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Abstract— In this paper, we present a method to generate a
finite Markovian abstraction for a discrete time linear stochastic
system evolving in a full dimensional polytope. Our approach
involves an adaptation of an existing approximate abstraction
procedure combined with a bisimulation-like refinement algo-
rithm. It proceeds by approximating the transition probabilities
from one region to another by calculating the probability from
a single representative point in the first region. We derive
the exact bound of the approximation error and an explicit
expression for its growth over time. To achieve a desired error
value, we employ an adaptive refinement algorithm that takes
advantage of the dynamics of the system. We demonstrate the
performance of our method through simulations.

I. INTRODUCTION

In recent years, there has been an increasing interest in
formal approaches to analysis and control for dynamical
systems [1], [2]. Central to these works is the notion of finite
abstraction, i.e., the process through which a system with
infinitely many states is mapped to an equivalent system with
finitely many states. Bisimulation and language equivalence
are the prevalent notions of equivalence between the original
system and its abstraction [3]. In this framework, tools
from model checking [4] and automata games [5] can be
used to verify or control the abstraction from temporal
logic specifications. The equivalence relation guarantees the
satisfaction of the specification by the original system [6],
or maps the game strategy for the abstraction to a provably-
correct control strategy for the original system [7].

The notions of an approximate bisimulation and of a
metric to quantify the distance between the original system
and its approximate abstraction were introduced in [8]–
[10]. This allowed a less rigid relationship between systems,
which resulted in various abstraction techniques for more
complex and stochastic systems. For stochastic systems, a
probabilistic Markov model is often used as the abstraction.
A traditional approach to obtain such an abstraction is to
use Monte Carlo simulation techniques to approximate the
relationships between the states and to augment the state
space to achieve the Markovian property [11]. Recent works
[12], [13] developed a different approach, in which stochastic
hybrid systems were abstracted to Markov chains with ap-
proximation error, also known as Markov set-chains [14]. A
bound on the approximation error was determined by using
a Lipschitz continuity condition on the stochastic kernels of
the underlying hybrid system. A grid-based algorithm was

This work is partially supported at Boston University by the NSF under
grants CNS-0834260 and CMMI-0928776, and by the ONR under grants
MURI N00014-10-10952 and MURI 014-001-0303-5.

The authors are with the Department of Mechanical Engineering, Boston
University, MA, USA, E-mail: morteza@bu.edu.

M. Lahijanian is the corresponding author.

then employed to reduce this error to any desired level.
The technique, however, used a conservative bound that in
general leads to a higher cardinality on the abstraction than
is necessary to achieve the desired error level.

In this paper, we consider the problem of finding a Markov
chain abstraction for a stochastic system with bounded
noise. This abstraction model allows for simple analysis
and reasoning about the complex properties of the original
system. In particular, this abstraction is required for for-
mal verification of the continuous-domain stochastic system
using the existing model checking tools such as PRISM
[15]. We focus on stochastic linear systems evolving in
polytopic domains with polytopic partitions and with noise
bounds given by polyhedral sets. Similar to [12], [13], we
use a representative point in each region to approximate
the transition probabilities among the regions. We develop
a computational framework that allows for the calculation of
exact (i.e., achievable) bounds on the approximation error.
To achieve a desired error bound, we employ a bisimulation-
like refinement algorithm that determines the regions with no
approximation error by using the dynamics of the system.

The contribution of this work is threefold. First, we relax
the Lipschitz continuity assumption on the stochastic kernels
posed by [12]. Second, by directly using the probability
density functions of the kernels, we compute an exact value
for the error, which leads to a tighter approximation error
between the original system and its abstraction. Third, we
develop an adaptive refinement algorithm that exploits the
dynamics of the system and the geometry of the partition.
Rather than uniformly refining the entire polytope as in [12],
we refine only those regions with an approximation error
above a given limit. The algorithm partitions such regions by
determining and preserving any subregions with probability
one transitions. If these regions do not exist, the algorithm
uses the system dynamics to partition them with respect to
the regions to which they have transitions. As opposed to
[13], which also uses adaptive gridding, we do not use the
region Lipschitz constants, and therefore do not require that
the kernels are given by continuous densities.

