
A Probabilistic Approach for Control of a Stochastic System from LTL
Specifications

M. Lahijanian, S. B. Andersson, and C. Belta
Mechanical Engineering, Boston University, Boston, MA 02215

{morteza,sanderss,cbelta}@bu.edu

Abstract— We consider the problem of controlling a
continuous-time linear stochastic system from a specification
given as a Linear Temporal Logic (LTL) formula over a set
of linear predicates in the state of the system. We propose a
three-step solution. First, we define a polyhedral partition of
the state space and a finite collection of controllers, represented
as symbols, and construct a Markov Decision Process (MDP).
Second, by using an algorithm resembling LTL model checking,
we determine a run satisfying the formula in the corresponding
Kripke structure. Third, we determine a sequence of control
actions in the MDP that maximizes the probability of following
the satisfying run. We present illustrative simulation results.

I. INTRODUCTION

In control problems, “complex” models, such as sys-
tems of differential equations, are usually checked against
“simple” specifications. Examples include the stability of
an equilibrium, the invariance of a set, controllability, and
observability. In formal analysis (verification), “rich” speci-
fications such as languages and formulas of temporal logics,
are checked against “simple” models of software programs
and digital circuits, such as (finite) transition graphs. The
most widespread specifications include safety (i.e., some-
thing bad never happens) and liveness (i.e., something good
eventually happens). One of the current challenges in control
theory is to bridge this gap and therefore allow for specifying
the properties of complex systems in a rich language, with
automatic verification and controller synthesis.

Most existing approaches are centered at the concept of
abstraction, i.e., a representation of a system with infinitely
many states (such as a control system in continuous space
and time) by one with finitely many states, called a symbolic,
or abstract model. It has been shown that such abstractions
can be constructed for systems ranging from simple timed,
multi-rate, and rectangular automata (see [1] for a review)
to linear systems [2]–[4] and to systems with polynomial
dynamics [5], [6]. More complicated dynamics can also be
dealt with through approximate abstractions [7], [8]. Recent
works [9], [10] show that finite abstractions can also be
constructed for particular classes of stochastic systems.

In this paper, we focus on continuous-time stochastic
linear systems. We present a method to construct a feedback
control strategy from a specification given as a Linear
Temporal Logic (LTL) [11] formula over a set of linear
predicates in the states of the system. Our approach consists
of three steps. First, we construct an abstraction of the
stochastic system in the form of a Markov Decision Process
(MDP). This is achieved by partitioning the state space of

the original system, choosing a finite set of controllers, and
determining the transition probabilities of the controllers over
the partition. Second, using the method developed in [12],
we determine a sequence of states in the MDP satisfying the
LTL specification. Finally, we determine a control strategy
maximizing the probability of producing the satisfying run.

Stochastic systems are used as mathematical models in
a wide variety of areas. For example, a realistic model
for the motion of a robot should capture the noise in its
actuators and sensors while a mathematical model of a
biochemical network should capture the fluctuations in its
kinetic parameters. “Rich” specifications for such systems
(e.g., “a robot should visit regions R1 and R2 infinitely
often and never go to R3” or “the concentration of a
protein should never exceed value P ”) translate naturally
to formulas of temporal logics. Recent results show that
it is possible to control certain classes of non-stochastic
dynamical systems from temporal logic specifications [12]–
[15] and to drive a stochastic dynamical system between two
regions [16]. There also exist probabilistic temporal logics
such as probabilistic LTL, [17], probabilistic Computation
Tree Logic (pCTL) [18], [19], linear inequality LTL (iLTL)
[20], and the Continuous Stochastic Logic (CSL) [21]. A
recent review of stochastic model checking based on both
discrete and continuous time Markov chains can be found in
[22].

Existing works focus primarily on Markov chains. The
problem of constructing a control strategy for a partially
observed Markov Decision Process (POMPD) from such a
specification remains poorly understood. The main contribu-
tion of this work is to provide a preliminary and conservative
solution to the open problem of controlling a stochastic
system from a temporal logic specification. We focus on LTL
so that we may take advantage of powerful existing results
in the deterministic setting.

II. PROBLEM STATEMENT AND APPROACH

In this work we consider the control of a stochastic linear
system evolving in a full-dimensional polytope P in Rn:

dx(t) = (Ax(t) +Bu(t)) dt+ dw(t)
y(t) = Cx(t) + v(t)

(1)

where x(·) ∈ P ⊂ Rn, u(·) ∈ Rm, and y(·) ∈ Rp. The input
and measurement noises are white noise processes.

