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Abstract— In this paper we introduce a scheme for tracking
a magnetic nanoparticle in 3-D with the tip of a magnetic force
microscope. The stray magnetic field of the magnetic particle
induces a shift in the phase of oscillation of the tip of the
MFM. We present a feedback control law which translates the
measurement of this phase shift into actuator commands to the
MFM and prove that the trajectory of the tip converges to a
neighborhood of the magnetic particle. This geometric control
law depends only on the derivative of the potential along the
trajectory of the tip and in particular does not rely on any
detailed prior knowledge about the nanoparticle. The results
of simulation studies are shown to illustrate the algorithm.

I. INTRODUCTION

In this paper we develop a novel technique for tracking
a magnetic nanoparticle in three dimensions with the tip
of a magnetic force microscope (MFM). Such particles
can be selectively bound to a wide-variety of biological
molecules of interest [1]. Studying the dynamics of a bound
nanoparticle therefore reveals information on the dynamics
of the molecule itself. Motivated by this ability, we introduce
a feedback control law which steers the tip of the MFM to
remain in a neighborhood of a single magnetic particle. This
works builds upon a previous effort of the authors [2]. The
contribution of the present paper is a new algorithm which
does not depend on detailed a priori information about the
nanoparticle and which is designed to operate in 3-D.

The MFM is a scanning force microscope (SFM) utilizing
a ferromagnetic probe as a tip. The resolution and sensitivity
of the images that can be obtained depend largely on the
geometric and magnetic properties of the probe. Spatial
resolution on the order of 100 nm is readily achievable
[3] and more recently researchers have achieved resolution
as fine as 10 nm [4], [5]. As with all SFM technologies,
images are built pixel-by-pixel using the standard raster-
scan pattern. The standard approach to studying dynamic
phenomena using SFM is to acquire a series of images
and then post-process them to extract information about the
motion of objects of interest. The temporal resolution is
determined by the achievable frame rate. Because each image
typically takes on the order of seconds to minutes to acquire,
this approach is limited in terms of its applicability.

There are many systems in molecular biology and in engi-
neered nano-systems with dynamics much faster than these
frame rates. Most approaches for improving the temporal
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resolution center on improving the speed at which the tip
can be moved while keeping the quality of the image high.
Despite recent success in this area, e.g. [6]-[8], the rate
of image acquisition remains much slower than the rate of
motion of many biological molecules.

An alternative approach to improving the temporal resolu-
tion is to reduce the number of sampling points. Such non-
raster techniques take advantage of a priori knowledge of the
sample to steer the tip to points where sampling is needed
and avoid regions where it is not [9]-[11]. The algorithm
developed here uses the measurements obtained by the tip
in real-time to steer the tip so that it tracks the motion of
the magnetic nanoparticle. Information about position and
motion is then obtained directly rather than extracted from
a sequence of images. The temporal resolution is driven by
the convergence rate of the control law and ultimately by the
performance bounds of the actuators.

The control law proposed here is related to a broader class
of work of one of the authors [12], [13]. The core applica-
tion is one of studying a spatially-distributed phenomenon
using a point-like or short-range mobile sensor. The limited
information that can be acquired at any single instant of
time requires “smart” techniques to increase the efficiency
and the speed with which these phenomena are evaluated
and their evolution tracked. In the large scale, there is an
extensive volume of literature describing control laws which
reactively achieve these objectives [14]-[17]. In many cases
these approaches rely on a group of mobile sensors and do
not translate well to applications in SFM where only a single
sensor (the tip of the microscope) is available. The techniques
described in [12], [13] are well suited for this challenge, since
they rely on input from a single sensor and on geometrical
features of the potential field that are well-behaved to scaling.

II. MFM - THEORETICAL BACKGROUND

This section lays out the model of the physical phenomena
that enable the tracking of a magnetized particle by an MFM.
A version of this section appeared previously in [2].

In magnetic force microscopy, the cantilever is excited
with a low-amplitude sinusoidal drive signal and the tip
is then brought near the sample. Interactions between the
magnetized tip and the magnetic particle lead to a shift
in the phase of the tip oscillation. In the conventional
mode of operation, the tip is scanned at a constant vertical
displacement over the sample surface. The image of the
phase shift then reveals details of the underlying magnetic
field. As discussed in Section III, we will utilize this phase
shift in a feedback control law aimed at tracking the motion
of the particle.
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A. Force to phase model
In the following we derive the dependence of the phase

