.6%. This study indicates that population-inclusive assigned-sex estimation mod-
els can be used instead of population-specific models in cases where ancestry is intentionally not
estimated, given current concerns with ancestry estimation.

Keywords: forensic anthropology; United States; sexual dimorphism; assigned sex estimation;
population-inclusive models; population affinity

1. Introduction
1.1. The Role of Ancestry in the Biological Profile and Study Rationale

The prevailing theory that population variation affects levels of skeletal sexual dimor-
phism [1–3] continues to influence researchers in the development of population-specific
metric and nonmetric methods of sex estimation using the cranial [1,4–18] and postcranial
skeleton [1,6,15,19–28]. Although sexual dimorphism differs between certain populations,
this variation does not fall along ancestral (i.e., “racial”) lines; however, the estimation of
ancestry (i.e., “population affinity”, “race”, “bioaffinity”) becomes compulsory for human
identification, because components of the biological profile—such as sex, age, and stature
estimation—often depend on population-specific models [29].

Until relatively recently, the majority of U.S.-based practicing forensic anthropologists
operated under the explicit assumption that ancestry is an essential and critical piece of the bi-
ological profile; however, the accompanying methods—especially morphoscopic approaches—
are problematic and poorly understood [29,30]. In particular, ancestry estimation may un-
wittingly propagate the long-debunked biological race concept and stymie identification
efforts—especially for people of color. Additionally, at present, we do not understand the
heritability or ecogeographical causes of many of the nonmetric (i.e., macromorphoscopic)
traits frequently used in forensic ancestry estimations [30]. Although some research has
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quantified population differences with regard to sex estimation (e.g., [2,3,16,31–34]), there is a
lack of research on large-scale patterns of sexual dimorphism, their proximate mechanisms,
and their probable causes [2,17]. Given the deficiency in understanding the primary mecha-
nisms behind the manifestation of the traits used in current ancestry estimation, as well as
a lack of critical inquiry into their role as tools for reinforcing the debunked biological race
concept and white supremacy [29], the role of ancestry estimation has questionable value as
an ongoing component of the biological profile [29,30,35–46]. Consequently, many forensic
anthropologists are removing ancestry estimation from their analyses.

The present study seeks to engage with the ongoing conversation regarding the role
of ancestry in the biological profile by proposing a method of assigned-sex estimation from
computed tomography (CT) scans that does not rely on an estimation of population affinity.
A population-inclusive model is applicable in cases where population affinity is unknown
or intentionally not estimated in order to mitigate the potential for racial biases such as
the “missing white woman syndrome” [42,44], and in light of the debate surrounding the
removal of certain ancestry estimation methods from the construction of the biological
profile. While limited postcranial research indicates that highly accurate population-
inclusive sex estimation and other identification methods can be developed [36,38,47],
population-specific methods continue to be used in most cases, even if the appropriate
population-specific method does not exist [2]. Thus, the aims of this study are twofold:
(1) to provide population-inclusive models for assigned sex estimation when population
affinity is not estimated or is unknown; and (2) to demonstrate the utility of CT scans in
metric and nonmetric assigned-sex estimation. Through analyzing the sexual dimorphism
of a demographically diverse sample, we hypothesize that population-inclusive models
for estimating assigned sex will produce classification accuracies that are not statistically
different and, ultimately, perform better than population-specific models.

1.2. The Study Collection: New Mexico Decedent Image Database

The study sample was derived from the New Mexico Decedent Image Database
(NMDID) [48], which was created through a 2010 initiative by the National Institute
of Justice (NIJ) that awarded the New Mexico Office of the Medical Investigator (OMI) a
research grant to explore the value of CT scans and their potential in supplanting traditional
autopsies [49,50]. The OMI is a centralized medical examiner’s office that serves the state
of New Mexico, and from mid-2010 to mid-2017 any decedent who was routed to the OMI
and underwent subsequent autopsy also received a high-resolution, full-body CT scan.
This included any individual who died in a sudden, untimely, or unexpected manner, as
well as any person found dead for whom the cause of death was unknown.

The database contains CT scans on approximately 15,242 decedents with full-body
scout images equivalent to whole-body radiographs, and potentially as many as 69 meta-
data fields. Each decedent is associated with two sets of CT scans, augmented for both soft
tissue and bone analysis, comprising 4000 axial image slices, with a 512 × 512 matrix and
a slice thickness of 1 mm, with a 0.5 mm overlap [51]. In 2016, the NIJ awarded a grant
specifically to develop the CT database with the corresponding metadata [51]. As such, the
NMDID serves as a unique documented virtual skeletal and soft tissue “collection”.

Of the NMDID sample, 4475 are female, 10,750 are male, and 17 are unknown. More
than two-thirds of the CT scans have no discernable decomposition [51]. There are also
metadata fields for race, tribe, and ethnicity, and these fields can be further divided de-
pending on paternal and maternal attribution (ancestry). The metadata field for race
includes 17 identification options, the field for ethnicity includes 4, and there are 24 tribal
affiliation options. These metadata categories are either self-identified or determined
by next of kin (NOK). Thus, the NMDID captures an impressive range of very modern,
“real-world” human biological variation that traditional U.S.-based skeletal collections—
primarily composed of African-American (i.e., Black) and European-American (i.e., white)
individuals [45,52]—cannot approximate.
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1.3. Assigned Skeletal Sex Estimation

Assigned sex or “sex at birth” refers to an individual’s assigned classification at birth
by medical professionals—usually female or male—which is largely based on the visual
assessment and interpretation of external anatomy, and specifically determined and in-
fluenced by a combination of characteristics, including chromosomes, hormones, internal
and external reproductive organs, and secondary sex characteristics [53]. Estimating the
assigned sex of modern skeletonized remains is possible because the skeleton, as a sec-
ondary sex characteristic, is dimorphic, and is aligned with and reflective of the primary
sex characteristics (i.e., soft tissue) used in assigning sex at birth. We contend that, similar
to medical professionals, forensic anthropologists bioculturally interpret skeletal morpho-
metrics (i.e., shape and size) to assign skeletal sex and predict assigned sex. To more
accurately reflect this process, we use “assigned female at birth (AFAB)” and “assigned
male at birth (AMAB)” over the traditionally used “female” and “male.” Such inclusive
terminology (i.e., AFAB/AMAB) importantly reflects that sex is mutable, that there may
be a discordance between assigned and self-identified sex, and that, ultimately, we do not
know how decedents self-identified. However, sex is not binary, and numerous chromoso-
mal combinations exist beyond the female/male typology, resulting in an estimated 2%
of individuals being intersex [54]. While not the subject of the present study, the term
“intersex” is used to describe persons with innate sex characteristics that emerge during
embryological development and fall outside conventional conceptions of AFAB or AMAB
bodies [53].

The onset of skeletal sexually dimorphic trait expressions occurs during adolescence
and coincides with increased levels of circulating sex steroids such as androgens and es-
trogens [55,56]. The steroids that drive sexual maturation play an essential role in skeletal
growth and development [55,57–60]. Factors including thermoregulation, biomechanical
processes involved in obstetrics, sexual selection, mating preferences, and allometric con-
siderations result in an increase in bone growth [61–64], but the size, shape, robustness,
and gracility of the skull in particular are influenced by hormone-controlled allometric
differences that promote sex-specific patterns of growth and development [1,63,64].

Assigned skeletal sex estimation is an integral component in the development of the
biological profile [1,2,14,15,65–67], as it can winnow the list of missing persons, and often
serves as an important variable for methods used to estimate age and stature [1,2]. The
pelvis is generally accepted as the best indicator of assigned sex at birth, due to the re-
productive differences between AFABs and AMABs [6,11,20,22,27,66], followed by the long
bones [15,21,23,24,26,68]. In cases where the pelvis or long bones are not available, the skull
(cranium and mandible) is recognized as the next best indicator of assigned sex [11,67,69]. Gen-
erally, AMAB skulls tend to be more robust, larger in size, and have heavier muscle attachments
when compared to AFAB skulls, but the extent to which discrete sexually dimorphic cranial
traits vary across populations is still the subject of many studies [2,3,31–34,70]. While sex is not
binary, forensic anthropological methods to estimate an individual’s assigned sex at birth have
been built on simplistic models that position “female” and “male” on a spectrum of “gracile”
to “robust” [71]. Moreover, these sex estimation models are overwhelmingly developed for
specific “populations” or continental/racialized groups, and rely on the estimation of popula-
tion affinity or, more commonly, ancestry. Therefore, this research advocates for a move away
from ancestrally/continentally/racially-based methods, and proposes population-inclusive
assigned-sex estimation models.