The control inputs are limited to a set of control symbols,
S = {s1, . . . , sNs

}. Each symbol s = (u, ξ) is the com-

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

WeC04.5

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 2236

bination of a control action, u, together with a termination
condition, ξ or sequences of such pairs. The control action
is in general an output feedback control law executed by
the system until the termination condition becomes true.
These control symbols are essentially a simplified motion
description language (see [23], [24]).

The polytope P captures known physical bounds on the
state of the system or a region that is required to be invariant
to its trajectories. Note that we assume the distributions on
the noise processes are such that the system remains inside
P in the absence of any control action.

We are interested in properties of the system specified
in terms of a set of linear predicates. Such propositions
can capture a wide array of properties, including specifying
regions of interest inside the physical environment or sensor
space of a robot, or expression states for gene networks.
Specifically, let Π = {πi|i = 1, . . . , n} be a set of atomic
propositions given as strict linear inequalities in Rn. Each
proposition π describes an open half-space of Rn,

[[πi]] = {x ∈ RN |cTi x+ di < 0} (2)

where [[π]] denotes the set of all states satisfying the propo-
sition π. Π then defines a collection of subpolytopes of P .
We denote this collection as Q = {q1, . . . , qNP

}.
In this work the properties are expressed in a temporal

logic, specifically a fragment of the linear temporal logic
known as LTL−X . Informally, LTL−X formulas are made
of temporal operators, Boolean operators, and atomic propo-
sitions from Π connected in any “sensible way”. Examples of
temporal operators include ♦ (“eventually”), � (“always”),
and U (“until”). The Boolean operators are the usual ¬ (nega-
tion), ∨ (disjunction), ∧ (conjunction), ⇒ (implication), and
⇔ (equivalence). The atomic propositions capture properties
of interest about a system, such as the set of linear predicates
πi from the set Π in (2). The semantics of an LTL formula
containing atomic propositions from Π is given over infinite
words over 2Π (the power set of Π). For example, formulas
♦π2, ♦�π3 ∧ π4 and (π1 ∨ π2)Uπ4 are all true over the
word Π1Π2Π3Π4 . . ., where Π1 = {π1},Π2 = {π2, π3},
Πi = {π3, π4}, for all i = 3, 4,

Inside this framework, we define the following problem.
Problem 1: Given a system of the form (1) and an

LTL−X formula φ over Π, determine a set of initial states
and a control policy to maximize the probability that the
trajectory of the closed-loop control system satisfies φ while
remaining inside P .

To fully describe Problem 1, we need to define the
satisfaction of an LTL−X formula by a trajectory of (1).
A formal definition is given in [12]; intuitively it can be
defined as follows. As the trajectory evolves in time, a set
of satisfied predicates is produced. This in turn produces a
word in the power set of Π. Since the semantics of φ are
expressed over such words, one can use these semantics to
determine if this word satisfies the formula.

A deterministic version of this problem was solved in [12].
The approach in that setting consisted of three steps: first, the

evolution of the system was abstracted to a finite-state transi-
tion system that captured motion between the regions defined
by the propositions Π. Second, standard tools based on Büchi
automata were used to produce runs of the transition system
that satisfied the formula φ. Such runs can be understood as
a sequence of transitions between the subpolytopes. Third, a
feedback control strategy was determined to steer the system
through the sequence of subpolytopes corresponding to a
particular run of the transition system satisfying φ.

The stochastic generalization introduced here is challeng-
ing. One of the interesting features of (1) is that one cannot
in general ensure any given trajectory will move through
a desired sequence of subpolytopes. Thus, abstraction to
a transition system as in the deterministic setting is not
possible, nor is the production of a feedback strategy that will
guarantee a particular trajectory. It should be noted, however,
that failure to follow a particular run satisfying the formula
φ does not imply that the formula itself is not satisfied.