The remainder of the paper is organized as follows. In Sec-
tion II, we formulate the problem and outline our approach.
In Section III, we formally define polytopes and introduce
the polyhedral operators that are utilized in our solution. The
abstraction procedure is discussed in Section IV. Section V
presents the refinement algorithm that is designed to reduce
the abstraction error. We demonstrate the performance of the
proposed abstraction method through illustrative case studies
in Section VI. The paper concludes with final remarks in
Section VII.
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II. PROBLEM FORMULATION AND APPROACH

We consider the following discrete-time linear stochastic
system

xk+1 = Axk + wk, xk ∈ P ⊂ Rn, wk ∈W ⊂ Rn (1)

where A ∈ Rn×n is invertible, P is a full dimensional
polytope in Rn, k ∈ N, and wk is a sample from a given
probability distribution over a polyhedral subset W of Rn.
Motivated by verification problems, we are interested in the
semantics of system (1) with respect to a polytopic partition
S = {s1, s2, . . . , smS

} of P , where si, i = 1, . . . ,mS are
convex full polytopes.

The focus in this paper is to construct a finite Markov
chain (MC) approximating the evolution of system (1) in
partition S with an error less than a predefined level. Our
long term goal, which is beyond the scope of this paper,
is to develop a computational tool for verification of (1)
against specifications given as Probabilistic Computation
Tree Logic (PCTL) [15] and Probabilistic Linear Temporal
Logic (PLTL) [16] formulas over linear predicates in its state
x. In this framework, S would be a partition of P that
does not violate any of the linear predicates occurring in
the temporal logic formulas. Once an approximating Markov
chain (MC) abstracting the original system is constructed,
off-the-shelf tools such as PRISM [15] can be used to verify
it. The satisfaction probability for the abstraction, combined
with the approximation error, would provide a satisfaction
probability for the original system.

The abstraction that we propose in this paper follows
the approach proposed in [12]. The state space of the MC
is a finite set labeling the polytopes from the partition.
The transition probabilities between the states of the MC
can be approximated by selecting a set of representative
points, one for each region in the partition. The computation
is performed by marginalizing the distribution induced by
the stochastic dynamics (1). Using a representative point
is clearly an approximation and induces an error in the
abstraction. In fact, this error causes a distance between
the distribution of system (1) and the one of the MC. This
distance can be thought of as the precision of the abstraction.

In this study, we consider the following problem:
Problem 1: Given system (1) with a polytopic partition

S, find a refinement of S and a corresponding MC approxi-
mating system (1) within a given precision.

Our solution to Problem 1 is based on an iterative refine-
ment process. The initial abstraction is constructed based on
the initial partition S, and it is refined if the approximation
error is not below the specified threshold. One of the con-
tributions of this work is an exact upper bound for the error
as well as for its growth over time. Refinement is performed
selectively only for the regions violating the error threshold.
Another contribution of this paper is a refinement algorithm
based on polyhedral operations that exploits the dynamics of
the system together with the polyhedral bounds on the noise.

III. PRELIMINARIES

In this section, we formally define polytopes and introduce
some polyhedral operations that are used in our refinement
algorithm presented in Sec. V-A.

Let n ∈ N and consider the n-dimensional Euclidean
space Rn. A full dimensional polytope P is defined as the
convex hull of at least n + 1 affinely independent points in
Rn. A set of points vP1 , . . . , v

P
r ∈ Rn, r ≥ n + 1 whose

convex hull gives P and with the property that, for any
i = 1, . . . , r, the point vPi is not in the convex hull of the
remaining points vP1 , . . . , v

P
i−1, v

P
i+1, . . . , v

P
r is called the set

of vertices of P . A polytope is completely described by its
set of vertices.

P = conv(vP1 , . . . , v
P
r ), (2)

where conv denotes the convex hull. Alternatively, P can
be described as the intersection of at least n+ 1 closed half
spaces. In other words, there exists a t ≥ n + 1, hi ∈ Rn,
and li ∈ R, i = 1, . . . , t such that

P = {x ∈ Rn|hTi x ≤ li, i = 1, . . . , t}. (3)

The above definition can be written as the matrix inequality
Hx ≤ L, where H ∈ Rt×n, L ∈ Rt, and the ith row of H
and the ith entry of L are hTi and li, respectively. Forms (2)
and (3) are referred to as V - and H-representations of the
polytope, respectively.