1.4. Methods for Estimating Assigned Sex

The sex of unidentified skeletal remains can be estimated in a variety of ways, in-
cluding visual and metric, as well as with the application of statistical software such as
Fordisc that customizes metrically based discriminant functions [1,3,4,6,14,15,72]. The
visual and metric methods are usually complementary, and tend to result in similar levels
of accuracy [4,11,23].
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The visual assessment of morphology, which typically ranges from gracile to robust,
is most easily employed when estimating sex [2,6,63]. Early methods of sex assessment
were based on gestalt analyses and female/male-associated ordinal scores, which were
compiled for a decision table or majority-rule approach [73–79] without the use of statistical
probabilities that current visual methods and Fordisc employ [17,27,66,72,80]. Worldwide
studies show that the glabella, supraorbital margin, mastoid process, nuchal crest, and
mental eminence are variably sexually dimorphic [2,4,6,12,16,17,70]; however, overlap
between trait expression—scored from 1 (gracile) to 5 (robust)—occurs due to ambiguous
expression, age effects, population variation, reduced sexual dimorphism, biomechanical
differences, secular change, and idiosyncratic variation [1]. Furthermore, because there will
always be AFABs and AMABs who fall variably on the gradient of human variation and
sexual dimorphism, the goal of the ordinal scale is to provide a simple and less subjective
method of scoring that relies on assessments of the robustness/gracility or size/shape of a
specific trait without any presumption of sex or femininity/masculinity [1].

Metric methods have likewise undergone a transformation since their advent [20,28,81],
into modern studies that employ statistical probabilities that were developed on expanded
reference groups [7,15,72]. Metric techniques typically involve the univariate or multivari-
ate analysis of skeletal measurements, as well as multivariate shape analyses [12]. While
Fordisc [72] is regularly used for metric sex estimation, its discriminant functions classify
individuals along eight problematic and conflated ancestral and/or racial lines (i.e., American
Black, American Indian, American white, Chinese, Guatemalan, Hispanic, Japanese, and
Vietnamese), and are therefore inherently population-specific. Moreover, several population
groups in Fordisc lack females (i.e., Chinese, Guatemalan, and Vietnamese), and sample sizes
for all groups aside from the Black, Hispanic, and white samples are low—especially for
females [72].

Regardless of the type of analysis employed, many of the current methods used in U.S.-
based forensic anthropological casework and research are centered on groups of African-
American and European-American individuals, many of whom come from the Hamann–
Todd, Terry, and Bass skeletal collections [15,52]. These methods often perform poorly
when applied to genetically, temporally, or biogeographically unrelated groups [2,21,52,82].
Additionally, the Forensic Anthropology Data Bank (FDB) has a dearth of data on positively
identified Hispanic individuals—and other underrepresented groups—meaning that many
population-specific sex estimation discriminant function models are fundamentally fraught
with problems [52]. Moreover, U.S.-based skeletal collections and databases used to develop
methods largely lack demographic diversity [83], thereby necessitating the use of more
representative alternatives, such as large-scale CT databases—such as the NMDID used in
the present study—for advancing forensic-related research.

2. Materials and Methods
2.1. Study Sample

The study sample comprised 431 individual 3D volume-rendered (VR) CT images of
the skull—originally 494, and later reduced due to downloading errors and incompatible
volume rendering that affected approximately 13% of the original sample. The use of
CT scans has been shown to be an acceptable alternative method of data collection to
traditional analysis of dry bone [84–89]. Such technology has allowed researchers to attempt
identification methods with CT scans of skeletons without the removal of soft tissue [89],
and provides researchers with examination capabilities beyond in-person observation [84].

Decedents were selected based on sex, age, and population affinity, and scout images
were used to briefly assess the condition of the remains. Population affinity for the sample
was based on the self-identified or NOK-identified “race”, “ancestry”, and/or “ethnicity”
recorded in the NMDID. The exclusion criteria included (1) causes of death that would
impede data collection from the skull (e.g., blunt force trauma and gunshot wounds to the
head and neck; thermal injuries), (2) ages not contained within the range of 18–90 years; and
(3) individuals who did not identify with the female or male sex assignment at birth. These
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exclusion criteria were applied when possible, but were limited by the set study cohorts
as well as the overall diversity of the NMDID, which is disproportionately composed of
white AMABs. The criteria for inclusion encompassed AFAB and AMAB individuals be-
tween 18 and 90 years from one of the five predetermined population affinities, resulting in
189 AFABs and 242 AMABs. Four age cohorts were established to ensure a similar distribu-
tion across both sex categories as well as across population affinities. The age cohorts were
18–30 years (n = 109), 31–50 years (n = 114), 51–70 years (n = 168), and 71–90 years (n = 40)
(Table 1).

Table 1. Study sample divided by age cohort, population affinity, and assigned sex.

Age (years) Population Affinity AMAB AFAB

18–30

African American 10 9
Asian American 18 6

European American 10 12
Latin American 12 11

Native American 11 10

31–50

African American 11 12
Asian American 19 3

European American 12 11
Latin American 11 12

Native American 11 12

51–70

African American 15 18
Asian American 26 8

European American 18 13
Latin American 17 16

Native American 20 17

71–90

African American 4 4
Asian American 6 3

European American 3 5
Latin American 4 4

Native American 4 3

Total Sample Size 242 189

The five groups used in this research were constructed from broad social race cate-
gories of the U.S. census as a rough proxy for population affinity, as well as the “Physical
Characteristics” subcategories of “race” and “ethnicity” of the NMDID, which are relatively
equally distributed across all five groups (Figure 1). The analyzed groups in no way cap-
ture the entire range of human skeletal variation, but represent the five major bureaucratic
demographics listed on U.S. government data collection forms. The final groups created for
this study include African American (original NMDID variable: Black or African American
(race); AFAB = 43, AMAB = 40), Asian American (original NMDID variable: Chinese,
Filipino, Japanese, Korean, Vietnamese, and other Asian (race); AFAB = 20, AMAB = 69),
European American (original NMDID variable: white (race); AFAB = 41, AMAB = 43),
Latin American (original NMDID variable: Hispanic or Latino (ethnicity); AFAB = 43,
AMAB = 44), and Native American (original NMDID variable (race): not broken down
by tribe, AFAB = 42, AMAB = 46). The Asian-American group was constructed from the
separate NMDID “race” categories of Chinese, Filipino, Japanese, Korean, Vietnamese, and
“other Asian” because these groups individually did not have a large enough representation
within the database compared to the other population affinities. When selecting individuals
for all population groups excluding Latin American, ethnicity was additionally selected
to be “Not Hispanic, Latino, or Middle Eastern” to ensure no cross-listing between the
categories. When the Latin-American group was constructed, the Hispanic and Latino
ethnicity was selected.
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2.2. Study Sample Preparation and Data Collection

The preparation of the samples consisted of a multistep process. The CT image files
for each individual were downloaded and visualized using the 64-bit version of OsiriX MD
imaging software (v.11.0.4) on an iMac™ computer. Using this software, 3D images of the
osseous structures were rendered using the 3D-VR function, with a focus on bone. This image
was then converted to a Meshmix file using Meshmixer™ (https://www.meshmixer.com,
accessed on 16 September 2021), a free online software for creating and manipulating 3D files,
in order to process the original image. The editing process consisted of removing life-saving
equipment (e.g., defibrillator pads, tubes, wiring, clamps) as well as personal artifacts (e.g.,
eyeglasses, jewelry, hairpins, buttons) and other artifacts. The aim of this editing process
was to create a sample of 3D-VR images that consisted solely of an isolated skull, as well as
to maximize accessibility to the features that were scored and surfaces where points were
placed for measurement (e.g., removal of the first cervical vertebrae for access to the foramen
magnum as well as the basion), and to remove any potential for biases (e.g., removal of jewelry,
hairpins) (Figure 2).

Nonmetric traits were scored according to the diagrams and descriptions in the works
of Buikstra and Ubelaker [6] and Walker [17], and included the supraorbital ridge/glabella,
supraorbital margin, mastoid process, nuchal crest, and mental eminence. The 3D-VR CT
skulls were visually examined from the same angle each time (Figure 3), and the traits were
each assigned an ordinal score on a scale from 1 to 5 (i.e., gracile to robust). Traits were
scored only if they were complete or mostly complete, and if the surrounding structures
were sufficiently intact to provide relative comparison. The mental eminence was not
scored if there was significant alveolar resorption.

https://www.meshmixer.com
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Figure 3. Example of the aspects used to view the five morphological traits of the skull.

Metric measurements of the skull incorporated 18 standard points of measurement
of the cranium and the mandible (Table 2 and Figures 4–8), as described by Spradley and
Jantz [15]. Using the Meshmixer ™ software, metric measurements were collected using a
3D measuring tool (“Units/Dimensions” function), where the points were placed on the
appropriate cranial landmarks [6] and the real length in millimeters (mm) was recorded
and rounded to the nearest thousandth. For maximum and minimum measurements, the
points were dragged to capture the highest or lowest number produced.
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Table 2. Metric measurements and associated landmarks following Spradley and Jantz [17].