In this paper we develop a conservative solution to Prob-
lem 1 consisting of three steps. First, we abstract the system
(1) to an MDP evolving over the finite space defined by Q.
This is done by considering the transitions (over Q) induced
by each of the control symbols in S. Note that due to the
measurement process, the state of the system is unknown
and thus in general the current subpolytope q ∈ Q is not
known either, requiring abstraction to a POMDP. For the
purposes of this work, we make the simplifying assumption
that q is known exactly even though the full system state x
is not. While restrictive, such an assumption can be realized
in some physical settings. For example, for n = 2, (1) may
describe the kinematics and sensing of a planar robot with Q
denoting regions of interest. A specific label could then be
placed inside each region, allowing the robot to determine
which subpolytope q it is currently on without determining
its current state x.

Second, we determine a sequence of subpolytopes that
satisfies φ. To do this, we take advantage of the first two
steps of the deterministic solution in [12] and outlined above.

Finally, we determine a sequence of control symbols that
maximizes the probability of moving through the sequence of
subpolytopes produced by the second step. By construction,
following this sequence ensures satisfaction of φ. As dis-
cussed above, however, failure to follow this sequence does
not imply failure to satisfy φ. It is this fact that introduces
a level of conservatism in our approach.

III. ABSTRACTION AND CONTROL

In the absence of noise, the work of [12] establishes how to
assign linear feedback controllers in each polytope to ensure
a transition in finite time to adjacent regions or that guarantee
the polytope is invariant. This leads to a Kripke structure in
which the states are the polytopes and the transitions capture
our capability to design feedback controllers.

Such controllers can in some sense be viewed as a collec-
tion of symbols. They do not translate well into the stochastic
setting, however, for two reasons. First, they are not robust
with respect to actuator noise. For example, such controllers

WeC04.5

2237

may steer the system either along the boundary between two
regions or seek to exit a region near a point of intersection
with multiple adjoining regions. In the absence of noise, the
transitions will be perfect. In the presence of actuator noise,
however, such motions have a high probability of causing
an erroneous transition. Second, the deterministic laws are
state feedback laws, each valid only in their corresponding
polytopal region. In the stochastic setting the actual state is
unknown and may differ from the predicted state.

Nevertheless, the abstraction provided by the deter-
ministic approach can be used to find a word wa =
wa(1)wa(2) . . . wa(k) ∈ 2Π, k ≥ 1 satisfying the given
specification φ. To find such a word, we simply use the tools
of [12] for (1) where the noise terms have been set to 0. The
word wa can be viewed as a sequence of regions qi to be
traversed by the system. Traversing these regions in the given
order ensures the system will satisfy the specification φ. In
the remainder of this section, we assume an appropriate word
has been found and describe the abstraction and control steps
to maximize the probability of producing this word with (1).

A. Abstraction

As discussed in Sec. II, we assume the system is given a
collection S of control symbols. While these symbols may
have been designed to achieve particular actions, such as
moving through a particular face of a polytope or converging
to a location in the state space, moving in a fixed direction
for a fixed time or performing a random “tumble” to choose
a new heading direction, in our approach each symbol
is viewed simply as an available controller, without any
consideration of its intended effect. Rather, we capture its
actual effect through the use of an MDP as described below.

To develop an abstraction of the stochastic system, we
use the fact that Q captures all the regions of interest with
respect to specifications φ. The execution of a symbol from
S defines a natural discrete-time evolution for the system: a
choice of control symbol is applied at time k to the system
until the associated interrupt is triggered. At that point, a
measurement over Q is obtained and time is incremented to
k+1. As mentioned in Sec. II, this measurement is assumed
to be perfect so that at the completion of each control symbol
the current subpolytope is known.

To create the MDP representing the evolution of this
system, we determine for each control symbol s ∈ S
the transition probability that the symbol will terminate
in subpolytope qj given that it started in subpolytope qi,
denoted as p(qj |qi, s). During execution of the symbol the
system may actually move through several regions before
termination of s. Because our goal is to follow exactly a
specified sequence of regions, we must exclude such multiple
transitions inside each time step. We therefore define an
additional state, qNp+1, such that p(qNp+1|qi, s) represents
the probability of passing through multiple regions before
terminating, regardless of the final subpolytope.

While for some simple control actions and noise models
the transition probabilities can be calculated exactly from the
Fokker-Planck equation, in general exact analytic solutions

are not feasible and the probabilities must be found through
approximate methods. One powerful class of tools are the
Monte Carlo or particle filter methods [25]. It is precisely
such an approach we adopt in the example described in
Sec. IV. Once determined, these probabilities for each con-
trol symbol are arranged into a Markov matrix Mtp(sα),
α = 1, . . . , Ns., where the ijth element of Mtp(sα) is the
probability of transitioning to state i given that the system
is currently on state j and that symbol sα is executed. The
MDP is then given by {Q,Mtp(1), . . . ,Mtp(Ns)}.

