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ABSTRACT

A new algorithm for determining the location of a fluorescent

probe in the plane is described. Inspired by the Bancroft al-

gorithm for localization in the global positioning system, the

technique calculates the position of the probe without the use

of a numerical fitting procedure. Numerical simulations are

presented which indicate that the precision of the localization

is similar to that obtained using the standard method of fit-

ting a Gaussian profile to the measured fluorescence intensity.

Moreover, the computational time is two orders of magnitude

shorter than when performing such a fit.
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1. INTRODUCTION

The resolution of a visible light microscope is limited to ap-

proximately half the wavelength of the light [1]. An object

smaller than this appears as a diffraction-limited spot. While

the structural details of such an object cannot be distinguished,

its location can be determined with much higher accuracy by

finding the center of the image spot. The fluorescence inten-

sity measured at a given location depends on the distance to

the fluorescent probe and therefore a collection of measure-

ments obtained at different locations (e.g. from the pixels in

a charge-coupled device (CCD) image) can be interpreted as

a set of range-only measurements taken at different locations

in space. The problem of determining position from a set of

range-only measurements occurs in many settings. One no-

table example is the problem of position determination using

the global positioning system (GPS). Several algorithms have

been developed to solve the GPS positioning problem, includ-

ing a closed form solution known as Bancroft’s algorithm [2].

In this paper we present a method based on Bancroft’s algo-

rithm for localizing a fluorescent probe in the image plane.

This algorithm, fluoroBancroft, yields a closed-form solution

for the location of the fluorescent probe.

Sub-diffraction-limit localization is typically done by fit-

ting the data to a Gaussian profile using a non-linear least-

squares fit [3]. This can provide precision on the order of

1-20 nm [4] and has been used to great effect in single par-

ticle tracking and other applications (e.g. [5, 6]). However,

it involves a numerical fitting procedure to determine the pa-

rameters in the Gaussian function. While this is not a prob-

lem when the data is analyzed off-line, it does impose a lim-

itation for real-time localization. We show in Sec. 4 that the

algorithm proposed here is roughly two orders of magnitude

faster than the Gaussian fitting approach with only a moderate

reduction in localization accuracy.

Bancroft’s algorithm yields two possible solutions, only

one of which is physical. The fluoroBancroft algorithm pre-

sented here follows the same basic approach as the Bancroft

algorithm. However, due to the structure of the dependence

of the fluorescence intensity on the distance between the mea-

surement location and the position of the fluorescence source,

there is only a single solution. A closed-form equation for

this solution is derived. This equation involves the pseudo-

inverse of a matrix formed from the measured data. As an ini-

tial investigation of the fluoroBancroft algorithm, we present

a numerical comparison of its performance to that of the non-

linear least-squares Gaussian fit using data generated through

computer simulation of CCD images of a fluorescent probe.

2. THE FLUOROBANCROFT ALGORITHM

The point spread function of a diffraction-limited spot is given

by an Airy function [7]. Near the peak, this function is well-

approximated by a Gaussian [4]. Since the Gaussian is math-

ematically more tractable, we choose to model the intensity

of a diffraction limited spot by

Ipsf = me−
r2

2σ2 . (1)

Here r is the distance between the measurement location and

the fluorescent probe, m is a scaling factor determined by

the total number of photons emitted by the probe during the

measurement period and σ is the full-width, half-maximum

(FWHM) of the image spot, given by

σ =
1.22λ

4N.A. ln 2
(2)

where N.A. is the numerical aperture of the objective.

