Recent Advances in our Understanding of Neuroplasticity of Language Recovery

SWATHI KIRAN, PHD, CCC-SLP PROFESSOR, SPEECH AND HEARING SCIENCES, GRADUATE PROGRAM IN NEUROSCIENCE, BOSTON UNIVERSITY ASSISTANT IN NEUROLOGY, MASSACHUSETTS GENERAL HOSPITAL

Disclosure

NIH grants NIDCD/NIH 1P50DC012283; NIDCD/NIH 1K18DC011517; NIH 5F31DC011220

Outline

Epochs of recovery

- Neurophysiological changes underlying recovery
- Anatomical and physiological substrates of recovery
- Patterns of reorganization of language Acute Stage
- Sub-acute stage
- Chronic stage
- □ Language recovery after rehabilitation
- A network approach to language rehabilitation

Epochs of recovery (Cramer, 2008)

Acute injury

initial hours after a stroke

numerous profound changes evolve in blood flow, edema, metabolism, inflammatory state, and diaschisis

Repair

- first days after stroke onset, and lasts several weeks
- most spontaneous behavioral recovery endogenous repair-related events (BDNF, synaptogenesis, neuronal sprouting) reach peak levels
- Chronic weeks to months after stroke
- spontaneous behavioral gains have generally reached a plateau
- stable but still modifiable

Neurophysiological changes

Edema

Reduction in cerebral blood flow

Abnormal concentration /release of neurotransmitters

Denervation

Transneuronal degeneration

Diaschisis

Neurophysiological changes in early recovery

Neurophysiological changes occur in the brain for a period of time following cerebral insult

Edema

- Like any other wound, brain damage causes edema
- Occurs 2-3 days post onset
- affects remote parts of the brain
- shift of midline structures behavioral deficits may be diffuse
- diminishes about 1 week post onset
- dead tissue removed by macrophages
- distortions disappear
- lesion becomes circumscribed

Neurophysiological changes in early recovery

Reduction in cerebral blood flow (hypoperfusion)

Widespread \downarrow function related to \downarrow blood flow/metabolism of oxygen and glucose may last several months/longer

Neurophysiological changes in early recovery Abnormal concentration /release of neurotransmitters

occurs immediately after infarction Due to 1 activation/ inhibition after damage to other parts of network

- Neurons release glutamate onto nearby neurons which become excited, overloaded with calcium and die
- Transneuronal degeneration Neurons or nerve cells may atrophy when they don't have normal inputs

Excitotoxicity

Neurophysiological changes in early recovery

Diaschisis (Von Monakow, 1914) "shocked throughout" ↓ responsiveness and dysfunction

Cell B

- of intact neurons remote from damaged area
- May be related to ↓ in blood flow /metabolism and or abnormal neurotransmitter release
- Damaged area no longer sends signals to intact area

Flint et al., 2005

Summary: Neurophysiological changes

Edema

Reduction in cerebral blood flow

Abnormal concentration /release of neurotransmitters

Denervation

Transneuronal degeneration

Diaschisis

Reperfusion can only salvage the ischemic penumbra for the first few days following ischemia and eventually, the hypo-perfused area often progresses to infarction (Chen & Yi-Cheng, 2012; Guadagno et al., 2008; Hillis et al., 2004).

Nonetheless, language recovery continues to occur in the ensuing months following the stroke.

Chronic phase- the role of the ipsilesional hemisphere

Recovery of language either involves transferring language functions to the right hemisphere - (Weiller et al., 1995; Abo et al., 2004; Xu et al., 2004),

Or the exclusive recruitment of left perilesional and other left hemisphere areas- (Heiss & Thiel, 2006; Hillis, 2002; Karbe, et al., 1998; Rosen, et al., 2000; Saur et al., 2006).

Or a combination of the two (Crinion & Leff, 2007; Price & Crinion, 2005; Thompson & den Ouden, 2008)

Summary

Language recovery is enabled by a network of language regions that includes

- Undamaged regions in the left hemisphere
- Prefrontal regions such as MFG and SFG serve a supportive role
 Part of a multiple demand network where activation in domain-general regions influences activation in spared tissue in domain-specific regions (Fedorenko et al,. 2012).
- SFG and ACC serve a regulatory role to modulate function (Kiran et al., 2015)

•RH regions such as RIFG and RMFG play a crucial supportive role

Promoting reorganization state 1. bridges of experience dependent plancky. bridge Description 1. bridges of experience dependent plancky. 1. bringes of experience. 1. brinderince. 1.

7. Salience, 8. Age, 9. Transference, 10. Interference

- 7. Salience matters • Attention, motivation, meaning, reward, emotion
- 8. Age matters
- Neurogenic response is reduced with age
 Exercise increases neurotrophic factors
- 9.