Fig. 1. A partitioning of the state space into polytopal regions.

In creating this abstraction, we assume that the transitions
generated by the control symbols in S are Markovian in
nature. In general this is not the case. Consider, for example,
the regions illustrated in Fig. 1 and two motion scenarios: a
system moving in q2 near the border with q1 and a system
moving in q3 near the border with q1. In the first case,
due to noise the system may randomly transition from q2

to q1. Once in q1, noise is likely to push the system back
to q2. Similarly, in the second case noise is likely to cause
a transition from q3 into q1 and then back into q3. Thus,
when in q1, the transition probabilities depend on where the
system came from, imparting memory to the system. This
non-Markovian effect is influenced by the size of the noise
and the geometry of the polytopal regions. The Markovian
assumption can be enforced, at least approximately, through
appropriate design of the control symbols. The resulting
abstraction is an approximation of the original system and its
accuracy would need to be determined. This can be captured,
for example, through a notion of distance as determined by
an approximate bisimulation [26].

B. Control

Given an MDP and a word wa that satisfies the specifi-
cation φ, our goal is to design a control policy to maximize
the probability that (1) produces the word wa. A control
policy is a sequence of symbols from S and is denoted
Γ = {s1, . . . , sr} where r ≥ 1 is the length of the policy. To
determine the optimal policy, we express this optimization
in terms of a cost function involving the probability of
producing the word and then use dynamic programming to
optimize it over the set of policies.

WeC04.5

2238

Under our approach, we must follow the sequence in wa
exactly. As a result, the optimization reduces to a one-stage
look-ahead in which at any step i, the optimal control symbol
is the one with the maximum probability of transitioning the
system to the next element of wa. This forms a feedback
control policy (over Q) as follows. Let i denote the current
time step and k the current index into wa so that the system is
currently in the subpolytope denoted by wa(k). The control
symbol that maximizes the probability of transitioning the
system to the subpolytope denoted by wa(k+ 1) is selected
and executed. At the completion of the symbol, time is
incremented to i+ 1 and the current value of q is measured.
If this is wa(k+1) then k is incremented while if it is equal
to wa(k) then the index k is left unchanged. If the current
state is neither wa(k) or wa(k+1) then the run is terminated
because the system has failed to produce the desired word.

IV. EXAMPLE

To illustrate our approach, we considered a two dimen-
sional case. The system dynamics were given by (1) where

A =
[

0.2 −0.3
0.5 −0.5

]
, B =

[
1 0
0 1

]
, C =

[
1 0
0 1

]
and x ∈ P where P is specified as the intersection of
eight closed half spaces, defined by: a1 = [−1 0]T , b1 =
−5, a2 = [1 0]T , b2 = −7, a3 = [0 − 1]T , b3 =
−3, a4 = [0 1]T , b4 = −6, a5 = [−3 − 5]T , b5 =
−15, a6 = [1 − 1]T , b6 = −7, a7 = [−1 2.5]T , b7 =
−15, a8 = [−2 2.5]T , b8 = −17.5. The input and output
noise processes were taken to be zero mean, Gaussian white
noise with covariances Q and R respectively, where Q =
R = diag(9, 9). Note that these noise values were chosen
such that the standard deviations were on the same order as
the dimensions of P . These levels of noise are much larger
than would be expected in, for example, a robotic system.

The set Π was defined using ten predicates of the form
(2) where c1 = [0 1]T , d1 = 0, c2 = [1 − 1]T , d2 =
0, c3 = [4 1]T , d3 = 12, c4 = [4 − 7]T , d4 = 34, c5 =
[−2 − 1]T , d5 = 4, c6 = [−1 − 12]T , d6 = 31, c7 = [−1 −
1]T , d7 = 11, c8 = [1 0]T , d8 = −3, c9 = [0 − 1]T , d9 =
−1.5, c10 = [−6 − 4.5]T , d10 = −12. These values yield
33 feasible full-dimensional subpolytopes in P , illustrated in
Fig. 2.

A set of control symbols were designed based on the
intuition that to move to an adjacent polytope, the system
should steer to the center of the shared facet and then proceed
to the center of the new polytope. It is important to keep in
mind the discussion in Sec.III-A, namely that the intended
effect (move to center of facet then to center of polytope) is
irrelevant to the approach. It is only the resulting transition
probabilities in the MDP structure that are important.

