White matter matters in the recovery of language in post-stroke aphasia

Erin L. Meier¹, Jeffrey P. Johnson¹, Yansong Geng¹, Ajay Kurani², James Higgins², Todd Parrish², Cynthia K. Thompson³, & Swathi Kiran¹ Sargent College of Health and Rehabilitation Sciences, Boston University¹; Feinberg School of Medicine, Northwestern University²; School of Communication, Northwestern University³

Background

- Lesion size has been highlighted as a critical predictor of language outcome in persons with stroke-induced aphasia (PWA)¹⁻²
- Lesion symptom-mapping studies have implicated specific gray matter (GM) structures in certain language skills (e.g., naming, lexical-semantics)³⁻⁸
- Due to structural disconnect, metrics of regional white matter (WM) integrity may be more powerful predictors of language skills in PWA than GM metrics alone⁹⁻¹⁰
- However, the potential compensation by remaining GM and WM left hemisphere (LH) structures and their right hemisphere (RH) homologues¹¹⁻¹² has received little attention in the context of naming in patients with anomia

Research Questions (RQs)

- RQ #1: To what extent does the integrity of core LH WM regions differ from RH homologues in PWA? <u>Hypothesis</u>: Fractional anisotropy (FA): LH < RH; mean diffusivity (MD):
- LH > RH**RQ #2a:** What is the relationship between bilateral GM and WM integrity and (a) aphasia severity and (b) naming skills in PWA? Hypothesis: All LH ROIs will predict aphasia severity whereas the
- strongest predictors of naming will be middle temporal and inferior frontal areas and their RH homologues³⁻⁸ **RQ #2b:** What type of LH model is best for predicting language?
- <u>Hypothesis</u>: GM+WM model will better predict language than either GM only or WM only models¹⁰

Participants

- 27 PWA (17M, 24 right-handed, mean age = 62.3 \pm 10.5 years, time post CVA onset = 55.0 \pm 52.1 months)
- The Western Aphasia Battery-Revised¹³ was used to index overall aphasia severity via the Aphasia Quotient (AQ)
- A 180-item non-standardized picture naming probe was administered to assess naming abilities
- PWA ranged in severity of aphasia and naming impairment as well as size and location of lesion

Lesion overlay (n = 27 PWA)

Methods: MRI Data Acquisition

- Images acquired on a 3T Siemens Trio Tim scanner with a 20-channel coil
- T1-weighted (TR/TE = 2300/2.91ms, slice thickness = 1mm, 176 sagittal slices), TR-FLAIR (TR/TE = 9000/90ms, slice thickness = 5mm, 35 slices, acceleration x2) and DTI (TR/TE = 900ms/92ms, slice thickness = 2mm, 70 interleaved slices, b = 1000 s/mm2) scans collected
- Eight regions of interest (ROIs, i.e., [ACC]; superior, middle, and inferior frontal
- gyri [SFG, MFG, IFG]; middle and inferior temporal gyri [MTG, ITG]; and supramarginal and angular gyri [SMG and AG]) were identified and masks were extracted from the Harvard-Oxford (H-O) cortl-maxprob-thr0, 1mm template

Lesior

74508

205712

193278

92057

172344

324719

210628

79770

11279

68088

22680

210383

8097

59140

130489

321907

159060

154879

87744

257144

371222

97246

171038

235770

136854

89004

56449

148203

97140

BU01

BU02

BU03

BU06

BU07

BU08

BU09

BU10

BU11

BU12

BU13

BU14

BU15

BU16

BU17

BU18

BU19

BU20

BU21

BU22

BU23

BU24

BU25

BU26

<u>BU27</u>

AVG

STDEV

/olume (cc)

WAB

87.2

25.2

52.0

74 1

30.8

48.0

82.8

95.2

80.4

92.1

40.0

92.7

64.4

87.2

33.6

74.3

78.0

28.9

13.0

11.7

65.4

45.2

40.4

37.5

58.0

84.3

58.85

25.66

AQ

Namino

Probe (%)