Metric Measurements

1. Minimum frontal breadth (ft-ft) 10. Bicondylar breadth (cdl-cdl)
2. Orbital height 11. Biauricular breadth (au-au)

3. Upper facial height (n-pr) 12. Foramen magnum breadth
4. Parietal chord (b-l) 13. Occipital chord (l-o)

5. Glabella occipital length (g-op) 14. Bigonial breadth (go-go)
6. Mastoid length 15. Basion–bregma height (ba-b)

7. Mandibular length 16. Basion–nasion length (ba-n)
8. Maximum ramus height 17. Frontal chord (n-b)

9. Bizygomatic breadth (zy-zy) 18. Nasal height (n-ns)
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bregma height, (16) basion–nasion length, (17) frontal chord, and (18) nasal height.

2.3. Statistical Analyses

All statistical analyses were run with IBM SPSS (version 27). Binary logistic regres-
sion (BLR) and discriminant function analysis (DFA) were employed in order to develop
population-specific and population-inclusive models. Population-specific models were
produced to provide classification accuracies for comparison to the population-inclusive
models, so as to assess whether there was a reduction in resolution with an increase in
inclusivity. Two-way cross-tabulation tables were created in SPSS using Fisher’s exact
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test based on the chi-squared statistic, in order to evaluate whether significant differences
existed between the population-inclusive and population-specific models.

BLR was used to analyze the nonmetric traits, because BLR analysis does not require
normal distributions, avoids assumptions of linearity, and is well suited to ordinal scoring
methods [17,90,91]. The forward Wald stepwise selection method was employed so that
variables would be removed or tested based on significance. The sectioning point was set
at 0.5, so individuals with probabilities less than 0.5 were estimated to be AFAB, while
those with probabilities greater than 0.5 were estimated to be AMAB. There was one
population-inclusive regression equation that was cross-validated by generating a hold-
out sample (HOS), where 30% of the study sample was removed from the BLR and a
population-inclusive BLR equation was produced on the remaining 70%. In addition
to the population-inclusive BLR equations, five population-specific BLR equations and
accompanying accuracies were produced for each population affinity group. These SPSS
models were then tested on the study sample to generate applied accuracies.

A BLR was additionally run that combined both the metric and nonmetric data to
produce a mixed model. BLR was chosen in this instance because it avoided the problem
of assuming linearity [90]. This BLR produced a population-inclusive regression equation
with statistically significant coefficient variables. This equation was cross-validated on a
30% HOS. BLR was run for each of the five population affinity groups, but results were not
reported due to a lack of statistical significance for the coefficient variables.

The metric data were statistically analyzed using DFA in SPSS as described by Spradley
and Jantz [15], and because of the linear relationship between cranial dimensions and
measurements [90] (p. 599). The Mahalanobis distance stepwise method was used to
control for outlying variables. The sectioning points were obtained by adding the female
and male means and dividing by two. Values that fell above the sectioning point were
considered AMAB, and values that fell below the sectioning point were considered AFAB.
The DFA was cross-validated using the leave-one-out cross-validation (LOOCV) method.
The measurements for nasion–prosthion height, parietal chord, and occipital chord were
excluded from the DFA due to small sample sizes. There was one population-inclusive
DFA equation developed with SPSS. This SPSS model was then tested on the study sample,
and new applied model accuracies were produced. In addition to the population-inclusive
DFA equation, five population-specific DFA equations were produced for each population
affinity group. The SPSS models were then tested on the study sample in the same manner
as with the population-inclusive DFA model.

Intrarater reliability was calculated for a random selection of 52 individuals—approximately
12% of the total study sample—who were scored and measured on a second occasion by the
first author. Cohen’s kappa analysis [92,93] was employed to assess the degree of agreement or
disagreement in both observations for the nonmetric traits of the cranium and mandible. The
kappa value evaluates the “proportion of agreement between observers corrected for chance
and the standard measure of (intraobserver) reliability with nominal data (e.g., male vs. fe-
male)” [18] (p. 135). Kappa values are on a scale between 0 to 1, with 0 representing a level of
agreement that would be expected if ordinal scores were assigned at random (i.e., low agree-
ment), and 1.0 representing perfect agreement [27]. The significance of the Kappa values was
determined following Landis and Koch [94], with a Kappa statistic of less than 0.00 indicating
poor agreement, 0.00–0.20 as slight agreement, 0.21–0.40 as fair agreement, 0.41–0.60 as moderate
agreement, 0.61–0.80 as substantial agreement, and 0.81–1.00 as almost perfect agreement.

The intraclass correlation coefficient (ICC) was calculated for the metric measurements
in order to assess their reliability and the relationships between variables. ICC measures the
relationship between variables in the same class that measure the same thing [90] (p. 678)—in
this case, variables that estimate sex.

3. Results

Overall, the hypothesis was supported by the results of the present study, which
showed that nearly all of the population-inclusive models performed statistically similarly
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to the population-specific models and, in fact, performed statistically better than some
of the population-specific models. The results of this research indicate that a population-
inclusive model can be applied in place of population-specific methods without hindering
the estimation of assigned sex, as it resulted in both statistically similar and generally
statistically better classification accuracy.

3.1. Nonmetric Models

A BLR analysis was run with SPSS to produce population-inclusive and population-
specific classification accuracies, including an HOS to cross-validate the population-inclusive
models. The stepwise-selected classification functions and cross-validated SPSS accuracies
are presented in Table 3. The population-inclusive overall SPSS accuracy was 87.0%, and
the population-specific overall accuracies ranged from 82.0% to 91.0%. The model was then
applied to the study’s sample groups, producing applied accuracies ranging from 78.8% to
91.7% (Table 4).

Table 3. Population-inclusive and population-specific binary logistic regression models a.

Stepwise-Selected Classification Functions b
Classification Statistics

AFAB AMAB Overall c

Population-Inclusive
Y = (glabella * 1.385) + (mastoid process * 0.902) +
(mental eminence * 0.44) + (−5.888)

N 149 189 338
% 86.6% 87.1% 87.0%

Population-Inclusive d

Y = (glabella * 1.363) + (mastoid process * 0.876) +
(nuchal crest * 0.393) + (−5.664)

N 103 122 225
% 88.0% 82.4% 85.0%

African American
Y = (glabella * 1.335) + (mastoid process * 1.046) +
(−5.164)

N 33 27 60
% 86.8% 77.1% 82.0%

Asian American
Y = (glabella * 3.033) + (mastoid process * 1.012) +
(−6.438)

N 16 61 77
% 84.2% 93.2% 91.0%

European American
Y = (glabella * 1.628) + (metal eminence * 1.002) +
(−6.309)

N 35 34 69
% 87.5% 82.9% 85.0%

Latin American

Y = (glabella * 1.324) + (nuchal crest * 0.995) + (−5.18) N 33 33 66
% 89.2% 80.5% 85.0%

Native American
Y = (glabella * 1.827) + (mastoid process * 1.276) +
(−7.037)

N 35 35 70
% 92.1% 85.4 89.0%

a Sectioning point is 0.5; below = AFAB; above = AMAB. b All class means were statistically significant, p < 0.05.
c No classification accuracies were significantly different from the population-inclusive model (p ≥ 0.5, 2-tailed).
d Population-inclusive model calculated on 70% of the sample.

Using Pearson’s chi-squared statistic with a p-value of 0.05, the statistical significance
of both the SPSS and applied classification accuracies were tested against the population-
inclusive SPSS and applied classification accuracies. All SPSS classification accuracies had
p-values greater than 0.05, and were not significantly different than the population-inclusive
models for the SPSS classification accuracies. The African-American, European-American,
Latin-American, and Native-American applied accuracies were not significantly different
from the population-inclusive applied accuracy (81.0%); however, the Asian-American
overall applied accuracy (91.7%) was significantly different.
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Table 4. Applied classification accuracies for binary logistic regression models.

Applied Model
Classification Statistics

AFAB AMAB Overall

Population-Inclusive N 156 159 315
% 90.7% 73.3% 81.0%

Population-Inclusive a N 53 56 109
% 91.4% 76.7% 83.2%

African American
N 37 26 63
% 88.1% 70.3% 79.7%

Asian American
N 16 61 77
% 84.2% 93.8% 91.7% b

European American N 35 34 69
% 87.5% 82.9% 85.2%

Latin American
N 38 29 67
% 90.5% 67.4% 78.8%

Native American
N 38 37 75
% 92.7% 84.1% 88.2%

a Tested on the population-inclusive 30% HOS. b Significantly different accuracy compared to the overall % for
the population-inclusive model (p ≤ 0.05, 2-tailed).

