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Abstract— We consider the problem of approximating a con-
tinuous curve by a piecewise linear one whose segments are
assumed to be connected by universal joints. Rather than taking
a least-squares approach, we require that the endpoints of the line
segments lie on the continuous curve. We show that under these
assumptions a single rotational degree of freedom remains. An
algorithm is derived to determine the set of angles characterizing
the relative orientation of each consecutive pair of line segments
as a function of this rotational degree of freedom. Two examples
are given to illustrate the procedure. The motivating application
for this work is the control of a snake-like robot using a set of
gaits designed from shape primitives.

I. INTRODUCTION

In this paper we consider the problem of approximating a

continuous parameterized 3-D curve with a piecewise linear

one. The approximating curve is assumed to consist of N line

segments of known lengths L1, . . . , LN . We further assume

that adjacent segments are connected at their end points using

a universal joint. The problem is then one of finding the

position and orientation of the first line segment with respect

to a fixed world frame and the relative orientations of all

subsequent segments such that the discrete curve approximates

the continuous one in an appropriate sense.

There are many ways in which one could choose to ap-

proximate the original curve. For instance, one could seek to

minimize some notion of distance between the continuous and

the discrete curves. This technique often leads to a numerical

solution which is computationally expensive and thus not well-

suited for real-time implementation. In this work we take a

different approach and assume that the end points of the line

segments should lie on the curve to be approximated. Under

this assumption we are able to solve the problem by splitting

it into two stages. In the first stage, the locations of the end

points along the original curve are determined. This problem

is solved numerically using a bisection search method. In

the second stage, the orientations of the line segments are

determined such that the end points are placed at the desired

locations. To solve this problem, the sequence of line segments

is first modeled as a kinematic chain. We then take advantage

of the product of exponentials formulation [1], [2] to derive

expressions for the relative orientations of the segments as a

function of a single degree of freedom, namely a rotation of

the first segment around the axis defined by its end points.

This rotation can be chosen arbitrarily or used to optimize

some secondary task.

The motivation for this work lies in the control of snake-

like (or hyper-redundant) mobile robots. These mechanisms

provide a flexibility which is difficult or impossible to achieve

with other locomotion modalities. They are well-suited for

unstructured and highly cluttered environments, such as in

the rubble of a collapsed building, and can, in principle at

least, climb poles or stairs, navigate through narrow openings,

and even manipulate objects. While the flexibility of a snake-

like design makes it an interesting system to consider, it also

makes it a difficult one to control. Determining how the system

interacts and moves through the environment is a complicated

task. One general approach which is useful in this setting

is the notion of gait-based control [3]. This technique has

been applied successfully to many novel locomotion systems,

including hyper-redundant mechanisms [4], eel-like robots [5],

[6], and a polychaete annelid robot [7].

As in the work of Chirikjian and Burdick [8], it is our

view that it is useful to design gaits and shapes at the level

of a continuum snake, ignoring at first the details of the

discrete nature of the mechanism. Such an approach allows the

control designer to take advantage of solutions found in nature

(biomimetic design) as well as to use their own intuition. The

work presented in this paper is aimed at translating the desired

continuous curve into actuator positions such that the shape

of the robot achieves the desired form. While the solution

presented here is specific to one particular mechanism design,

the fundamental idea is one of imposing suitable restrictions to

reduce the complexity of the problem. This general approach,

as well as the tools developed here based on the product-

of-exponentials formulation, are thus useful for a variety of

mechanism designs.

The remainder of this paper is organized as follows. In

the next section we present a brief review of the product of

exponentials representation of a serial kinematic chain and

then derive the representation for the piecewise linear approx-

imating curve. In Sec. III we discuss the general problem and

our approach to solving it. The solution itself is described in

Sec. IV together with examples to illustrate the procedure.

II. ROBOT KINEMATICS

We give here a very brief description of a geometric

approach to kinematic chains. For a more detailed description

of the following see [1] or [2].