Given a linear stochastic system (1) and an arbitrary
polytope P , we define Pre(P) as the set of all points that
make a transition to P for some values of w in one time
step:

Pre(P) = {x ∈ Rn|∃w ∈W, (Ax+ w) ∈ P}. (4)

Similarly, we define PreR(P) (robust Pre(R)) to be the
set of all points that make a transition to P for all possible
values of w in one time step:

PreR(P) = {x ∈ Rn|∀w ∈W, (Ax+ w) ∈ P}. (5)

It is important to note that Pre(P) is the set of points that
have a non-zero probability of making a transition to region
P , while PreR(P) is the set of all the points that make a
transition to P with probability one.

We use Post(P) to denote the set of points that can be
reached from P in one step for some values of w, i.e.,

Post(P) = {x ∈ Rn| for each x′ ∈ P, ∃w ∈W,
x = (Ax′ + w)}. (6)

If polytope P has V -form P = conv(vP1 , . . . , v
P
r ) and

matrix form Hx ≤ L, and polytope W has V -form W =
conv(vW1 , . . . , vWmW

), then the above sets are all convex
polytopes that can be computed as (see [17], [18]):

Pre(P) = conv({AvPi + vWj , for all i ≤ r, j ≤ mW }),
Post(P) = conv({A−1(vPi − vWj ), for all i ≤ r,

j ≤ mW }),
P reR(P) = {x ∈ Rn|HR x ≤ LRi , i = 1, . . . ,mW }, (7)

where HR = HA and LRi
= L−HvWi .
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IV. ABSTRACTION

In this section, we describe our method of generating a
Markov chain abstraction for stochastic system (1) evolving
in a polytopic partitioned domain P . This approach is an
adaptation of the general abstraction framework for stochas-
tic hybrid systems presented in [12]. More specifically, we
employ the method of approximating the transition probabil-
ities using a representative point from that framework. In our
approach, however, we quantify the exact bound on the one-
step transition error by directly using the distribution of the
stochastic system instead of the conservative bounds com-
puted in [12] by assuming Lipschitz continuity distribution
for the underlying system. It is important to note that we do
not exploit the linear dynamics and polytopic noise bound
of system (1) in the abstraction approach (we do, however,
exploit these features in the refinement process described in
Sec. V). Thus, this method can be applied to any discrete-
time stochastic system with a well-defined distribution.

Let Q = {q1, . . . , qmQ
}, for some mQ ∈ N, denote a

refinement of S. We choose Q as the set of states for the
MC. Next, we describe how to approximate the transition
probabilities between the regions in Q.

A. Calculating Transition Probabilities

To compute the transition probabilities, we assume that
the stochastic system evolves in P with a Borel-measurable
stochastic kernel on P given by T : B(P) × P → [0, 1].
The stochastic kernel assigns to each x ∈ P a probability
measure T (·|x) on the Borel space (P,B(P)).

We denote the one-step transition probability from a point
in qi to qj by p(qj |qi), i.e.

p(qj |qi) = Prob(xk+1 ∈ qj |xk ∈ qi), (8)

where qi, qj ∈ Q. Let us select any point x̄i ∈ qi to be the
representative point of region qi (e.g. geometric center of qi).
We denote the transition probability from x̄i, to qj by

p̄(qj |qi) = Prob(xk+1 ∈ qj |xk = x̄i). (9)

These transition probabilities depend on the kernel T and
can be obtained by marginalizing the probability distribution
of (1) over each polytope in the set Q (see Sec. IV-B). We
use the value in (9) to approximate the transition probability
of p(qj |qi). In other words, we construct the transition
probability matrix of the MC using (9).

The difference between the values in (8) and (9) introduces
an error between the distribution of the MC and the one of
the underlying system. The value of the upper-bound for
this error defines the abstraction precision and depends on
the density of the kernel T and the representative point.
Thus, it is important to choose a representative point that
minimizes the error given T . The method of selecting this
optimal representative point is beyond the scope of this paper.
However, we quantify the precision of the abstraction by
finding the exact upper-bound for the error for any choice of
the representative point.

B. 1-Step Error

We define and bound the one-step error e1 as follows.

e1 = |p(qj |qi)− p̄(qj |qi)|

=

∣∣∣∣∣
∫
qj

T (dxk+1|xk ∈ qi)−
∫
qj

T (dxk+1|x̄i)

∣∣∣∣∣
≤ max

xk∈qi

∣∣∣∣∣
∫
qj

T (dxk+1|xk ∈ qi)−
∫
qj

T (dxk+1|x̄i)

∣∣∣∣∣
This bound on e1 is exact in the sense that there exists some
xk ∈ qi such that the error is equal to that bound. For
simplicity, let p̄ij = p̄(qj |qi). Since the stochastic transition
kernel can be derived from the dynamics of the underlying
system, and subpolytopes qj are well-defined convex regions,
the above integral is computable. Define ε from e1 ≤ ε.
Using the inequality above, the bound ε can be written as

ε = max

{
p̄ij − min

xk∈qi

∫
qj

T (dxk+1|xk ∈ qi) ,

max
xk∈qi

∫
qj

T (dxk+1|xk ∈ qi)− p̄ij

}
. (10)

Next, we examine the evolution of error over time.