The control actions had the form of an affine state estimate
feedback law given by uxd

(t) = −L(x̂− xd)−Axd, where
x̂ is the state estimate given by a Kalman-Bucy filter and xd
is a desired point to move to. The feedback gain was set to

L =
[

20.2 −0.30
0.50 20.0

]
.

Fig. 2. The region P and the subpolytopes defined by Π. Subpolytopes in
blue denote regions to be avoided while those in yellow denote target areas
as designated by the policy φ specified in (4).

We defined four interrupts. In words, these were: the
system exits the current subpolytope, the system exits the
union of the previous and current polytope, the system has
converged to the desired point, or the action has executed
for a sufficiently long time. The second condition was added
to allow the system to switch back and forth between two
adjacent polytopes if desired. These four interrupts can be
expressed as follows:

Interrupt Triggering condition
ξexit x(t) /∈ qo, the initial polytope
ξexit2 x(t) /∈ qprev

⋃
qcurr

ξxd
‖x̂(t)− xd‖ ≤ ε, ε > 0

ξT t ≥ T
Based on the intuitive description for moving between

subpolytopes, we created a collection of basic symbols

sfi
=
(
uxi,j

,
(
ξxi,j

∨ ξexit ∨ ξT
))
, (3a)

scp =
(
uxcp

,
(
ξxcp
∨ ξexit2 ∨ ξT

))
, (3b)

sr =
(
uxcp , (ξexit2 ∨ ξT)

)
, (3c)

sI =
(
uxcp

, (ξexit ∨ ξT)
)
. (3d)

Here xi denotes the center of the ith shared face and xcp
denotes the center of the current polytope. The first symbol
is designed to steer the system to one of the shared faces
and terminates either when the state estimate converges to
within ε of the center of the face, when the state exists
the current polytope, or when T seconds have elapsed. The
second symbol is designed to steer the system to the center
of the current polytope and terminates either when the state
estimate converges to the center, when the system enters a
subpolytope which is not either the current or previous one
(defined when the symbol is executed), or after T seconds.
Note that it allows multiple transitions between the current
polytope and the previous one since such transitions in
essence do not effect the word generated by the system under
the assumption that sequences of repeated values in wa can

WeC04.5

2239

be collapsed to a single copy of that value. The third symbol
is similar to the second but lacks the convergence termination
condition. It serves as a “randomizer”, causing the system to
lose any memory of which polytope it was previously on. It
is this symbol which helps to enforce the Markov condition
needed for the abstraction. The final symbol is designed to
make the current polytope invariant.

The set Π defines 54 shared faces. The basic symbols were
used to create 55 control symbols si = (sfi , scp, sr) , i = 1
to 54 together with the invariance controller sI .

A. Creating the abstraction

As noted in Sec. III, the collection of states in Q was
augmented with a state capturing multiple transitions, yield-
ing 34 states. For each of the 55 symbols, 2000 particles
were initialized on each polytope. Each particle was evolved
according to (1) under control of the symbol until the termi-
nation condition was met. The ending subpolytope for each
particle was then recorded. The simulations were performed
in Matlab running under Lunix on an Intel Xeon Quad-
Core 2.66 GHz processor equipped with 3 GB of RAM.
The 55 transition matrices (each of dimension 34×34) took
approximately 21 hours to create.

As an illustrative example, in Fig. 3 we show the transition
matrix corresponding to the symbol designed to move from
q1 to q2. The entry [Mtp]ij denotes the probability of ending
on region qj given that the system was initially on region qi
and that the system evolved with this control symbol.

Fig. 3. Transition probabilities for the symbol designed for q1 → q2.

B. The specification and results

We chose an LTL−X formula inspired from robot motion
planning. It involved visiting a sequence of three regions
while avoiding three “obstacle” regions. The regions to be
visited were, in order:

r1 = q1, r2 =
⋃

i∈{20,21,29}

qi, r3 = q32.

The obstacles were represented by the polyhedral regions

o1 =
⋃

i∈{13,14,16,17,18}

qi, o2 =
⋃

i∈{19,28}

qi, o3 = q10.