A serial kinematic chain is a series of rigid links with

adjacent links connected by a joint with a single degree

of freedom. Joints with additional degrees of freedom are

modeled by allowing the distance between subsequent joints

to be zero. To describe the configuration of the chain, a frame
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is attached to each joint and the position and orientation of

each of these frames is specified with respect to a (fixed)

world-reference frame. The configuration of a joint frame with

respect to the world frame is given by an element of the special

Euclidean group, SE(3), the Lie group of rigid rotations and

translations in 3-D. The configuration of the jth frame with

respect to the world frame is denoted gw,j . In homogeneous
coordinates, this configuration is given by

gw,j =
[

Rw,j pj

0 1

]
(1)

where Rw,j ∈ SO(3) is a rotation matrix and pj ∈ R
3 is

the vector from the origin of the world frame to the origin

of the jth frame. A point q ∈ R
3 may also be expressed in

homogeneous coordinates. This is denoted as q̄ and is given

by

q̄ =
[

q
1

]
. (2)

The configuration gw,j can then be viewed as a rigid trans-

formation which acts on a point q̄ expressed in the jth frame

by gw,j q̄ to yield the homogeneous coordinates of the point q
with respect to the world frame. Similarly the transformation

gi,j denotes the mapping from the jth frame to the ith. These

mappings can be concatenated, i.e. gj−2,j−1gj−1,j = gj−2,j .

Because subsequent links are connected by a single degree

of freedom, the configuration of the jth frame with respect to

the previous one, gj−1,j is given by a one-parameter family

of transformations. The parameter is often referred to as the

joint angle, regardless of the type of joint. To represent this

one-parameter family, we take advantage of the fact that any

element of SE(3) can be described as a screw, that is a

rotation and translation along some axis. In turn, a screw

can be described by the direction of rotation and translation,

known as a twist, and by the amount of twist, θ. When the

screw describes the configuration gj−1.j then the joint angle

is precisely θj−1.

To express a twist and a screw, we need to define the hat

map, a notation used here to denote two different mappings.

First, it denotes a mapping from R
3 into the space of 3×3

skew-symmetric matrices (the Lie algebra so(3)). This map-

ping is given by

⎡
⎣ ω1

ω2

ω3

⎤
⎦
ˆ

=

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ . (3)

Note that for ω, p ∈ R
3 we have ω̂p = ω × p. Second, the hat

map denotes a mapping from R
6 into the Lie algebra se(3),

given by [
v
ω

]̂
=

[
ω̂ v
0 0

]
(4)

where v = (v1, v2, v3) ∈ R
3 and ω = (ω1, ω2, ω3) ∈ R

3. The

meaning of the notation should be clear from context.

The twist for joint j is denoted ξj . For a revolute joint, the

twist is given by

ξj =
[ −ωj × qj

ωj

]
(5)

where ωj is a unit vector along the axis of rotation and qj is

any point on that axis of rotation. For a prismatic joint, the

twist is given by

ξj =
[

vj

0

]
(6)

where vj is a unit vector along the axis of translation. In either

case the twist can be viewed as an element of the Lie algebra

se(3).
The screw corresponding to the jth joint is given by the

exponential mapping of se(3) into SE(3). It can be shown

that if ξj corresponds to a revolute joint then

eξ̂jθj =
[

eω̂jθj
(
1I − eω̂jθj

)
(ωj × vj)

0 1

]
(7)

where 1I is the identity matrix, eω̂jθj is the matrix exponential

of the skew symmetric matrix ω̂jθj and vj = −ωj × qj . If the

joint is prismatic then

eξ̂jθj =
[

1I vjθj

0 1

]
. (8)

We can now express the rigid transformation of the first j
joints with respect to the world frame by concatenation. Let θ
denote the vector of all the joint angles and let gw,j(0) denote

the configuration of the jth frame when all the joint angles

are set to zero. Then

gw,j(θ) = eξ̂1θ1eξ̂2θ2 · · · eξ̂jθj gw,j(0). (9)

For the purposes of this work we assume that the discrete

curve is comprised of N − 1 line segments (links) connecting

N blocks. Each block is connected at its center to the end

point of a line segment by a single degree of freedom revolute

joint; since each internal block is assumed to be connected to

two segments along orthogonal axes, it represents a universal

joint. To each joint we attach a frame with origin at the center

of the corresponding block. The local x−axis is defined to

be pointing towards the center of the subsequent block. The

y− and z− axes are defined by the axes of rotation for the

joints. We label the joints from 1 to 2N − 2 and define the

joint angles to be such that the line is straight when all of the

joints are set to zero. Without loss of generality we assume

the joint on the first link rotates about the z−axis of the first

frame, the second joint rotates about the y−axis of the second

frame, the third about the z−axis of the third frame, and so

on. Thus each odd-numbered joint is a rotation about the local

z−axis and each even-numbered joint is a rotation about the

local y−axis. A diagram of a discrete curve with 15 blocks is

shown in Fig. 1.