shift on the external force applied to the cantilever. ( See also
[3].) The geometry of the tip-particle system is illustrated
in Fig. 1. The tip motion is given with respect to a fixed
coordinate frame whose (x, y) axes lie in the sample plane.
The amplitude of oscillation, typically between 10-100 Å,
is small with respect to the length of the cantilever [18].
Therefore it is assumed that the tip motion is purely in the z
direction. Under this assumption, the dynamics of the tip can
be simplified as a damped harmonic oscillator, which yields:

d2ztip
dt2

+
ω0

Q

dztip
dt

+ω2
0(ztip − z0) = δ0ω

2
0 cos(ωt) +

ω2
0

k
Fz,

(1)
where ztip is the distance between the probe and the sample
plane, z0 is the probe-sample distance at zero oscillation
amplitude, δ0 is the amplitude of displacement at the clamped
end of the cantilever, k is the spring constant, ω0 is the nat-
ural frequency, and Q is the quality factor of the oscillation.
The force Fz is the magnetic force F ∈ R3 projected onto
the z axis.

If Fz = 0, the system is completely linear and its phase
response yields:

φ = tan−1

(
ωω0

Q (ω2
0 − ω2)

)
. (2)

Fig. 1. MFM setup. Here r is the position vector of the effective dipole
moment relative to the particle center, dm is the distance of the effective
magnetic dipole moment relative to the end of the tip, ztip is the distance
from the end of the tip to the sample plane containing the center of the
magnetic particle, m is the particle’s magnetization vector, and α is the
angle between the x axes and m, given m lies in the {x, z} plane.

Due to the small amplitude of the oscillation, we linearize
the interaction force around a nominal displacement z0:

Fz (ztip) = Fz (z0, 0) +
dFz
dz

∣∣∣∣
z=z0

(ztip − z0) .

Introducing the linearized term in (1) leads to a change in
the natural frequency,

ω̃0 = ω0

√
1− 1

k
F ′z, (3)

which in turn changes the phase response of the system:

φ̃ = tan−1

(
ωω̃0

Q (ω̃2
0 − ω2)

)
. (4)

Thus the magnetic field of the particle induces a phase
shift ∆φ = φ − φ̃ in the frequency of the oscillation. The

sensitivity of this response is maximized when the tip is
driven near its original natural frequency ω = ω0. From (2),
this corresponds to φ = π

2 . Then, setting ω = ω0 in (4)
gives:

∆φ = tan−1

− Q 1
kF
′
z√

1− 1
kF
′
z

 .

B. Magnetic force model
The magnetic force arising from the tip-particle interaction

can be described by a convolution integral [19]:

F(rtip(t)) = µ0

∫
tip

(
Mtip(r′) · ∇rtip

)
Hs (rtip − r′) dr′,

(5)
where Mtip ∈ R3 is magnetization of the tip, Hs ∈ R3 is the
stray field of the sample and rtip(t) ∈ R3 is the position of
the tip. The oscillation amplitude of the tip is very small with
respect to the nominal separation of the tip and the sample,
denoted by r0. Therefore, we assume that rtip(t) = r0.

To simplify the convolution integral, the MFM tip is
usually abstracted as a point probe that is comprised of a
magnetic monopole and/or a magnetic dipole [3], [20], [21].
It has been shown that to perform an unambiguous analysis
of the MFM response, only one of these contributing terms
should be used [21]. In the analysis that follows, we use the
magnetic dipole model. This choice simplifies (5) to:

F(r0) = µ0 (m · ∇) Hs(r0 + rm), (6)

where m is the effective dipole moment and rm is its position
relative to the end of the tip. (This notation is visualized in
Fig. 1.) Assuming the MFM tip is magnetized such that the
magnetization vector lies along the z direction, (6) yields

F ′z(r0) =
d

dz
(F · ẑ) = µ0mz

∂2Hz

∂z2

∣∣∣∣
r=r0+rm

, (7)

where m = {0, 0,mz}T and rm = {0, 0, dm}. Note that
both parameters characterizing the tip, mz and dm, are
unknown and are usually determined by fitting the model
to experimental data [20], [21].

The magnetic beads that we intend to track are small,
uniformly magnetized spheres. The stray magnetic field from
such a particle is given by:

Hs(r)r>a =
1

4π

[
−ms

r3
+

3 (ms · r) r
r5

]
, (8)

where r is a radius vector whose origin coincides with the
center of the sphere, a is the radius of the sphere and ms is
the equivalent magnetic moment of the sphere. The moment
ms depends both on the material magnetization, M , and the
volume of the sphere:

ms =
4
3
πa3M n̂, (9)

where n̂ is the unit vector specifying the orientation of
the magnetization. Rearranging (9), (8) and (7) leads to the
following expression for the derivative of the force:

F ′z(r0) = bS(r0, dm), (10)
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where the scale factor b is equal to:

b =
1
3
µ0mza

3M, (11)

and S is a function of the nominal position of the tip and
the displacement of the equivalent dipole moment from the
tip given by:

S(r0, dm) =
∂2

∂z2

[
− n̂
r3

+
3 (n̂ · r) r

r5

]
· ẑ
∣∣∣∣
r=r0+{0,0,dm}T

where r is the Euclidean length of r.
To analyze the geometry of the map S, it can be assumed

without loss of generality that the direction of the magneti-
zation vector of the sphere n̂ lies in the {x, z} plane. Then,
setting α to be the angle between n̂ and the {x, y} plane
(Fig. 1) gives the following expression for S:

S = − 3
4π

5x0z(3rxy − 4z2)
r9

cosα+

+
3

4π
3r4
xy − 24r2

xyz
2 + 8z4

r9
sinα (12)

Here z = z0 + dm and rxy is the Euclidian length of the
projection of r = {x0, y0, z}T into the {x, y} plane, rxy .

Inserting (12) into (10) gives F ′z which in turn yields the
phase shift from (5). Fig. 2 shows a simulated raster scan
image of the phase shift in the region around the particle,
based on the developed model for three different values of
angle α and z0 = 50 nm. For α = 0, corresponding to
the magnetization vector of the particle lying in the sample
plane, there are two distinguishing regions, one determined
by repelling forces, the other by attracting. As the magne-
tization vector rotates out of the sample plane, one of the
poles becomes dominant at the expense of the other.

(a) α = 0 (b) α = 45 deg

(c) α = 90 deg

Fig. 2. The phase shift (degrees) for three different values of α. The
tip-sample separation was set to z0 = 50 nm and the model parameters
to: Q = 180, k = 1 N/m, mz = 5.1 × 10−15 Am2, dm = 300 nm,
M = 480× 103 A/m (the saturation magnetization of magnetite - Fe203)
and a = 25 nm. The values for mz and dm are from experiments in [20].

To quantify the noise entering the measurement system,
we assume that its main component is due to thermal motion
of the cantilever [22]. The standard deviation of this noise
is given by

σF ′
z

=
1

δrms

√
2kkbTB
ω0Q

, (13)

where δrms is the root mean-square amplitude of the tip, kb
is the Boltzmann’s constant, T is the ambient temperature
and B is the bandwidth of the measurements. Using the
linearization of (5), we can propagate the noise into the phase
shift to find the standard deviation in the measurement of the
phase shift is given by:

σ∆φ =
d∆φ
dF ′z

∣∣∣∣
F ′

z=0

σF ′
z

=
Q

k
σF ′

z
. (14)

III. TRACKING CONTROL

Our goal is to develop a feedback control law which
steers the tip to an arbitrarily small neighborhood around
the particle. Relative motion between the tip and the sample
in an MFM is commonly achieved using piezo-electric
actuators. These systems exhibit a variety of interesting and
important dynamic effects, including nonlinearities such as
creep and hysteresis. There is, however, a large body of
existing literature on efficient and effective controllers for
these systems (see, e.g. [23], [7] and discussions in [8]). For
the remainder of this paper, we will assume the existence of
a low-level controller that compensates for the dynamics of
the actuators and focus on trajectory determination. Under
this assumption, the motion of the tip can be modeled as:

ṙ =
(

ṙxy
ż0

)
= u =

 ux
uy
uz

 , (15)

where ux, uy and uz are the available control inputs. In
this work, we divide the controller into a planar (x − y)
component and a separate axial (z) component.

A. Tracking in the plane

Here, we assume that the particle and the tip evolve in
two parallel planes at a constant nominal displacement z0.
For fixed z0, it can be seen from (10) that F ′z : R2 → R1.
As a result, the phase shift ∆φ can be abstracted as a scalar
potential function:

∆Φ(·) : R2 → R,
rxy 7→ ∆Φ(rxy),

where ∆φ(t) = ∆Φ (rxy (t)) with rxy(·) the trajectory of
the tip.

The geometry of the field ∆Φ (rxy) plays an important
part in the control design. As discussed in Section II, the
field has one or two extrema depending on the orientation
of the magnetization vector of the particle. Therefore, by
tracking an extremum, the particle itself can be tracked.
In this perspective, a tracking control should navigate the
tip through the potential and converge it to a neighborhood
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around its extremum. The choice of which extremum to track
is arbitrary and is determined purely by initial conditions.