C. k-Step Error

Let us denote the probability that the state after k steps
will be in qj given an initial condition in qi by pk(qj |qi) =
Prob(xk0+k ∈ qj |xk0

∈ qi) for any integers k0 ≥ 0 and
k ≥ 2. Similarly, p̄k(qj |qi) = Prob(xk0+k ∈ qj |xk0

=
x̄i). The distribution pk(qj |qi) can be associated with the
actual trajectory of the stochastic system evolving on Q. The
quantity p̄k(qj |qi) is the distribution over the state space of
Q generated by the MC. We are interested in quantifying the
error between these two distributions as time progresses.

Let us define this error at the k-th time step as

ek =
∣∣pk(qj |qi)− p̄k(qj |qi)

∣∣ .
The following theorem determines an upper-bound for the
growth rate of the error over time.

Theorem 1: Consider a discrete stochastic system evolv-
ing in a domain partitioned into mQ regions Q =
{q1, q2, . . . , qmQ

}. The k-th step error between the probabil-
ity distribution of the system over Q and that of the approx-
imating Markov chain generated by using the representative
points for each region in Q is upper-bounded by

ek ≤ Nk−2(N + k − 1)ε, (11)

where k ≥ 2 is the time index, ε is the upper-bound of
the 1-step error, and N is the upper-bound of the maximum
number of outgoing transitions from qi, i = 1, 2, . . . ,mQ.
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Proof: We prove this theorem by induction. For k = 2
and any qi, qj ∈ Q, we have:

e2 =
∣∣p2(x2 ∈ qj |x0 ∈ qi)− p̄2(x2 ∈ qj |x0 = x̄i)

∣∣
≤

mQ∑
b=1

|p(x2 ∈ qj |x1 ∈ qb)p(x1 ∈ qb|x0 ∈ qi)

−p̄(x2 ∈ qj |x1 = x̄b)p̄(x1 ∈ qb|x0 = x̄i)|

=

mQ∑
b=1

[p(x2 ∈ qj |x1 ∈ qb) |p(x1 ∈ qb|x0 ∈ qi)

−p̄(x1 ∈ qb|x0 = x̄i)|+ p̄(x1 ∈ qb|x0 = x̄i)

|p(x2 ∈ qj |x1 ∈ qb)− p̄(x2 ∈ qj |x1 = x̄b)|]

= ε

mQ∑
b=1

[p(x2 ∈ qj |x1 ∈ qb) + p̄(x1 ∈ qb|x0 = x̄i)] .

It is evident that
∑mQ

b=1 p(x2 ∈ qj |x1 ∈ qb) ≤ N and∑mQ

b=1 p̄(x1 ∈ qb|x0 = x̄i) = 1. Thus, e2 ≤ (N + 1)ε.
The induction step, that is proving that (11) holds for k + 1
given that it holds for k, is similar to the k = 2 case and is
omitted for due to space limitations. �

V. REFINEMENT

In this section, we describe the refinement algorithm that
exploits the dynamics of the system and the geometry of
the partition. Recall that as the first step of the abstraction
procedure, the approximation error bounds over the transition
probabilities corresponding to each region are computed.
For any region whose error is larger than a given desired
value, the following refinement sequence is performed. The
region with the largest error bound is selected as the target
polytope. This polytope is then partitioned into smaller
regions according to the refinement algorithm described in
Sec. V-A. This refinement affects not only the target polytope
but also those to which it has a transition. After refinement,
the error bounds are recomputed. If the error bounds are still
too large, a new target polytope is selected and the process
is repeated until all of the error bounds are less than the
desired value.

We note that this procedure is adaptive in that it targets
only those regions whose error bounds are too large rather
than refining all regions equally.