These regions are illustrated in Fig. 2. The corresponding
LTL−X formula can be written as

φ = ♦(r1 ∧ ♦(r2 ∧ ♦r3)) ∧�¬(o1 ∨ o2 ∨ o3). (4)

For each initial state, we used the deterministic tools of
[12] to produce a word to follow. A control policy was
then found by selecting the sequence of control symbols
which maximized the one-step transition probabilities. The
probability of following that word was then calculated by
multiplying those probabilities. In Fig. 4 we show, for every
region in Q, the probability of satisfying the specification
φ. To verify our abstraction, we also determined the prob-
abilities through Monte Carlo simulation. These results are
also shown in Fig. 4. Differences in the two results arise from
three primary sources: (1) the finite number of particles used
in the Monte Carlo simulations, (2) a mismatch between the
distributions over each region qi used to initialize the Monte
Carlo simulations and the actual distributions during a run,
and (3) non-Markovian behavior in the transitions.

Fig. 4. Theoretical and Monte Carlo-based probabilities of a run following
a given word satisfying φ..

In Fig. 5 we show three sample runs starting from the
subpolytope q12. The word to follow (highlighted in green
on the figure) from this regions was found to be

q12q11q5q3q1q3q26q23q29q22q30(q32)

where (q32) means to repeat this element infinitely often.
The actual evolution of the system is shown in blue while
the estimate of the trajectory is shown in green. Of the three
runs, one successfully followed the word while two failed.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we discuss the problem of controlling a
stochastic dynamical system from a specification given as

WeC04.5

2240

Fig. 5. Three sample trajectories of the system starting from q12. The
word to follow was q12q11q5q3q1q3q26q23q29q22q30(q32) and is shown
as green regions. Both the actual (blue) and estimated (green) trajectories
are shown. The initial positions are indicated with blue circles and the final
positions with red crosses.

a temporal logic formula over a set of state-predicates. We
focus on linear systems and LTL. This work can be seen as an
extension of our previous results on temporal logic control of
linear systems, where we showed that a particular choice of
controllers reduces the problem to controlling an abstraction
in the form of a finite transition system from an LTL
formula. In the stochastic framework considered here, the
abstraction becomes in general a POMDP. Since controlling
a POMDP from a (probabilistic) temporal logic specifications
is an open problem, here we present an approach based
on following the solution of the deterministic problem with
maximum probability and under the assumption of perfect
observations over the MDP. Directions of future research
include using approximations to POMDPs combined with
dynamic programming to determine a policy that maximizes
the probability of satisfying the specification directly and
the development of game theoretic approaches for POMDP
control.

ACKNOLWEDGEMENTS

This work was supported in part by NSF under grants
CAREER 0447721 and 0834260 at Boston University.

REFERENCES

[1] R. Alur, T. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid Sys.,” Proc. IEEE, vol. 88, no. 2, pp. 971–984,
2000.

[2] P. Tabuada and G. Pappas, “Linear time logic control of discrete-time
linear Sys.,” IEEE Trans. Autom. Control, vol. 51, no. 12, pp. 1862–
1877, 2006.

[3] G. J. Pappas, “Bisimilar linear Sys.,” Automatica, vol. 39, no. 12, pp.
2035–2047, 2003.

[4] B. Yordanov and C. Belta, “Parameter synthesis for piecewise affine
Sys. from temporal logic specifications,” in Hybrid Sys.: Comp.
and Control: 11th Int. Workshop, ser. Lec. Notes in Comp. Sci.,
M. Egerstedt and B. Mishra, Eds. Springer, 2008, vol. 4981, pp.
542–555.

[5] A. Tiwari and G. Khanna, “Series of abstractions for hybrid automata,”
in Hybrid Sys.: Comp. and Control: 5th Int. Workshop, ser. Lec. Notes
in Comp. Sci.. Springer, 2002, vol. 2289, pp. 425–438.

[6] M. Kloetzer and C. Belta, “Reachability analysis of multi-affine Sys.,”
in Hybrid Sys.: Comp. and Control: 9th Int. Workshop, ser. Lec. Notes
in Comp. Sci., J. Hespanha and A. Tiwari, Eds. Springer, 2006, vol.
3927, pp. 348 – 362.

[7] P. Tabuada, “Symbolic control of linear Sys. based on symbolic
subSys.,” IEEE Trans. Autom. Control, vol. 51, no. 6, pp. 1003–1013,
2006.