58.3

1.1

17.6

68.0

6.1

14.1

73.9

59.1

64.8

33.2

2.8

60.9

40.2

56.1

1.3

52.2

48.3

7.4

0.0

0.4

7.2

5.2

5.7

2.2

20.6

45.9

29.93

26.29

Cortical gray matter

T1-weighted images:

- Lesion masks (lesion = 0) & maps (lesion = 1) manually drawn for each patient in MRIcron
- Lesion masks & maps used in segmentation and normalization

GM integrity metrics:

- Lesioned LH ROIs generated for each patient Cortical integrity calculated by % spared tissue = (H-O ROI volume) – (normalized lesion
 - volume) / (H-O ROI volume) in MarsBaR

Percentage (%) of spared cortica							
	ACC	SFG	MFG	IFG	MTG	ITG	SN
BU01	100.00	100.00	99.91	97.56	96.03	100.00	51.
BU02	99.44	98.94	84.95	49.81	53.47	89.10	33.
BU03	100.00	100.00	96.20	89.27	25.75	86.11	25.
BU04	100.00	100.00	100.00	100.00	45.34	90.62	64.
BU05	100.00	100.00	100.00	70.33	18.07	67.58	62.
BU06	100.00	99.44	56.48	6.16	32.13	91.42	8.4
BU07	94.31	99.90	97.65	94.81	85.12	99.08	25.
BU08	100.00	100.00	99.77	83.81	68.20	100.00	96.
BU09	100.00	100.00	100.00	100.00	94.06	99.60	100
BU10	100.00	100.00	100.00	100.00	100.00	100.00	35.
BU11	100.00	100.00	100.00	100.00	100.00	96.69	100
BU12	100.00	100.00	89.03	19.95	72.10	96.97	56.
BU13	100.00	100.00	100.00	100.00	100.00	100.00	100
BU14	100.00	99.95	93.06	79.63	77.63	99.32	99.
BU15	99.72	97.24	70.79	75.56	100.00	100.00	87.
BU16	96.06	78.57	31.79	26.45	22.82	79.24	29.
BU17	100.00	100.00	95.48	50.66	45.57	96.89	90.
BU18	100.00	100.00	99.91	68.59	50.13	99.00	79.
BU19	100.00	100.00	96.50	61.85	100.00	100.00	98.
BU20	100.00	100.00	60.35	0.62	43.64	99.56	1.8
BU21	98.31	92.69	33.52	0.00	46.60	95.25	7.0
BU22	100.00	100.00	100.00	100.00	99.37	89.18	100
BU23	99.86	67.86	40.16	67.00	97.51	100.00	56.
BU24	94.03	99.90	98.94	54.76	55.77	99.56	68.
BU25	100.00	100.00	100.00	83.11	61.26	98.00	78.
BU26	100.00	100.00	86.68	67.08	75.29	99.56	99.
BU27	100.00	100.00	99.86	99.85	100.00	100.00	100
AVG	99.32	97.57	86.33	68.40	69.11	95.29	65.

FA by Hemisphere

FA significantly lower in LH than RH ROIs (F(1,52) = 10.15, p < .001) except for ACC (F(1,52) = 0.32, p = 0.58)

RQ #2 Results: Language Predictions

- %spared tissue)
- Metrics from certain adjacent regions loaded together

Laboratory

MD by Hemisphere

Hemisphere

🗆 LH 🔲 RH

Six components resulted from the PCA including all LH metrics (i.e., FA, MD and

LH Temporal 1.72 LH IFG 2.74 4 17 11.44 LH DMPFC 2.78 11.24 RH MD -7.65 4.12 -1.83 0.081

F(4,22) = 5.11 , p = 0.005**, Multiple R-squared = 0.482

29.93

Comparing GM+WM to GM only & WM only models

3.96

4.04

7.56

< .001

0.012*

Aphasia Severity

GM+WM model better than both GM only (p = 0.20) and WM only (p = 0.004) models

Naming Skills GM+WM model better than GM only (p = 0.04) but no difference between