A. Refinement Algorithm

Our refinement algorithm consists of two main functions,
both of which utilize the polyhedral operators PreR, Pre,
and Post defined in Sec. III. The first function identifies
the regions within the target polytope that have outgoing
transitions with probability one for all their points. Since
these subregions have an error of zero, the refinement of the
target polytope does not modify them. The second function
refines the target polytope with respect to the Pre of the
adjacent regions. The refinement algorithm calls the second
function only if no region with probability one transition is
identified; PreR of all adjacent regions returns an empty set.

To find the regions with probability one transitions within
a target polytope, we perform the PreR operation on the

adjacent regions. Recall from (7) that PreR returns a convex
polytope. By definition of PreR, these are the regions with
zero error; they are included in the refinement. The Post
of these regions is then found and these subregions are
also included in the refinement to ensure the probability
one transitions are maintained. These two operations carve
a new set of subpolytopes out of the existing ones. The
remaining regions of the affected subpolytopes (the target
and any regions to which probability one areas move) are
then convexified.

In the case that regions with zero error do not exist (i.e.
PreR of the adjacent regions returns an empty set), the
algorithm refines the target polytope using the Pre operator
of its adjacent subpolytopes. Finally, if the target region
cannot be partitioned into smaller regions using Pre (i.e.
intersection of the Pre of the adjacent subpolytopes with
the target region is the target region itself), it is refined by
triangulation.

VI. CASE STUDIES

In this section, we demonstrate the abstraction method and
the refinement algorithms proposed in this paper through
illustrative case studies. We analyzed the performance of
the methods in two scenarios. In the first case, we assumed
unbounded noise given by a normal distribution. In this
framework, we compared the performance of the error cal-
culation method presented in this paper with the one in [12].
However, since our refinement algorithm requires the noise
to be bounded, we employed a grid-base refinement method
instead for this example as proposed by [12]. In the second
case, we demonstrated our abstraction algorithm including
the refinement algorithm presented in Sec. V-A by assuming
a truncated normal distribution for the noise term.

A. Unbounded Noise
For the case of unbounded noise, we considered a square

domain P centered at the origin with the length of 2 per
side. The dynamics were given by (1) with

A =

(
0.4 0.1
0 0.5

)
, w ∼ N (0, 0.041I),

where 1I is the identity matrix, .
As the first step in the abstraction, we chose the geometric

center of each subpolytope as the representative point. Then,
we computed the approximation error using two methods: (1)
the exact method described in this paper, and (2) the method
from [12]. The latter utilizes a Lipschitz condition on the
stochastic dynamics to establish an upper bound. In order
to be able to compare the results, we employed a grid-based
refinement method rather than the adaptive scheme described
in Sec. V-A. Grid-based refinement simply subdivides each
region into four equally-sized squares (right) until the error
is below a given bound.

From the system dynamics, the probability distribution
of xk+1 is N (Axk, 0.041I). Letting f denote the nor-
mal density formula, the continuous transition kernel is
T (·|x) = f(·;Ax, 0.041I) and the transition probability p̄ij =∫
qj
f(x;Ax̄i, 0.041I)dx.
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1) Exact Method: To calculate the exact error bound ε,
we found the minimum and maximum transition probabilities
in (10) as described below. It can be shown that the point
that maximizes p(qj |qi) is A−1x̄j if this point is in qi. If it
is not, then the point that maximizes p(qj |qi) is the one on
the boundary of qi with the shortest Euclidean distance to x̄j
after one step evolution. Similarly, the point that minimizes
p(qj |qi) always lives on the facet of qi that is the farthest
from x̄j after one step evolution. The proof of this result is
omitted for space reasons.

For this example, the above result was used to calculate the
maximum and minimum value for the probability p(qj |qi).
The value of ε was then found through (10). The error as a
function of the cardinality of Q is shown in Fig. 1.

2) Lipschitz Method: To implement the abstraction
method in [12], we use the following assumption.

Assumption 1 (Continuity of Stochastic Kernels):
Suppose that the continuous stochastic kernel T of the
system (1) admit a density FT . Assume that the following
Lipschitz property holds:

|FT (y|x)− FT (y|x′)| ≤ L‖x− x′‖, ∀x, x′, y ∈ P,

where L is a finite positive constant, and ‖·‖ is the Euclidean
norm. �

Given a grid partition of the state space and Assumption
1, the authors in [12] show that the one-step error is upper-
bounded by e1 ≤ δn+1L, where δ is the diagonal of each
square cell, n is the dimension of vector x, and L is the
Lipschitz constant.