[8] A. Girard, “Approximately bisimilar finite abstractions of stable linear
Sys.,” in Hybrid Sys.: Comp. and Control: 10th Int. Workshop, ser.
Lec. Notes in Comp. Sci., A. Bemporad, A. Bicchi, and G. Buttazzo,
Eds. Springer, 2007, vol. 4416, pp. 231–244.

[9] A. Abate, A. D’Innocenzo, M. Di Benedetto, and S. Sastry, “Markov
set-chains as abstractions of stochastic hybrid Sys.,” in Hybrid Sys.:
Comp. and Control, ser. Lec. Notes in Comp. Sci., M. Egerstedt and
B. Misra, Eds. Springer, 2008, vol. 4981, pp. 1–15.

[10] A. D’Innocenzo, A. Abate, M. D. Benedetto, and S. Sastry, “Approx-
imate abstractions of discrete-time controlled stochastic hybrid Sys.,”
in Proc. IEEE Conf. on Decision and Control, 2008, pp. 221–226.

[11] E. M. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[12] M. Kloetzer and C. Belta, “A fully automated framework for control
of linear Sys. from temporal logic specifications,” IEEE Trans. Autom.
Control, vol. 53, no. 1, pp. 287–297, 2008.

[13] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: a temporal logic approach,” in Proc. IEEE Conf.
on Decision and Control, 2005, pp. 4885–4890.

[14] H. Kress-Gazit, D. Conner, H. Choset, A. Rizzi, and G. Pappas,
“Courteous cars,” IEEE Robotics and Automation Magazine, vol. 15,
pp. 30–38, March 2008.

[15] P. Tabuada and G. Pappas, “Model checking LTL over controllable
linear Sys. is decidable,” in Hybrid Sys.: Comp. and Control: 6th Int.
Workshop, ser. Lec. Notes in Comp. Sci., O. Maler and A. Pnueli,
Eds. Springer, 2003, vol. 2623, pp. 498–513.

[16] S. B. Andersson and D. Hristu-Varsakelis, “Symbolic feedback control
for navigation,” IEEE Trans. Autom. Control, vol. 51, no. 6, pp. 926–
937, 2006.

[17] C. Baier, “On algorithmic verification methods for probabilistic Sys.,”
Ph.D. dissertation, Univ. of Mannheim, Germany, 1998.

[18] A. Bianco and L. de Alfaro, “Model checking of probabilistic and
nondeterministic Sys.,” in FST TCS 95: Foundations of Software
Technology and Theoretical Comp. Sci., ser. Lec. Notes in Comp. Sci..
Springer, 1995, vol. 1026, pp. 499–513.

[19] A. Aziz, V. Singhal, F. Balarin, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “It usually works: the temporal logic of stochastic Sys.,”
in Comp. Aided Verification, ser. Lec. Notes in Comp. Sci.. Springer,
1995, vol. 939, pp. 155–165.

[20] Y. Kwon and G. Agha, “iLTLChecker: a probabilistic model checker
for multiple DTMCs,” in Proc. IEEE Int. Conf. on the Quantitative
Evaluation of Sys., 2005.

[21] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-
checking algorithms for continuous-time Markov chains,” IEEE Trans.
Softw. Eng., vol. 29, no. 6, pp. 524–541, June 2003.

[22] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model check-
ing,” in Formal Methods for the Design of Comp., Communication
and Software Sys.: Performance Evaluation, ser. Lec. Notes in Comp.
Sci., M. Bernardo and J. Hillston, Eds. Springer, 2007, vol. 4486,
pp. 220–270.

[23] R. W. Brockett, “Formal languages for motion description and map
making,” in Robotics. American Mathematical Society, 1990, pp.
181–193.

[24] V. Manikonda, P. S. Krishnaprasad, and J. Hendler, “Languages,
behaviors, hybrid architectures, and motion control,” in Mathematical
Control Theory, J. Baillieul, Ed. Springer, 1998, pp. 199–226.

[25] O. Cappe, S. J. Godsill, and E. Moulines, “An overview of existing
methods and recent advances in sequential monte carlo,” Proc. IEEE,
vol. 95, no. 5, pp. 899–924, May 2007.

[26] A. Girard and G. J. Pappas, “Approximation metrics for discrete and
continuous Sys.,” IEEE Trans. Autom. Control, vol. 52, no. 5, pp.
782–798, May 2007.

WeC04.5

2241