WM only and GM+WM models

Conclusions

Intercept

- Integrity metrics of LIFG and LH dorsomedial prefrontal regions were the strongest predictors of both aphasia severity and naming
 - LSMG and LAG—highly damaged regions in this sample—also predicted AQ
- RH metrics (per PCA components) did not independently predict language skill For naming, the WM only and GM+WM models did not differ in predictive power
- WM integrity of LIFG and LACC is likely most critical for word retrieval¹⁰ WM adjacent to cortical ROIs (e.g., LAG, LSMG, and LMTG) aligns with
- established WM tracts like the arcuate fasciculus
- Next steps include determining the utility of regional versus entire tract integrity metrics in predicting language therapy outcomes

Selected References Pedersen P.M., Jørgensen H.S., Nakayama H., et al. (1995). Aphasia in acute

nalysis of the Boston Naming Test, Cortex, 49(3), 658-667.

clinical practice, 18(3), 689-694. Baldo, J. V., Arévalo, A., Patterson, J. P., & Dronkers, N. F. (2013). Grey and

white matter correlates of picture naming: evidence from a voxel-based lesion

eLeon, J., Gottesman, R. F., Kleinman, J. T., Newhart, M., Davis, C., Heidler

Geory, J., U., Hillis, A. E. (2007). Neural regions essential for distinct cognitive processes underlying picture naming. *Brain*, 130(5), 1408–1422. Henseler, I., Regenbrecht, F., & Obrig, H. (2014). Lesion correlates of

atholinguistic profiles in chronic aphasia: comparisons of syndrome-, moda

Hillis, A. E., Kleinman, J. T., Newhart, M., Heidler-Gary, J., Gottesman, R., Barker, P. B., ... Chaudhry, P. (2006). Restoring cerebral blood flow reveals and the statement of the statement

critical for naming. Journal of Neuroscience, 26(31), 8069-8073

om-level assessment, Brain, 137(3), 918-930.

- 7. Schwartz, M., Dell, G., Martin, N., Gahl, S., & Sobel, P. (2006). A case-series test of troke: incidence, determinants, and recovery. Ann Neurol, 38, 659–666. Plowman, E., Hentz, B., & Ellis, C. (2012). Post-stroke aphasia prognosis: A the interactive two-step model of lexical access: Evid Journal of Memory and Language, 54(2), 228-264. ated and stroke-related factors. Journal of evaluation in
 - 8. DeLeon, J., Gottesman, R. F., Kleinman, J. T., Newhart, M., Davis, C., Heidler-Gar . Hillis, A. E. (2007). Neural regions es
 - underlying picture naming. Brain, 130(5), 1408–1422. Basilakos, A., Fillmore, P. T., Rorden, C., Guo, D., Bonilha, L., & Fridriksson, J. (2014). Regional white matter damage predicts speech fluency in chronic pos stroke aphasia. Frontiers in Human Neuroscience, 8.
 - nilha, L., Rorden, C., & Fridriksson, J. (2014). Assessing the clinical effect of residual cortical disconnection after ischemic strokes. Stroke, 45(4), 988–993. Lukic, S., Barbieri, E., Wang, X., Caplan, D., Kiran, S., Rapp, B., ... & Thompson,
 - K. (2017). Right hemisphere grey matter volume and language aphasia. Neural plasticity, 2017 2. Xing, S., Lacey, E. H., Skipper-Kallal, L. M., Jiang, X., Harris-Love, M. L., Zeng, J.
 - & Turkeltaub, P. E. (2015). Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke. Brain, 139(1), 227-241. I3.Kertesz, A. (2007). Western Aphasia Battery (Revised) PsychCorp. San Antonio, T

our thanks to members of the BU Aphasia Center for the Neurobiology of Language F31DC015940