3.2. Metric Models

DFA was run with SPSS to produce one population-inclusive and five separate population-
specific models (Table 5). The population-inclusive and population-specific LOOCV SPSS
classification accuracies for this model are presented in Table 5. The population-inclusive
model had a total classification accuracy of 86.7% (AFABs: 88.0%; AMABs: 85.7%). The
population-specific models produced SPSS overall classification accuracies that ranged from
77.1% to 88.2%. The DFA equations were then applied to the study sample’s groups, produc-
ing applied classification accuracies (Table 6). The population-inclusive model produced an
overall applied accuracy of 87.0% (AFABs: 90.4%; AMABs: 84.3%). The population-specific
models produced an overall applied accuracies that ranged from 78.0% to 95.0%.

Using Pearson’s chi-squared statistics, the differences between the population-specific
and population-inclusive SPSS and applied classification accuracies were evaluated. The
African-American, Asian-American, European-American, and Native-American SPSS and
applied accuracies were not significantly different than the population-inclusive model
classification accuracy; however, the Latin-American SPSS (77.1%) and applied (78.0%)
classification accuracies were significantly different from the population-inclusive SPSS
(86.7%) and applied (87.0%) models.

3.3. Mixed Model

A BLR was run with SPSS that combined the metric and nonmetric data to produce a
population-inclusive mixed model (Table 7), and a BLR built on 70% was run on the 30%
HOS to cross-validate the population-inclusive model. The coefficients and constants for the
mixed models are presented in Table 7. The population-inclusive mixed model had a total
classification rate of 91.6% (AFABs: 88.8%; AMABs: 93.3%) (Table 7) and an overall applied
accuracy of 88.8% (AFABs: 88.1%; AMABs: 89.3%) (Table 8). The population-specific
coefficients in each population group all consistently produced p-values greater than 0.05,
and were therefore not statistically significant. Overall, the mixed model produced better
classification accuracy relative to the individual metric and nonmetric trait models.
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Table 5. Population-inclusive and population-specific discriminant function models.

Stepwise-Selected Classification Functions a and Sectioning Points (SP) b
Classification Statistics

AFAB AMAB Overall

Population-Inclusive
Y = (glabella occipital length * 0.057) + (bizygomatic breadth * 0.126) + (biauricular breadth * −0.047) + (minimum frontal breadth * −0.069) + (nasal height * 0.059) + (orbital
height * −0.115) + (mastoid height * 0.081) + (bigonial breadth * 0.037) + (maximum ramus height * 0.074) + (mandibular length * −0.046) + (−20.182); SP = −0.221

N 146 180 326
% 88.0% 85.7% 86.7%

African American
Y = (bizygomatic breadth * 0.335) + (biauricular breadth * −0.188) + (minimum frontal breadth * −0.185) + (mastoid height * 0.123) + (bicondylar breadth * −0.089) +
(maximum ramus height * 0.185) + (−9.561); SP = −0.312

N 32 30 62
% 84.2% 88.2% 86.1%

Asian American

Y = (basion–nasion length * 0.142) + (frontal chord * 0.102) + (mastoid height * 0.101) + (−29.68); SP = −0.6335
N 15 52 67
% 93.8% 86.7% 88.2%

European American

Y = (bizygomatic breadth * 0.14) + (orbital height * −0.337) + (bigonial breadth * 0.079) + (maximum ramus height * 0.109) + (mandibular length * −0.085) + (−13.013); SP =
−0.059

N 31 33 64
% 81.6% 80.5% 81.0%

Latin American

Y = (bizygomatic breadth * 0.136) + (maximum ramus height * 0.106) + (−24.507); SP = −0.087
N 34 30 64
% 82.9% 71.4% 77.1% c

Native American

Y = (glabella occipital length * 0.082) + (orbital height * −0.197) + (mastoid height * 0.082) + (bigonial breadth * 0.102) + (maximum ramus height * 0.075) + (−25.132); SP =
−0.248

N 29 40 69
% 80.6% 90.9% 86.3%

a All class means were statistically significant (p ≤ 0.05). b Below SP = AFAB; above SP = AMAB. c Significantly different overall accuracy compared to the population-inclusive model
(p ≤ 0.05, 2-tailed).
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Table 6. Applied classification accuracies for the discriminant function models.

Applied Model
Classification Statistics

AFAB AMAB Overall

Population-Inclusive N 150 177 327
% 90.4% 84.3% 87.0%

African American
N 34 35 69
% 89.5% 100% 95.0%

Asian American
N 15 54 69
% 93.8% 90.0% 91.0%

European American N 32 36 68
% 84.2% 87.8% 86.0%

Latin American
N 35 30 65
% 85.4% 71.4% 78.0% a

Native American
N 29 42 71
% 80.6% 95.5% 89.0%

a Significantly different accuracy compared to the population-inclusive model (p ≤ 0.05, 2-tailed).

Table 7. Mixed-model population-inclusive (nonmetric and metric) binary logistic regression models.

Stepwise-Selected Classification Functions a,b
Classification Statistics

AFAB AMAB Overall

Population-Inclusive
Y = (glabella * 1.13) + (mastoid * 0.957) + (mental eminence * 0.594) + (glabella occipital length * 0.102) +
(bizygomatic breadth * 0.1620) + (maximum ramus height * 0.147) + (mandibular length * −0.101) + (−44.921)

N 111 182 293
% 88.8% 93.3% 91.6%

Population-Inclusive c

Y = (glabella score * 2.027) + (bizygomatic breadth * 0.263) + (−38.097) N 32 53 85
% 84.2% 89.8% 87.6%

a Sectioning point is 0.5; below = AFAB; above = AMAB. b All class means were significantly different (p ≤ 0.05).
c Tested on the population-inclusive 30% HOS.

Table 8. Mixed-model population-inclusive applied binary logistic regression classification accuracies.

Applied Model
Classification Statistics

AFAB AMAB Overall

Population-Inclusive N 141 160 301
% 88.1% 89.3% 88.8%

Population-Inclusive a N 52 57 109
% 91.2% 86.8% 88.8%

a Tested on the population-inclusive 30% HOS.

3.4. Intrarater Reliability

A random sample of approximately 12% (n = 52) of the study sample was revisited for
nonmetric and metric data collection to assess intraobserver agreement. Intraobserver error
for nonmetric scoring was assessed using Cohen’s kappa statistic [93] in order to evaluate
the magnitude of potential error and level of consistency, and agreement was established
as described by Landis and Koch [94]. All kappa values were between 0.365 and 0.563,
and all traits were statistically significant. The nuchal crest performed with a fair level of
agreement, while the mastoid process, supraorbital margin, glabella, and mental eminence
performed with a moderate level of agreement (Table 9). All metric measurements except
one had ICC values above 0.8 and were statistically significant, indicating high intrarater
reliability (Table 10). The ICC ranged from 0.777 to 0.989, with the glabella occipital length
performing the best and the parietal chord performing the worst. All class means were
statistically significant, with p-values below 0.001.
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Table 9. Intraobserver error rates for the nonmetric trait scores.

Morphological Traits a Kappa Value Level of Agreement b Asymptotic SE Approximate T

Nuchal crest 0.365 Fair 0.081 5.839
Mastoid 0.563 Moderate 0.088 7.267

Supraorbital margin 0.432 Moderate 0.088 6.097
Glabella 0.531 Moderate 0.083 7.393

Mental eminence 0.452 Moderate 0.088 6.210
a All class means were statistically significant (p ≤ 0.001). b As defined by Landis and Koch [94].

Table 10. Intraobserver error rates for metric measurements a.

Measurement Valid Cases
(n)

Valid Cases
(%)

Excluded Cases
(n)

Total Cases
(n)

ICC (for Average
Measures)

95% Confidence
Interval

Glabella occipital
length 51 98.1% 1 52 0.989 0.980–0.994

Bizygomatic breadth 52 100% 0 52 0.931 0.880–0.960
Basion–bregma
height 46 88.5% 6 52 0.825 0.682–0.903

Basion–nasion length 51 98.1% 1 52 0.923 0.865–0.956
Biauricular breadth 50 96.2% 2 52 0.909 0.836–0.949
Nasion–prosthion
height 38 73.1% 14 52 0.981 0.961–0.990

Minimum frontal
breadth 52 100% 0 52 0.880 0.792–0.931

Nasal height 51 98.1% 1 52 0.941 0.896–0.966
Orbital height 52 100% 0 52 0.930 0.877–0.960
Frontal chord 47 90.4% 5 52 0.908 0.836–0.949
Parietal chord 38 73.1% 14 52 0.777 0.575–0.883
Occipital chord 39 75.0% 13 52 0.926 0.859–0.961
Foramen magnum
breadth 51 98.1% 1 52 0.980 0.965–0.988

Mastoid height 51 98.1% 1 52 0.837 0.509–0.929
Bigonial breadth 52 100% 0 52 0.987 0.978–0.003
Bicondylar breadth 52 100% 0 52 0.938 0.893–0.965
Maximum ramus
height 52 100% 0 52 0.945 0.904–0.968

Mandibular length 50 96.2% 2 52 0.904 0.813–0.948
a All class means were statistically significant (p ≤ 0.001).