To describe the internal shape of the discrete curve, we

specify the configuration of all the frames with respect to the

first frame, using (9) where the world frame is replaced with

the first frame. To relate the configuration of the jth frame to
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Fig. 1. An example of a kinematic chain with 15 blocks (14 links). The
first and final links are connected to the chain with revolute joints while the
remaining links are connected using universal joints, modeled as two revolute
joints with orthogonal and intersecting axes. A frame is associated to each
joint.

a given world frame, the transformation from the first frame

to the world may be viewed as a (fixed) joint with associated

transformation gw,1. Thus

gw,j(θ) = gw,1e
ξ̂1θ1 · · · eξ̂jθj g1,j(0). (10)

Since the reference frame is the first frame, we have

g1,j(0) =

⎡
⎢⎢⎣

1 0 0
∑� j

2 �
k=1 Lk

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (11)

where �·� indicates the floor function. Each joint is a revolute

joint with the axis of rotation given by

ωj =
{

(0, 0, 1)T , j = 1, 3, . . .
(0, 1, 0)T , j = 2, 4, . . . .

(12)

To express the twist of the jth joint as in (5), we must choose

a vector qj on the axis of rotation. We choose the origin of

frame j (in the reference configuration), i.e.

qj =

⎛
⎝� j

2 �∑
k=1

Lk, 0, 0

⎞
⎠

T

. (13)

The twist for each joint is then given by

ξj =

{ (
0,− (

j−1
2

)
L, 0, 0, 0, 1

)T
, j = 1, 3, . . .(

0, 0,
(

j
2

)
L, 0, 1, 0

)T
, j = 2, 4, . . . .

(14)

Define cθj
�
= cos (θj) and sθj

�
= sin (θj). From (7) the

screws for the joints are given by

eξ̂jθj =

⎡
⎢⎢⎢⎢⎣

cθj −sθj 0
(∑ j−1

2
k=1 Lk

)
(1 − cθj)

sθj cθj 0 −
(∑ j−1

2
k=1 Lk

)
sθj

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦ , (15)

for j = 1, 3, . . . and

eξ̂jθj =

⎡
⎢⎢⎢⎢⎣

cθj 0 sθj

(∑ j
2
k=1 Lk

)
(1 − cθj)

0 1 0 0

−sθj 0 cθj

(∑ j
2
k=1 Lk

)
sθj

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , (16)

for j = 2, 4, . . . .

III. PROBLEM DEFINITION

We assume that we are given a desired parameterized 3-

D curve pd(·) : [0, L] → R
3. We do not require that the

parameterization is with respect to arclength. We assume

further that the position of the first frame in the discrete curve

is given by p(0) and that the orientation of this frame can

be specified freely. Because we want to approximate a shape

rather than achieve a global position of a particular frame, this

imposes no restrictions. The problem is to find the orientation

of the first frame as well as that of the remaining joint angles

such that the end points of each of the links lie on the original

curve.

To solve this problem, we will split it into two subproblems.

First, we seek the locations of the end points of each of the

line segments.

Problem 1: Given a parameterized curve, pd(·) and a se-

quence of line segments of lengths L1, . . . , LN , find the values

0 = t0 ≤ t1 ≤ · · · ≤ tN of the parameter such that

‖pd(tj+1) − pd(tj)‖ = Lj , j = 1, . . . , N where ‖ · ‖ denotes

the standard Euclidean norm.

The second subproblem is to find the orientations of the

line segments such that the frame origins lie at the locations

given by the solution to Problem 1.

Problem 2: Given t0 ≤ t1 ≤ · · · ≤ tN , find the orientation

of the first frame and the relative orientations of the line

segments such that the end points of the jth line segment

are at p(tj) and p(tj+1) for j = 1, . . . , N .

IV. PROBLEM SOLUTION

In this section we present a solution to Problems 1 and 2

and two examples to illustrate the approach.