The measured intensity is given by the true intensity to-

gether with background and shot noise. The background noise,

arising from sources such as dark current, sensor noise and

autofluoresence of the sample, is assumed to be constant across

the field of view. For the purposes of position estimation,
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we model it as a Gaussian random variable ηB with mean

and variance equal to NB . The shot noise is a Poisson pro-

cess with a rate dependent on the total number of photons

detected [3]. We assume that the photon count is high enough

to model this noise as a Gaussian random variable ηshot with

mean and variance Nshot equal to the sum of the intensity

and the expected value of the background noise. The model

for the measured intensity at a distance r away from the probe

is

I = me−
r2

2σ2 + ηB + ηshot. (3)

Taking the expected value of (3) and solving for r yields

r2 = 2σ2 ln(2m)− 2σ2 ln(I − 2NB). (4)

Note that because the background noise can be measured, the

second term on the right-hand side of (4) is known. How-

ever m is related to the true intensity of the fluorophores on

the probe and is therefore not known. Let i index the mea-

surements obtained from the (known) positions (xi, yi). The

range can be expressed as r2
i = (xi − x0)2 + (yi − y0)2

where (x0, y0) is the (unknown) true location of the fluores-

cent probe. Define

b
�
= 2σ2 ln(2m), P 2

i
�
= 2σ2 ln(I − 2NB)

αi
�
= 1

2

(
x2

i + y2
i + P 2

i

)
, Λ

�
= 1

2

(
x2

0 + y2
0

)
.

Then (4) can be rewritten as

0 = αi + Λ− (
xi yi 1

)⎛⎝ x0

y0

b

⎞
⎠ . (5)

Stacking together n measurements yields

0 = α + Λe−B

⎛
⎝ x0

y0

b

⎞
⎠ (6)

where

α =

⎛
⎜⎝

α1

...

αn

⎞
⎟⎠ , e =

⎛
⎜⎝

1
...

1

⎞
⎟⎠ , B =

⎛
⎜⎝

x1 y1 1
...

xn yn 1

⎞
⎟⎠ .

Pre-multiplying (6) by BT and rearranging yields(
x0 y0 b

)
= B† (α + Λe) (7)

where B† =
(
BT B

)−1
BT is the pseudo-inverse of B. No-

tice that the unknown position (x0, y0) appears both on the

left-hand side and on the right-hand side (through Λ). We

now state an interesting property of B† which can be shown

using a direct calculation of the pseudoinverse.

Proposition 2.1 Let e = (1, 1, · · · , 1)T and let A be an n×2
matrix. Define B =

(
A e

)
. Then

B†e =
(

0 0 1
)T

.

To apply this proposition, define

Q =
(

1 0 0
0 1 0

)
.

Then

(
x0

y0

)
= Q

⎛
⎝ x0

y0

b

⎞
⎠ = Q

(
B† (α + Λe)

)
= QB†α. (8)

Since B and α depend only on the measurements and the lo-

cations of those measurements, (8) determines the location of

the fluorescent probe as a closed-form equation.

The measurement model (3) is not valid for large r (with

respect to σ). Including measurements from too far away will

therefore degrade the performance of the algorithm. To miti-

gate this, we discard all measurements lower than a threshold

defined as follows. The parameter m can be estimated by inte-

grating (1) and setting it equal to the total number of photons

collected in the image minus the expected value of the back-

ground noise. The threshold is then set to Ithresh = me−2.

3. METHODS

To investigate the performance of the fluoroBancroft algo-

rithm, we developed a simulation similar to that described

in [3]. We modeled a point source fluorescing at a wave-

length of 540 nm and imaged through an objective lens with

an N.A. of 1.2 onto a CCD. The PSF was modeled as a Gaus-

sian and the pixel size in the CCD image was taken to be 100

nm. To obtain the noise-free intensity values, the PSF was

integrated over each pixel. Background noise was introduced

by adding a sample from a Poisson distribution with parame-

ter NB = 10 photons. Finally shot noise was introduced by

adding a sample from a Poisson distribution with parameter

given by the sum of the PSF across the pixel and the back-

ground noise value. An example image for a 16 × 16 pixel

array is shown in Fig. 1. The origin is at the center of the im-

age while the true location of the probe is at (50 nm, 50 nm).