4. Discussion

The results of this study indicate that population-inclusive nonmetric and metric
methods can be employed to accurately estimate assigned sex without producing signifi-
cantly different or, more importantly, statistically lower classification rates. In particular,
population-inclusive methods resulted in classification accuracies of 81.0% to 87.0% for
nonmetric and 86.7% to 87.0% for metric models. Moreover, population-inclusive mixed
models outperformed the nonmetric and metric models alone, producing overall clas-
sification accuracies of 88.8% to 91.6%. Population-inclusive methods of estimating sex
based on the skull have the potential to supplement currently used ancestry-dependent
models of sex estimation [14,17] that generally employ data from either African-American
or European-American groups [52]. Furthermore, estimation of assigned sex from 3D-
VR CT images of the skull can augment forensic analyses and studies of human skeletal
variation—especially in cases where soft tissue cannot be removed, and where access to
skeletal collections is limited. Following the findings that CT scans are highly representative
of dry bones [84–89], the 3D-VR CT scan-derived models presented here can be applied and
validated on both additional CT scans and skeletonized remains. Additionally, future data
collection and testing should focus on heterogeneous samples, with particular attention
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paid to Asian-American and Latin-American groups who, as documented here, exhibit
considerable cranial variation.

Emphasis has recently focused on the need for forensic anthropological researchers to
suspend their dependence on antiquated methods of ancestry estimation that are rooted in
typology, and instead focus on understanding the evolutionary mechanisms behind bio-
geographic differences and the effects that secular change, intersectionality, and biocultural
processes have on creating variation across diverse populations [29,30,37,39,40]. Current
ancestry estimation practices utilized in forensic anthropology are based on assumptions
about population differences that are inconsistent with observable patterns of biological
variation in myriad human groups [37,40]. Concurrently, critical race theory, broadly—and
critical race empiricism, specifically—are helping the field to question the groups that
we operationalize in research—along with the negative and essentializing effects of those
groupings—and to analyze how racial/ancestral categories undergird, guide, and inform
our research, methods, assumptions, and perceptions of human biological variation [95–97].
Such criticality has highlighted how our research reifies biological race, reinforces colonial-
ist power structures, is coopted for racial and nationalistic agendas, and maintains white
supremacy [30,35,46,98]. While there is considerable work to be done to fully understand
the hold that structural racism has on forensic anthropology, it is essential that we divorce
ourselves from approaches that unwittingly validate biological race categories.

A population-inclusive method of sex estimation will be an important tool for combat-
ting outdated ancestry-based estimation methods. Research indicates that some level of
population variation exists across skeletal morphology, and has the potential to affect the ex-
pression of sexually dimorphic traits [1,15–17,22], but the majority of the methods available
to researchers are exclusionary in nature, having been developed on African-American and
European-American populations [1,2]. Until the mechanisms behind population variation
in skeletal morphology are better understood beyond ancestral/racial lines, population-
inclusive models for estimating sex, age, and stature should be developed, validated, and
made part of standard practices.

4.1. Nonmetric Models

The population-inclusive BLR model, which included the glabella, mastoid process,
and mental eminence, incorporated more nonmetric traits than the population-specific
models (three instead of two). This was likely due to the variation in sample size, which is
often one of the greatest limitations in stepwise procedures [90], as the population-inclusive
model was developed on 389 individuals and the population-specific models were all
developed on group sizes between 73 and 81 individuals.

Each nonmetric BLR model—both population-inclusive and population-specific—
included the glabella; however, the African-American, Asian-American, and Native-
American models also included the mastoid process. Research indicates that the glabella
and mastoid process are the best discriminators of binary sex, due to their highly sexually
dimorphic nature [2,17]. Tallman [2] likewise found that the glabella and mastoid process
are the best at estimating sex in East and Southeast Asian groups. Garvin et al. [8] similarly
found that when estimating sex in Arikara Native American, Nubian, U.S. Black, and U.S.
white groups, the mastoid process and glabella performed the best.

Interestingly, both the population-inclusive and the European-American models incor-
porated the mental eminence. Despite previous research demonstrating that a difficulty
exists with scoring the mental eminence [8,12,99], this trait performed with moderate
intraobserver agreement and with statistically significant class means for the population-
inclusive BLR model, as well as for the population-specific European-American model.
The Latin-American model was the only population-specific model that incorporated the
nuchal crest into the regression equation; however, the nuchal crest performed with only a
fair level of intraobserver agreement.

Overall, the population-inclusive BLR models did not produce significantly lower clas-
sification accuracy rates than the population-specific models. The Asian-American model
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produced the highest classification accuracy compared to the other population-specific mod-
els. The SPSS classification accuracy saw a 4% increase relative to the population-inclusive
model, but this was not significantly higher; however, the applied classification accuracy
was significantly higher by 10.7%. This increase in accuracy is potentially skewed due to the
disproportionately small AFAB sample sizes. Research indicates that sexual dimorphism in
some East and Southeast Asian groups is reduced compared to U.S. groups [2,21,82], so
the Asian-American population-specific models should theoretically demonstrate lower
accuracies and higher sex biases [2]. Instead, the Asian-American BLR model produced
a higher classification accuracy for AMABs, suggesting that the statistical significance is
likely related to sample size [90]. Alternatively, the Asian-American individuals likely had
access to relatively high caloric food common to the U.S.A. Groups with high levels of
overnutrition (e.g., Americans) tend to exhibit more sexual dimorphism overall, regardless
of continental ancestry [2], whereas populations that are nutrient-limited or -deficient
exhibit slower maturation rates and reduced sexual dimorphism [100,101].

The Latin-American model exhibited the lowest overall applied classification accuracy;
however, this was not significantly lower than that of the population-inclusive model. This
is potentially due to higher variability in skull morphology for Latin-American-derived
skulls—and especially AMABs. Klales and Cole [102] found that Latin-American male
skulls were more variable than corresponding females in score frequency for all traits except
the mental eminence. Males received variable scores for the nuchal crest in particular, with
the majority being given a score of 2 (on a scale of 1 to 5) [102]. The majority of males
were also given scores of 2 for the glabella [102]. The African-American model produced
reduced SPSS and applied classification accuracies compared to the population-inclusive
model, while the European-American model produced reduced SPSS and increased applied
classification accuracy; however, no classification accuracy was significantly different from
the population-inclusive model. The Native-American model produced increased SPSS
and applied classification accuracies, but neither were significantly different. Walker’s
study [17] found that the population-specific BLR equations for African-American and
European-American individuals correctly classified individuals 84% to 88% of the time.
Similarly, Garvin et al. [8] found that population-specific BLR equations for Arikara Native
American, medieval Nubian, U.S. Black, and U.S. white individuals were correctly classified
74% to 99% of the time, which is consistent with the results of the present study.

The applied accuracies for both the population-inclusive and population-specific
nonmetric models all show higher applied classification rates for AFABs than AMABs,
except for the Asian-American model. Overall, this pattern with lower applied male
accuracy indicates that the BLR models are biased toward AFABs. Other research has found
a similar female sex bias—especially in more modern samples—due either to population
variation or secular change [16,102].

4.2. Metric Models

The population-inclusive model incorporated the most variables in the final DFA,
which was attributed to the overall sample size [90]. No DFA model used the same
combination of variables, but glabella occipital length, bizygomatic breadth, biauricular
breadth, mandibular length, maximum ramus height, orbital height, minimum frontal
breadth, bigonial breadth, and mastoid height were included in more than one equation.
Richard et al. [87] found that glabella occipital length, bizygomatic breadth, and biauricular
breadth, in particular, were reliable landmarks for discriminating sex in a sample of skulls
from the Bass skeletal collection.

The population-inclusive DFA model did not produce significantly lower classification
accuracy rates than any of the population-specific models. Furthermore, the applied
classification accuracies for the population-inclusive and population-specific metric models
were higher than those of their SPSS counterparts, which was likely due to an increase in
sample size [90].
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The DFA model with the highest classification accuracy was the population-specific
African-American model, but this was not significantly higher than the population-inclusive
model. The Asian-American model had the highest AFAB classification accuracy, which was
potentially due to sample size [90]. The Latin-American model had the overall lowest SPSS
and applied classification accuracies compared to the other population-specific models,
and had a significantly lower classification accuracy than the population-inclusive model.
Specifically, the Latin-American AMABs had the lowest SPSS and applied classification
accuracies. Research indicates that this could be due to a high level of skeletal variation in
male skulls specifically [102]. A metric study on the estimation of sex from the FDB using
Hispanic skeletons by Spradley et al. [103] found that females were nearly always classified
correctly, whereas males were often classified as female. Thus, future population-inclusive
research should prioritize the incorporation of Latin-American individuals in order to
better capture this range of variation.