A. Solving Problem 1

Problem 1 reduces to a sequence of 1-D searches along

the desired curve. Because we assume only that the curve is

continuous, the Euclidean distance between two points pd(tj)
and pd(t), t > tj is in general a nonlinear function of t; for

each j, we seek the first t such that ‖pd(t) − pd(tj)‖ = Lj .

That is, we have

tj+1 = arg min
t>tj

(t − tj) s. t. ‖pd(t)− pd(tj)‖ = Lj (17)

If tj+1 can be bracketed, then it can be found using a

bisection search. To bracket the solution, we find t+ such
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that tj ≤ tj+1 ≤ t+ by using the following algorithm.

Algorithm 4.1: Bracketing tj+1

0. Initialize: Choose dt small enough such that there is at

most one t ∈ [tj , tj + dt] such that ‖p(t) − p(tj)‖ = Lj

and set t = tj + dt.
1. Check termination: If ‖pd(t) − pd(tj)‖ ≥ Lj then set

t+ = t and terminate.

2. Iterate: Set t = t + dt and go to 1.

The appropriate value of dt depends on the curve. In

practice it is typically enough to take dt much smaller then

Lj . If the curve is given in the arclength parameterization then

dt can be set equal to the segment length.

With tj+1 bracketed in this way, a numerical bisection

search can be used to find the solution to within a desired

accuracy.

Algorithm 4.2: Bisection

0. Initialize: Set t− = tj , tmid = t+−t−
2 , and choose ε > 0.

1. Check termination: If (‖pd(tj+1) − pd(tj)‖ − Lj)
2 ≤ ε

then set tj+1 = tmid and terminate.

2. Shift end point: If ‖pd(tmid) − pd(tj)‖ < L then set

t− = tmid, else set t+ = tmid.

3. Iterate: Set tmid = t+−t−
2 and go to 1.

1) Bézier curve example : As a first example, consider the

Bézier curve

pd(t) =
6∑

k=0

pdk

6!
k!(6 − k)!

tk(1 − t)N−k, 0 ≤ t ≤ 1 (18)

with the seven control points pdk
given by

2
4

4
4
0

3
5 ,

2
4

4
−4
0

3
5 ,

2
4

−4
−4
0

3
5 ,

2
4

−4
4
0

3
5 ,

2
4

0
0
4

3
5 ,

2
4

4
−4
6

3
5 ,

2
4

4
4
8

3
5 .

To approximate this curve, we choose a piecewise linear

curve with 15 segments. Each segment length is Lj = 1.25
units. The desired Bézier curve and the resulting points p(tj),
j = 0, . . . , 15 are shown in Fig. 2.

2) Helical curve example : As a second example, consider

a circular helix in the arclength parameterization:

pd(s) =

⎡
⎣ R sin(sα)

−R cos(sα)
s cos(θ)

⎤
⎦ (19)

where R is the radius, θ is the helical angle (the complement of

the pitch angle), and α = sin(θ)
R . We set R = 4 and θ = 1.4 rad

and choose to approximate the helix with a piecewise linear

curve with 15 segments, each of length 1.25 units. The helical

curve and the resulting points are shown in Fig. 3.

B. Solving Problem 2

We now seek the orientation of the first frame and the set

of joint angles (the orientations of each of the line segments

with respect to the previous segment) such that the end points

of the line segments lie at the points found by the solution to

Prob. 1, pd(t0), pd(t1), . . . , pd(tN ).

Fig. 2. An example of finding the set of discrete points along the continuous
curve. The desired curve is a Bézier curve with 7 control points (given after
(18)). The algorithm described in this section was used to find the 16 points
(indicated on the curve by *) along the curve such that each adjacent pair is
a distance of 1.25 units apart.

Fig. 3. In this example the desired curve is a circular helix of radius 1.25
and helical angle 1.4 rad. The curve was approximated with a 15 segment
piecewise linear curve.