The signal-to-noise ratio (SNR) in an image was defined

as in [8] to be

SNR =
I0√

NB + σ2
I0

(9)

where NB is the variance of the background noise, I0 is the

maximum signal intensity above background, and σI2
0

is the

experimentally determined variance of the maximum signal

intensity. To vary the SNR, simulations were run with a range

of different fluorescence intensities (corresponding to either

different integration times or excitation intensities). 1000 it-

erations were run for each intensity. The location of the par-

ticle in an image was determined using the fluoroBancroft al-

gorithm described in Sec. 2 as well as by using a nonlinear
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Fig. 1. Simulated CCD image for a 16 × 16 pixel array with a

fluorescent probe at (x, y) = (50 nm, 50 nm). It fluoresced at a rate

of 4 photons/ms. The background rate was 10 photons/sec/pixel and

the integration time was 500 ms. The corresponding SNR was 11.

Grey level indicates the number of photons collected.

least-squares fit of the data to a Gaussian given by

I(x, y) = Ae−
(x−x0)2+(y−y0)2

2σ2

in which x0, y0, A and σ were allowed to vary. The simu-

lations were performed in Matlab and the Gaussian fit per-

formed using the built-in routine lsqnonlin.

4. RESULTS AND DISCUSSION

To compare the computational complexity, the average time

to compute the location of the fluorescent probe using both

algorithms was calculated. The results are shown in Fig. 2 in

which the ratio of the time for the Gaussian fit to the time for

the fluoroBancroft algorithm is shown for three different sizes

of pixel arrays. Because Matlab is typically slower than a cus-

tom program, the exact times are not meaningful. However,

the ratio provides a rough measure of the relative computa-

tional complexity. For all these simulations, the fluoroBan-

croft algorithm was at least 50 times faster and generally more

than two orders of magnitude faster than the Gaussian fit.

The calculation of the estimate using the fluoroBancroft algo-

rithm from (8) grows linearly in complexity with the number

of measurements but is independent of the SNR. By contrast

the Gaussian fit is done through numerical optimization and

thus the computation time depends on the initial condition,

the amount of data, the SNR, and the tolerance desired.

Fig. 3 shows the mean absolute error and standard devi-

ation of the two algorithms as a function of SNR for three

different sizes of pixel arrays. For the 16× 16 pixel array, the

Gaussian fit outperforms the fluroBancroft algorithm, though

both provide a precision well below the diffraction limit. One

factor in the performance of the new algorithm is the choice of

the threshold for including a measurement (see Sec. 2). Data

Fig. 2. Ratio of execution time of Gaussian fit to fluroBancroft for

a range of SNR and pixel array sizes.

from pixels far from the location of the probe are not well-

modeled by (3) and skew the estimate. It is likely that the per-

formance of the fluoroBancroft algorithm can be improved by

using a more detailed approach for determining the threshold

or a more detailed measurement model. As the pixel array

size decreases (as for a finely focused spot or for large pixel

sizes), all the pixels contain a strong signal from the probe.

For the smallest pixel array, the fluoroBancroft algorithm out-

performs the Gaussian fit technique. For all array sizes, the

performance of the algorithms is quite similar at higher SNR.

There are several applications for which the speed of the

fluoroBancroft algorithm will be beneficial. It is possible to

track a large number of fluorescent probes in a wide-field im-

age simultaneously (see, e.g. [9]). To achieve tracking of all

the probes in real-time, it is necessary that the algorithm used

be as fast as possible. By tracking in real-time, it would

be possible to adjust parameters such as light intensity or

to add chemicals to the sample based on the position of the

molecules. Another interesting application is real-time track-

ing of a fluorescing probe using a confocal or multi-photon

microscope [10–12]. In this setting, the data points are ac-

quired sequentially and it is therefore beneficial to localize

the probe with a smaller number of measurements. Moreover,

we are currently extending the algorithm to provide a closed-

form solution to the localization problem in three-dimensions.
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a. 16 × 16 pixel array b. 8 × 8 pixel array c. 4 × 4 pixel array
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Fig. 3. Mean absolute error and standard deviation of the location estimates of the fluoroBancroft (dash-dot) and Gaussian fit (solid)
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