4.3. Mixed Model

Overall, the population-inclusive mixed model had higher SPSS and applied accuracies
than both the nonmetric and metric population-inclusive models. The mixed model did
not have a significantly different classification accuracy than the metric SPSS and applied
accuracies or the nonmetric SPSS accuracy; however, it was significantly higher than the
nonmetric applied accuracy (increase of 10.7%). A BLR was attempted through SPSS in
order to produce population-specific models, but none of the population-specific models
yielded class means with p-values greater than 0.05; therefore, they were not statistically
significant. The lack of statistical significance found here was likely due to the small sample
sizes in the mixed models, resulting from the incorporation of more variables.

Most sex estimations conventionally used in forensic casework apply nonmetric and
metric models in a complementary fashion [1], and there do not appear to be any methods
currently employed that combine both the nonmetric and metric traits into one regression
equation as seen in this study. Since most practitioners prefer to separately use both non-
metric and metric methods estimating sex based on the skull, this regression that combines
both could be a valuable addition to the forensic anthropologists’ toolkit. Moreover, since
the classification accuracies for this mixed model equation are higher than those of the
nonmetric and metric models alone, it is recommended that more studies be conducted in
order to explore the validity of mixed nonmetric and metric models.

4.4. Intrarater Reliability

Intraobserver agreement was highly significant for all nonmetric trait scores
(p-values ≤ 0.001). As described by Landis and Koch [94], the nuchal crest and supraorbital
margin had the lowest kappa values (0.365 and 0.432, respectively), suggesting that both
traits were difficult to score consistently between observations. These results are dissimilar
to the intraobserver reliability test from Tallman’s [2] cranial nonmetric analysis on East and
Southeast Asian individuals, where the nuchal crest had a substantial level of agreement
between observations; however, the mastoid process, supraorbital margin, glabella, and
mental eminence all had a moderate level of agreement between observations [2]. Garvin
et al. [8] found that the nuchal crest and mental eminence had the lowest levels of agreement.
Garvin et al. [8] postulated that the nuchal crest was more difficult to score consistently
because it involves a larger area compared to other morphological traits, and the range
of shape variation is relatively smaller and, thus, more difficult to visualize. Although
the 3D-VR CT image was manipulated and rotated in order to examine the nuchal crest
from all angles, the visual extent of rugosity could have been inhibited due to the quality
of the CT image or partial volume effects (PVEs). Stull et al. [89] found that the ability to
assess VR CT images was notably impacted by PVEs during the volume-rendering process.
This occurs when the CT scanner has difficulty in distinguishing between materials with
different Hounsfield units, such as air and bone, and results in the appearance of artifacts
that can obscure an area, or the softening of the object’s surface [89]. In the case of the
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nuchal crest, the PVE phenomenon could have reduced the appearance of rugosity, making
it more difficult to consistently score. In the case of the supraorbital margin, the difficulty
lay in the inability to estimate the relative width and roundness or sharpness of the margin
through palpation, which would be done with dry bone. In the future, caution should
be applied when analyzing the nuchal crest and supraorbital margin via VR images. The
mastoid process and glabella performed with moderate levels of agreement, but had the
highest kappa values (0.563 and 0.531, respectively). Walker [17] similarly found that the
glabella and mastoid process had the highest levels of agreement relative to the nuchal
crest, supraorbital margin, and mental eminence.

The ICC values indicate a high level of intrarater reliability for the metric measure-
ments. This confirms that measurements can be successfully taken on CT scans and perform
better than the more subjective nonmetric traits. The glabella occipital length had the high-
est ICC (0.989), and the parietal chord had the lowest ICC (0.777). The parietal chord,
occipital chord, and nasion–prosthion height all had the most cases excluded from the ICC
analysis due to small samples sizes, and were removed from the DFA in order to maximize
the sample sizes. One of the occasional artifacts of PVEs is a softening of overall images
that can cause cranial sutures to appear faded or obliterated [89], making some cranial
chords difficult to measure. The nasion–prosthion height was often unable to be measured
due to alveolar resorption, damage to the craniometric landmark, or PVEs—potentially
from dental fillings or soft tissue. A study by Menéndez [104] looked at intraobserver
measurement error of 3D-VR craniofacial landmarks, and found that the nasion had the
highest intraobserver error rates, and was difficult to establish consistently across multi-
ple observational sessions. The occipital chord and parietal chord are also craniometric
landmarks that have demonstrably variable intraobserver reliability [85,87]. The cranial
chords rely on landmarks demarcated by suture lines, which could also be affected by the
quality of the 3D-VR image [87]. In the future, it would be best to remove measurements
that include cranial sutures, because of the difficulty in scoring them consistently when
they are faded or obliterated due to PVEs or CT quality. Removing these measurements
may help to maximize sample sizes; however, such measurements are sexually dimorphic.

4.5. Data Collection from 3D-VR CT Images

The majority of nonmetric traits had a moderate level of intraobserver agreement,
while the metric traits, as aforementioned, all had statistically significant ICC values
and overall higher accuracy rates. The data collection for the nonmetric scores from VR
CT images of the skull from multiple angles was impacted by the nature of viewing
an image on a computer rather than physical palpation, as well as by the obstructive
nature of PVEs. While research shows that data collection from VR CT images of the
skeleton can be accomplished with statistically significant accuracy [84,89,105], certain
traits—such as the supraorbital margin—are more difficult to examine than others, and
further critical study into the value and assessment of these traits is warranted. Buikstra
and Ubelaker’s [6] definition for scoring the supraorbital margin as well as the nuchal crest
recommends palpating the feature/trait, which does not translate to digital observation.
However, a study that explores the isolated shape and topography of the supraorbital
margin (sensu [9,106]) would be helpful in assessing whether the levels of sharpness,
roundness, and rugosity can be reliably quantified with VR CT images and correlated with
ordinal scores. The additional challenge of depth perception, as seen with the nuchal crest
and mental eminence, could be addressed in the future via manipulation of the opacity
ramp. Stull et al. [89] noted that lowering the opacity ramp helped with visualizing certain
sutures as well as overall bone morphology. When a VR image is constructed, the opacity
curve determines the various tissues’ transparency and opacity [89].

Additional limitations, mainly including the accessible demographics of the NMDID
and cause of death, affected sample size. The challenge of establishing an equally dis-
tributed sample across all demographics was due, in part, to the availability of the NMDID,
which is disproportionately composed of white AMABs, despite its large size. Furthermore,
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the study sample’s VR CT scans were derived from the OCME of New Mexico; therefore,
the completeness or usability of each VR skull was variably affected by the cause of death,
and was not readily apparent until after the CT image had been volume rendered and PVEs
had been removed; however, this type of sample is both directly representative of the type
of remains found in forensic contexts (i.e., incomplete) and contains more human variation
than the skeletal collections traditionally used in the development of estimation methods.
As previously discussed, PVEs in some cases could not be removed without affecting
the surface of the skull, limiting the ability to view and measure the skull and, therefore,
collect data. Despite the limitations, the benefits of VR CT analysis help to advance forensic
research analysis and the development of biological profile methods, because large CT
databases such as the NMDID provide researchers with relatively easy access to a plethora
of osteological data that reflects extensive human skeletal variation.

4.6. Sex and Gender

Because sex and gender identities intersect variably and are rooted in biocultural,
performative processes that move beyond biological or anatomical processes, it is impor-
tant for forensic anthropologists to avoid restricting identity to biological or anatomical
definitions in isolation [71]. Most importantly, forensic anthropologists should endeavor
to avoid assuming that all individuals are cisgender, avoid preconceived notions of het-
eronormativity, and bear in mind that not all individuals share the same perspective on sex,
gender, and related expressions [71]. Presently, there is no existing standardized method
of reporting if a decedent is trans, intersex, or gender diverse [71]. Moreover, current sex
estimation methods for analysis and reporting have generally not evolved to be aligned
with modern social perceptions of sex, gender, and intersectional identity [71]. While this
research applies novel technology and methodological approaches to understand sexual
dimorphism with more inclusive terminology, we acknowledge that it does not address the
need to expand binary sex estimation.

5. Conclusions

As demonstrated here, population-inclusive methods will not produce significantly dif-
ferent accuracy rates compared to population-specific methods of assigned-sex estimation,
suggesting that population-inclusive models could be used to estimate the assigned sex
of unidentified remains without knowing or estimating ancestry. Overall, the population-
inclusive nonmetric model produced classification accuracies that ranged from 81.0% to
87.0%, while the metric model produced classification accuracies that ranged from 86.7% to
87.0%. Additionally, the population-inclusive mixed model produced classification accu-
racies that ranged from 88.8% to 91.6%—higher than the separate nonmetric and metric
population-inclusive model classification accuracies. These results indicate that this novel
mixed model approach has the potential to better estimate assigned sex than metric or non-
metric models alone, and it is recommended that further applications should validate these
findings on heterogeneous samples. Additionally, this study demonstrates the utility of VR
CT scans for developing assigned-sex estimation models, despite the inherent limitations
in analyzing the skull virtually. While the supraorbital margin, nuchal crest, and some
measurements reliant on cranial sutures were difficult to assess—and should continue to be
evaluated—this study affirms that VR CT scans are valid for the development of nonmetric
and metric assigned-sex estimation methods.