The transformation from the world frame to the first frame,

gw,1, can be viewed as a sequence of (fixed) joints: a trans-

lation of length ‖pd(t0)‖ along the line from the origin to

pd(t0), a rotation θz0 about the z−axis of the first frame, a

rotation θy0 about the y−axis of the first frame, and finally a

rotation θx0 about the x−axis of the first frame. We assume

that when each of these “joints” is at the zero position then

the world frame and the first frame are aligned. Thus

gw,1 = eξ̂pd(t0)‖pd(t0)‖eξ̂z0θz0 eξ̂y0θy0 eξ̂x0θx0 . (20)

As described in Sec. II, the point pd(t1) lies L1 units along

the x−axis of the first frame. Using homogeneous coordinates,

we have [
pd(t1)

1

]
= gw,1

⎡
⎢⎢⎣

L1

0
0
1

⎤
⎥⎥⎦ . (21)

Using (20) in (21), pre-multiplying both sides by

e−ξ̂pd(t0)‖pd(t0)‖ and recognizing that a rotation about
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the x−axis leaves [L1, 0, 0]T invariant yields

e−ξ̂pd(t0)‖pd(t0)‖
[

pd(t1)
1

]
= eξ̂z0θz0 eξ̂y0θy0

⎡
⎢⎢⎣

L1

0
0
1

⎤
⎥⎥⎦ . (22)

Using the form of a screw given by (7) and (8), (22)

becomes

[
pd(t1) − pd(t(0)

1

]
=

⎡
⎢⎢⎣

L1cθz0cθy0

L1sθz0cθy0

−L1sθy0

1

⎤
⎥⎥⎦ (23)

Define pi,j
�
= pd(ti) − pd(tj). Then from (23) we have

θz0 = arctan 2 ([p1,0]2, [p1,0]1) (24)

θy0 = arctan 2
(
−[p1,0]3,

(
([p1,0]1)

2 + ([p1,0]2)
2
) 1

2
)

(25)

where [p]i means the ith component of p. Thus the points

pd(t0) and pd(t1) determine gw,1 up to an arbitrary rotation

θx0 about the x−axis of the first frame.

Under this construction, the x−axis of the first frame is

aligned to point to pd(t1). By the definition of the joint angles

in Sec. II, the first joint angle is a rotation about the z−axis

of the first frame. Therefore we have θ1 = 0. To determine

the remaining joint angles as a function of θx0 we proceed as

follows. The point pd(tj) is located a distance Lj along the

x−axis of frame 2j − 1. Thus

[
pd(tj)

1

]
= gw,2j−1

⎡
⎢⎢⎣

Lj

0
0
1

⎤
⎥⎥⎦ . (26)

The mapping gw,2j−1 depends on the joint angles θ1 through

θ2j−1. We will proceed in an iterative fashion and assume the

first 2j − 3 joint angles are known. To isolate the values of

the unknown joint angles, we pre-multiply (26) by g−1
w,2j−3.

g−1
w,2j−3

[
pd(tj)

1

]
= g−1

w,2j−3gw,2j−1

⎡
⎢⎢⎣

Lj

0
0
1

⎤
⎥⎥⎦ . (27)

Using (9) we calculate

g−1
w,2j−3gw,2j−1 (28)

= (g1,2j−3(0))−1
eξ̂2j−2θ2j−2eξ̂2j−1θ2j−1g1,2j−1(0)

=

⎡
⎢⎢⎣

cθ2j−2cθ2j−1 −cθ2j−2sθ2j−1 sθ2j−2 Lj−1

sθ2j−1 cθ2j−1 0 0
−sθ2j−2cθ2j−1 sθ2j−2sθ2j−1 cθ2j−2 0

0 0 0 1

⎤
⎥⎥⎦(29)

where in the last step we have used (11). To calculate the left-

hand side of (27), we first recall from (11) that the origin of

frame 2j − 3 is at pd(tj−2). We then use (1) to write

g−1
w,2j−3 =

[
R−1

w,2j−3 −R−1
w,2j−3pd(tj−2)

0 1

]
. (30)

By definition, R−1
w,2j−3 rotates the world frame into the frame

2j−3. Using this, we can express the point pd(tj−2) in terms

of the subsequent point pd(tj−1) and write (30) as

g−1
w,2j−3 =

⎡
⎢⎢⎣ R−1

w,2j−3 −R−1
w,2j−3pd(tj−1) −

⎡
⎣ Lj−1

0
0

⎤
⎦

0 1

⎤
⎥⎥⎦ .