In this example, the continuous stochastic kernel is given
by a normal density function. Hence, Assumption 1 holds,
and the Lipschitz constant is bounded by

L ≤ 1

(2π)
n
2 0.2n+1

‖A‖2e−
1
2 ,

where ‖A‖2 = maxx 6=0
‖Ax‖
‖x‖ is the matrix 2-norm. For the

proof of the above expression for the Lipschitz constant see
[19].

The error as a function of cardinality is shown in Fig.
1, together with the exact bound found by our method.
While the two error calculations converge as the cardinality
increases, there is a significant different at lower cardinalities
(or, equivalently, larger subpolytopes). The result illustrates
that for a given error level, the exact bound will uniformly
yield an abstraction with lower cardinality.

The precision in the error calculation comes at a cost. Fig.
2 shows the ratio of the computation times for the two meth-
ods. The approximate method involves only the calculation
of the diagonal length of the cells in the refinement and is
thus constant as the cardinality increases. The exact method,
however, requires the evaluation of the probability density
function over the polyedral regions.

B. Bounded Noise

For the case of bounded noise, we considered the same
A matrix for the stochastic system as used above. The
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Fig. 1. Comparison of the error bounds computed through the exact method
described in Sec. IV of this paper with the Lipschitz method [12]. The exact
method uniformly finds tighter bounds than the Lipschitz method.
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Fig. 2. Ratio of the computation times for the error bounds using the
method presented in this paper (exact) to the Lipschitz method [12].

polyhedral set W was defined by

W = conv

([
0.4
0.4

]
,

[
0.4
−0.4

]
,

[
−0.4
−0.4

]
,

[
−0.4
0.4

])
.

The random variable w in this case was given by the
truncated normal density function

g(x;W, 0, 0.041I) =

{
f(x;0,0.091I)∫

W
f(y;0,0.091I)dy if x ∈W,

0 Otherwise.

Here f is a Gaussian distribution with a variance of 0.09
chosen to ensure that the truncated distribution g has a vari-
ance of 0.04. The domain polytope P is given by the vertices
[2, 2]T , [2,−2]T , [−2,−2]T , and [−2, 2]T partitioned by the
9 linear predicates x1 ≥ 1, x1 ≥ 0, x1 ≥ −1, x2 ≥ 1,
x2 ≥ 0, and x2 ≥ −1 inducing 16 subpolytopes.

Here, we constructed a MC using the geometric cen-
ter of each subpolytope as the representative point. We
computed the error of the approximation using the exact
method and reduced it by the refinement algorithm described
in Sec. V-A. For this system, the transition probability
p̄ij =

∫
qj
g(x;W,Ax̄i, 0.041I)dx. We found the error of the

abstraction ε by discretizing qi and evaluating (10) for each
point in qi. Then, we determined the region with the largest
error and refined it using our adaptive algorithm to decrease
the error.

The value of the error after each iteration of the algorithm
is shown in Fig. 3. For the initial partition of P , the method
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Fig. 3. Error bounds as a function of the number of refinement iteration.
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Fig. 4. Cardinality of the state space as a function of the number of
refinement iteration.

yields a Markov chain with the approximation error of 0.50.
After the first iteration of the refinement, the error actually
increased. That is because by refining the target region, there
is a chance of increasing the error corresponding to the
regions that have transitions to the target region. However,
this jump in the error value was quickly smoothened by
more refinement iterations since the target region is always
partitioned with respect to the regions that it has transitions
to. Thus, the overall value of the error generally decreases
with more refinement iterations as Fig. 3 illustrates. These
sudden jumps are also observed in the number of regions
(cardinality of Q) as shown in Fig. 4. This is due to
partitioning of a (large) region which has transitions to many
(smaller) regions. Since the refinement is done by the Pre of
the regions to which the target region has transitions to, one
iteration of the algorithm could result in a sudden increase
in the number of regions.

VII. CONCLUSION

In this paper, we introduced a method for finite Markovian
abstraction for a discrete-time linear stochastic system in a
full-dimensional convex polytope with a polytopic partition.
This method is an adaption of the approach presented in
[12] to the framework of linear stochastic systems with
polyhedral noise bounds. The main contributions of this work
are an exact bound for the approximation error, an expression
for the error growth over time, and an efficient refinement
algorithm that exploits the linearity of the dynamics and of
the partition.

Our case studies suggest that, in general, our method

leads to abstractions with smaller cardinality for the same
desired error level when compared to the method from [12].
However, this comes at the cost of computation time since
the error must be determined by computing a set of integrals
numerically.
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