Ongoing discussion in the field of forensic anthropology regarding the role of ances-
try in the biological profile has made the problematic nature of currently used ancestry-
dependent sex estimation models more apparent [29,30,35,37,39–41,43,45,46]. As sex es-
timation methods have generally been developed and tested on specific populations of
African-American, European-American, and occasionally Native-American and Hispanic
individuals [52], these models are inherently exclusive, and produce reduced classifica-
tion accuracy when applied to biogeographically different groups. More specifically, the
foundational ancestry methods for these models have not taken into consideration the
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evolutionary mechanisms behind biogeographic differences, or the influence that secular
change, intersectionality, embodied racism, and biocultural processes have on skeletal
variability across populations [29,30,37,39,40,46]. While population-specific methods of
identification have a clear utility in certain population-circumscribed or relatively homo-
geneous contexts, the scope of populations that have validated estimation methods is
lacking—particularly for a relatively heterogeneous country such as the U.S. Therefore,
there is a necessity for the application of population-inclusive methods, which include
significantly more variation and are, therefore, more appropriate for individuals who may
not be included in the model development (e.g., truly unknown cases). This research indi-
cates that the population-inclusive models will be able to accommodate significantly more
variation than population-specific models. Furthermore, population-inclusive methods
of sex, age, and stature estimation should be further explored, developed, validated, and
made part of forensic anthropologists’ standard toolkit.
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11. Krogman, W.M.; Işcan, M.Y. The Human Skeleton in Forensic Medicine; Charles C Thomas: Springfield, IL, USA, 1986.
12. Lewis, C.J.; Garvin, H.M. Reliability of the Walker cranial nonmetric method of implications for sex estimation. J. Forensic Sci.

2016, 61, 743–751. [CrossRef]
13. Martin, R.; Knussman, R. Anthropologie: Handbuch der Vergleichenden Biologie des Menschen; Gustav Fisher Verlag: Stuttgart,

Germany, 1988.

http://doi.org/10.5744/fa.2019.1010
http://doi.org/10.1016/j.forsciint.2017.06.012
http://doi.org/10.1016/j.jchb.2007.01.001
http://www.ncbi.nlm.nih.gov/pubmed/18439606
http://doi.org/10.1002/ajpa.22502
http://doi.org/10.1002/(SICI)1096-8644(199901)108:1&lt;91::AID-AJPA5&gt;3.0.CO;2-X
http://doi.org/10.1111/1556-4029.13013


Forensic Sci. 2022, 2 346

14. Rogers, T.L. Determining the sex of human remains through cranial morphology. J. Forensic Sci. 2005, 50, 493–500. [CrossRef]
[PubMed]

15. Spradley, M.K.; Jantz, R.L. Sex estimation in forensic anthropology: Skull versus postcranial elements. J. Forensic Sci. 2011, 56,
289–296. [CrossRef] [PubMed]

16. Tallman, S.D.; Go, M.C. Application of the optimized summed scored attributes method to sex estimation in Asian crania.
J. Forensic Sci. 2018, 63, 809–814. [CrossRef] [PubMed]

17. Walker, P.L. Sexing skulls using discriminant function analysis of visually assessed traits. Am. J. Phys. Anthropol. 2008, 136, 39–50.
[CrossRef] [PubMed]

18. Walrath, D.E.; Turner, P.; Bruzek, J. Reliability test of the visual assessment of cranial traits for sex determination. Am. J. Phys.
Anthropol. 2004, 125, 132–137. [CrossRef] [PubMed]

19. Karsten, J.K. A test of the preauricular sulcus as an indicator of sex. Am. J. Phys. Anthropol. 2017, 165, 604–608. [CrossRef]
20. Letterman, G.S. The greater sciatic notch in American Whites and Negroes. Am. J. Phys. Anthropol. 1941, 98, 59–72. [CrossRef]
21. Patterson, M.M.; Tallman, S.D. Cranial and postcranial metric sex estimation in modern Thai and Ancient Native American

individuals. Forensic Anthropol. 2019, 2, 233–252. [CrossRef]
22. Phenice, T.W. A newly developed visual method of sexing the os pubis. Am. J. Phys. Anthropol. 1969, 30, 297–301. [CrossRef]
23. Rogers, T.L. A visual method of determining the sex of the skeleton using the distal humerus. J. Forensic Sci. 1999, 44, 57–60.

[CrossRef] [PubMed]
24. Rogers, N.L.; Flournoy, L.E.; McCormick, W.F. The rhomboid fossa of the clavicle as a sex and age estimator. J. Forensic Sci. 2000,

45, 61–67. [CrossRef]
25. Tallman, S.D.; Blanton, A.I. Distal humerus morphological variation and sex estimation in modern Thai individuals. J. Forensic

Sci. 2020, 65, 361–371. [CrossRef] [PubMed]
26. Vance, V.L.; Steyn, M.; L’Abbé, E.N.L. Nonmetric sex determination from the distal and posterior humerus in Black and white

South Africans. J. Forensic Sci. 2011, 56, 710–714. [CrossRef]
27. Walker, P.L. Greater sciatic notch morphology: Sex, age, and population differences. Am. J. Phys. Anthropol. 2005, 127, 385–391.

[CrossRef]
28. Washburn, S.L. Sex difference in the pubic bone. Am. J. Phys. Anthropol. 1948, 6, 199–207. [CrossRef]
29. Bethard, J.D.; DiGangi, E.A. Moving beyond a lost cause: Forensic anthropology and ancestry estimates in the United States.

J. Forensic Sci. 2020, 65, 1791–1792. [CrossRef] [PubMed]
30. DiGangi, E.A.; Bethard, J.D. Uncloaking a lost cause: Decolonizing ancestry estimation in the United States. Am. J. Phys. Anthropol.

2021, 175, 422–436. [CrossRef]
31. Cunha, E.; van Vark, G. The construction of sex discriminant functions from a large collection of skulls of known sex. Int. J.

Anthropol. 1991, 6, 53–66. [CrossRef]
32. Eleveth, P.B.; Tanner, J.M. Worldwide Variation in Human Growth, 2nd ed.; Cambridge University Press: Cambridge, UK, 1990.
33. Franklin, D.; Freedman, L.; Milne, N. Sexual dimorphism and discriminant function sexing in indigenous South African crania.

Homo 2005, 55, 213–228. [CrossRef] [PubMed]
34. Kemkes, A.; Gobel, T. Metric assessment of the “mastoid triangle” for sex determination: A validation study. J. Forensic Sci. 2006,

51, 985–989. [CrossRef]
35. Adams, D.M.; Pilloud, M.A. The (mis)appropriation of biological anthropology in race science and the implications for forensic

anthropology. Forensic Anthropol. 2021, 4, 1–22. [CrossRef]
36. Albanese, J. A method for estimating sex using the clavicle, humerus, radius, and ulna. J. Forensic Sci. 2013, 58, 1413–1419.

[CrossRef] [PubMed]
37. Albanese, J.; Saunders, S.R. Is it possible to escape racial typology in forensic identification? In Forensic Anthropology and Medicine:

Complementary Sciences from Recovery to Cause of Death; Schmitt, A., Cunha, E., Pinheiro, J., Eds.; Humana Press: Totowa, NJ, USA,
2006; pp. 281–316.

38. Albanese, J.; Eklics, G.; Tuck, A. A metric method for sex determination using the proximal femur and fragmentary hipbone.
J. Forensic Sci. 2008, 53, 1283–1288. [CrossRef] [PubMed]

39. Blakey, M.L. Understanding racism in physical (biological) anthropology. Am. J. Phys. Anthropol. 2021, 175, 316–325. [CrossRef]
40. Carson, E.A. Maximum likelihood estimation of human craniometrics heritabilities. Am. J. Phys. Anthropol. 2006, 131, 169–180.

[CrossRef]
41. Edgar, H.J.H. Population structure, population, heterogeneity, and sources of error in the forensic estimation of “race”. In

Proceedings of the 72nd Annual Scientific Meeting of the American Academy of Forensic Sciences, Anaheim, CA, USA, 17–22
February 2020.

42. Moss, J.L. The forgotten victims of missing white woman syndrome: An examination of legal measures that contribute to the lack
of search and recovery of missing black girls and women. Race Gender Soc. Just. 2018, 25, 737–762.