(31)

Inserting (29) and (31) in (27) we find

[
R−1

w,2j−3 (pd(tj) − pd(tj−1))
1

]
=

⎡
⎢⎢⎣

Ljcθ2j−2cθ2j−1

Ljsθ2j−1

−Ljsθ2j−2cθ2j−1

1

⎤
⎥⎥⎦ . (32)

If the joint angles θ1 through θ2j−3 are known then

the left hand side of (32) is known. Define Δpj
�
=

R−1
w,2j−3 (pd(tj) − pd(tj−1)). Then

θ2j−2 = arctan 2
(− [Δpj ]3 , [Δpj ]1

)
, (33)

θ2j−1 = arctan 2
(

[Δpj ]2 ,
(
[Δpj ]

2
1 + [Δpj ]

2
3

) 1
2
)

. (34)

Given a value for θx0 , the joint angles are determined by

first finding the global orientation θz0 , θy0 from (24) and (25).

The joint angles are then solved iteratively using (33) and (34)

for j = 1, . . . , N (with the exception that θ1 = 0 as discussed

above). Note that the next rotation matrix R−1
w,2j−1 can be

found without doing a matrix inversion using

R−1
w,2j−1 = R2j−1,w

= R2j−1,2j−2R2j−2,2j−3R2j−3,w

= e−ω̂2j−1θ2j−1e−ω̂2j−2θ2j−2R−1
w,2j−3 (35)

where ωj is the axis of rotation for joint j.

The angle θx0 can be chosen arbitrarily or used to optimize

some cost function. For, it may be desired to keep the joint

angles as close to zero as possible. Then θx0 is given by the

solution to

min
θx0

2N−2∑
i=1

θ2
i subj. to (24), (25), (33), and (34). (36)

1) Bézier curve example: Consider again the Bézier curve

given in (18) and shown in Fig. 2. The end points for a 15

segment piecewise linear fitting curve were found in Sec. IV-

A.1. Using the algorithm in this section and the minimization

criterion in (36) to determine θx0 , the joint angles between the

line segments were found. The resulting curve and the frames

are shown in Fig. 4. The actual values of the angles are given

in Table I.

To illustrate the dependence of the joint angles (and thus

the orientations of the frames), we set θx0 = −π
4 rad and ran

the algorithm again. The curve and the frames are shown in

Fig. 5.
2) Helical curve example: Consider the circular helix given

in Sec. IV-A.2 and shown in Fig. 3. The angle θx0 was set to
−π
4 and the remaining angles found using the algorithm in this

section. The resulting frame orientations are shown in Fig. 6.
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Fig. 4. A 15-segment piecewise linear curve in the shape of the Bézier curve
(18). The arbitrary rotation around the x−axis of the first frame was chosen
by minimizing the sum of the squares of all of the joint angles.

θx0 0.218 θy0 0 θz0 -1.64

θ1 0 θ2 -0.035 θ3 -0.156
θ4 -0.048 θ5 -0.196 θ6 -0.070
θ7 -0.251 θ8 -0.113 θ9 -0.317
θ10 -0.198 θ11 -0.367 θ12 -0.394
θ13 -0.347 θ14 -0.934 θ15 -0.074
θ16 -0.834 θ17 0.248 θ18 -0.234
θ19 0.094 θ20 -0.056 θ21 -0.003
θ22 0.039 θ23 -0.095 θ24 0.156
θ25 -0.232 θ26 0.272 θ27 -0.344
θ28 0.236 θ29 -0.263 θ30 0.138

TABLE I

JOINT ANGLES TO APPROXIMATE THE BÉZIER CURVE IN (18) USING A 15

SEGMENT CURVE WITH θx0 FOUND FROM (36). ANGLES ARE IN RADIANS.

Fig. 5. A 15-segment piecewise linear curve in the shape of the Bézier curve
(18). The angle θx0 rad was chosen to be −π

4
.

Fig. 6. A 15-segment piecewise linear curve in the shape of a circular helix
with R = 4 and helical angle 1.4 rad. The angle θx0 was chosen to be −π

4
.

V. CONCLUSIONS

In this paper we have presented an algorithm to approximate

a parameterized 3-D curve by a piecewise linear one whose

line segments are connected by universal joints. The algorithm

uses a numerical search to find the locations of the end points

of the line segments. Given these points, the joint angles are

found analytically in terms of a single S1 symmetry given by

a rotation about the first line segment. This degree of freedom

can be used to optimize a secondary task. The tool developed

here can be used to generate joint angles for a snake-like robot

to ensure the body of the robot takes on a desired shape.
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