43. Ross, A.H.; Pilloud, M. The need to incorporate human variation and evolutionary theory in forensic anthropology: A call for
reform. Am. J. Phys. Anthropol. 2021, 176, 672–683. [CrossRef] [PubMed]

44. Sommers, Z. Missing white woman syndrome: An empirical analysis of race and gender disparities in online news coverage of
missing persons. J. Crim. Law Criminol. 2016, 106, 275–314.

http://doi.org/10.1520/JFS2003385
http://www.ncbi.nlm.nih.gov/pubmed/15932077
http://doi.org/10.1111/j.1556-4029.2010.01635.x
http://www.ncbi.nlm.nih.gov/pubmed/21210801
http://doi.org/10.1111/1556-4029.13644
http://www.ncbi.nlm.nih.gov/pubmed/28940235
http://doi.org/10.1002/ajpa.20776
http://www.ncbi.nlm.nih.gov/pubmed/18324631
http://doi.org/10.1002/ajpa.10373
http://www.ncbi.nlm.nih.gov/pubmed/15365979
http://doi.org/10.1002/ajpa.23372
http://doi.org/10.1002/ajpa.1330280106
http://doi.org/10.5744/fa.2019.1009
http://doi.org/10.1002/ajpa.1330300214
http://doi.org/10.1520/JFS14411J
http://www.ncbi.nlm.nih.gov/pubmed/9987870
http://doi.org/10.1520/JFS14641J
http://doi.org/10.1111/1556-4029.14218
http://www.ncbi.nlm.nih.gov/pubmed/31643085
http://doi.org/10.1111/j.1556-4029.2011.01724.x
http://doi.org/10.1002/ajpa.10422
http://doi.org/10.1002/ajpa.1330060210
http://doi.org/10.1111/1556-4029.14513
http://www.ncbi.nlm.nih.gov/pubmed/33104304
http://doi.org/10.1002/ajpa.24212
http://doi.org/10.1007/BF02447289
http://doi.org/10.1016/j.jchb.2004.08.001
http://www.ncbi.nlm.nih.gov/pubmed/15803767
http://doi.org/10.1111/j.1556-4029.2006.00232.x
http://doi.org/10.5744/fa.2021.0010
http://doi.org/10.1111/1556-4029.12188
http://www.ncbi.nlm.nih.gov/pubmed/23865634
http://doi.org/10.1111/j.1556-4029.2008.00855.x
http://www.ncbi.nlm.nih.gov/pubmed/18717754
http://doi.org/10.1002/ajpa.24208
http://doi.org/10.1002/ajpa.20424
http://doi.org/10.1002/ajpa.24384
http://www.ncbi.nlm.nih.gov/pubmed/34365637


Forensic Sci. 2022, 2 347

45. Spradley, K.; Jantz, R.L. What are we really estimating in forensic anthropological practice, population affinity or ancestry?
Forensic Anthropol. 2021, 4, 171–180. [CrossRef]

46. Tallman, S.D.; Parr, N.M.; Winburn, A.P. Assumed differences; unquestioned typologies: The oversimplification of race and
ancestry in forensic anthropology. Forensic Anthropol. 2021, 4, 73–96. [CrossRef]

47. Albanese, J.; Tuck, A.; Gomes, J.; Cardoso, H.F.V. An alternative approach for estimating stature from long bones that is not
population-or group-specific. Forensic Sci. Int. 2016, 259, 59–68. [CrossRef]

48. Edgar, H.J.H.; Daneshvari Verry, S.; Moes, E.; Adolphi, N.L.; Bridges, P.; Nolte, K.B. New Mexico Decedent Image Database; Office of
the Medical Investigator, University of New Mexico: Albuquerque, NM, USA, 2020. [CrossRef]

49. Berry, S.R. Metadata Determination for Cadaveric Collection. Master’s Thesis, University of New Mexico, Albuquerque, NM,
USA, 2014.

50. Daneshvari Berry, S.; Edgar, H.J.H. Development of a large-scale, whole body CT image database. In Proceedings of the AMIA
Annual Symposium, Washington, DC, USA, 6–8 November 2017.

51. Daneshvari Berry, S.; Edgar, H.J.H. Announcement: The New Mexico decedent image database. Forensic Imaging 2021, 24, 1–3.
52. Tise, M.L.; Spradley, M.K.; Anderson, B.E. Postcranial sex estimation of individuals considered Hispanic. J. Forensic Sci. 2013, 58

(Suppl. S1), S9–S14. [CrossRef] [PubMed]
53. GLAAD. Available online: https://www.glaad.org/reference/transgender (accessed on 16 September 2021).
54. Blackless, M.; Charuvastra, A.; Derryck, A.; Fausto-Sterling, A.; Lauzanne, K.; Lee, E. How sexually dimorphic are we? Review

and synthesis. Am. J. Hum. Biol. 2000, 12, 151–156. [CrossRef]
55. Stock, M.K. A preliminary analysis of the age of full expression of sexually dimorphic cranial traits. J. Forensic Sci. 2018, 63,

1802–1808. [CrossRef]
56. Vanderschueren, D.; Vandenput, L.; Boonen, S.; Lindberg, M.L.; Bouillon, R.; Ohlsson, C. Androgens and bone. Endocr. Rev. 2004,

25, 389–425. [CrossRef]
57. Bouillon, R.; Bex, M.; Vanderschueren, D.; Boonen, S. Estrogens are essential for male pubertal periosteal bone expansion. J. Clin.

Endocrinol. Metab. 2004, 89, 6025–6029. [CrossRef]
58. Carson, J.A.; Manolagas, S.C. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in

health and disease. Bone 2015, 80, 67–78. [CrossRef]
59. Vanderschueren, D.; Venken, K.; Ophoff, J.; Boullon, R.; Boonen, S. Sex steroids and the periosteum-reconsidering the roles of

androgens and estrogens in periosteal expansion. J. Clin. Endocrinol. Metab. 2006, 91, 378–382. [CrossRef]
60. Saggese, G.; Baroncelli, G.I.; Bertelloni, S. Puberty and bone development. Best Pract. Res. Clin. Endocrinol. Metab. 2002, 16, 53–64.

[CrossRef]
61. Arsuaga, J.L.; Carretero, J.M. Multivariate analysis of the sexual dimorphism of the hip bone in modern human population and in

early hominids. Am. J. Phys. Anthropol. 1994, 93, 241–257. [CrossRef]
62. Best, K.C.; Garvin, M.S.; Cabo, L.L. An investigation into the relationship between human cranial and pelvic sexual dimorphism.

J. Forensic Sci. 2018, 63, 990–1000. [CrossRef]
63. Frayer, D.; Wolpoff, M. Sexual dimorphism. Annu. Rev. Anthropol. 1985, 14, 429–473. [CrossRef]
64. Scheuer, L.; Black, S. The Juvenile Skeleton, 1st ed.; Academic Press: London, UK, 2004; p. 140.
65. Klales, A.R. Current practices in physical anthropology for sex estimation in unidentified, adult individuals. Am. J. Phys.

Anthropol. 2013, 150, 168.
66. Klales, A.R.; Ousley, S.D.; Vollner, J.M. A revised method of sexing the human innominate using Phenice’s nonmetric traits and

statistical methods. Am. J. Phys. Anthropol. 2012, 149, 104–114. [CrossRef] [PubMed]
67. Stewart, T. Essentials for Forensic Anthropology; Charles C Thomas: Springfield, IL, USA, 1979.
68. Curate, F.; Coelho, J.; Gonçalves, D.; Coelho, C.; Ferreira, M.T.; Navega, D.; Cunha, E. A method for sex estimation using the

proximal femur. Forensic Sci. Int. 2016, 266, 579.e1–579.e7. [CrossRef]
69. Bass, W.M. Human Osteology: A Laboratory and Field Manual, 5th ed.; Missouri Archaeological Society: Columbia, MO, USA, 2005.
70. Garvin, H.M.; Ruff, C.B. Sexual dimorphism in skeletal browridge and chin morphologies determined using a new quantitative

method. Am. J. Phys. Anthropol. 2012, 147, 661–670. [CrossRef] [PubMed]
71. Tallman, S.D.; Kincer, C.D.; Plemons, E.D. Centering transgender individuals in forensic anthropology and expanding binary sex

estimation in casework and research. Forensic Anthropol. 2022, 5, 161–180. [CrossRef]
72. Jantz, R.; Ousley, S. Fordisc 3: Third generation of computer-aided forensic anthropology. Rechtsmedizin 2013, 23, 97–99.
73. Burns, K.R. Forensic Anthropology Training Manual, 2nd ed.; Pearson: New York, NY, USA, 2006.
74. Gray, H. Gray’s Anatomy; LEA & FEBIGER: Philadelphia, PA, USA, 1966.
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