In [12] [13], one of the authors introduced an algorithm
for navigating a vehicle through an unknown potential field
without directly estimating the gradient of the field. This
was achieved through the introduction of nonholonomic
constraints on the kinematics of the vehicle together with
the choice of constant speed. In the MFM setup, this is
equivalent to the control input in (15) having the form:

u =
(

cos(θ)
sin(θ)

)
(16)

θ̇ = ω,

where ω is function of both ∆φ and d∆φ
dt and corresponds

to a steering rate for the direction of the tip motion.
The level sets of ∆Φ can be approximated as circles in

a neighborhood near an extremum (Fig. 2). For the design
of the tracking control, we exploit this characteristic of
the potential function and formalize it with the following
assumption.

Assumption 1: Let ∆Φ∗ = |∆Φ(r∗xy)| be the value of
∆Φ(rxy) at its extremum. Then for some positive constant
β, there exists a neighborhood

Ω = {rxy ∈ R2 |∆Φ∗ − β ≤ |∆Φ (rxy) | }

such that
‖∇ (∆Φ)‖ ≥ σ, rxy ∈ Ω, (17)

for a given σ > 0 and such that

sup
rxy∈Ω

∣∣∆Φ(rxy)− fp
(∥∥rxy − r∗xy

∥∥)∣∣ ≤ ε, (18)

where fp is a radial function and ε a small positive constant.

The tracking control derived below relies explicitly on (18)
and (17). To ensure these assumptions are met, the control
action will consist of two consecutive phases. The first is a
search in which the tip is scanned over the sample until it
detects a phase shift ∆φ ≥ β for a given β large enough so
that the tip is in a region for which the radial approximation
holds. The second phase is the tracking control (described
below) in which the tip converges to a circular orbit around
the extremum and with a pre-specified radius.

Fig. 3. The motion of the tip in terms of ψ and ρ

Following the radial potential field assumption, the motion
of the tip can be expressed in coordinates directly related to

the potential. We choose here the radius ρ =
∥∥rxy − r∗xy

∥∥,
defined as the distance between the current position of the tip
and the nearest extremum, and the angle ψ, being the angle
between the tangent to a level set and the heading of the tip
(Fig. 3). Under the nonholonomic constraints introduced in
(16), it can be shown [13] that in the chosen coordinates, the
system evolution is:

ρ̇ = sinψ (19)

ψ̇ = ω +
1
ρ

cosψ.

Moreover, in this coordinate system d∆φ
dt yields:

d∆φ
dt

= −‖∇ (∆Φ) ‖ sinψ.

Therefore, under the chosen control, (19) is an autonomous
system where the geometry of the field manifests itself
through the magnitude of its gradient ‖∇ (∆Φ) ‖ and the
curvature of the level sets, 1

ρ , both evaluated at the position of
the tip. Neither the gradient nor the curvature can be directly
measured. Nevertheless, the theorem below establishes a
control law such that the tip trajectory converges to ρ(t) ≤ ρc
for a given ρc > 0.

Theorem 1: Define the sets

B =
{
rxy ∈ R2

∣∣∣∣ ρρ0
− ln

ρ

ρ0
≤ 2

}
,

D =
{
{ρ, ψ}T ∈ R2

∣∣∣∣ ρρ0
− ln

ρ

ρ0
+ cosψ ≤ 1

}
,

for some ρ0 > 0 and let Assumption 1 hold. If B ⊆ Ω, then
under the control law defined by:

ω =
1
ρ0

(
1−K d

dt
|∆φ|

)
, (20)

where
K ≥ 1

σ
sup

{ρ,ψ}∈D

(
1
ρ

sinψ
)
, (21)

the tip trajectory satisfies∥∥rxy(t)− r∗xy
∥∥→ ρ0, (22)

as t→∞, given that {ρ(0), ψ(0)}T ∈ D.
Proof: The candidate Lyapunov function is:

V (ρ, ψ) =
ρ

ρ0
− 1− ln

ρ

ρ0
+ 1 + cosψ. (23)

Note that ρ
ρ0
−1− ln ρ

ρ0
> 0 for ρ 6= ρ0 and is unbounded.

Therefore, the function will be positive definite in the interval
ψ ∈ [π2 , 3

π
2 ], or D = {{ρ, ψ}T ∈ R2|V (ρ, ψ) ≤ 1} will be

a compact set. Taking the derivative on the trajectory of the
system yields:

V̇ = − 1
ρ0

sin2 ψ

(
MK − 1 + cosψ

sinψ
1
ρ

)
≤ (24)

≤ − 1
ρ0

sin2 ψ

(
MK − | sinψ|1

ρ

)
. (25)

Since ρ ∈ D implies ρ ∈ B it follows that M ≥ σ.
Therefore, choosing K according to (21) guarantees that
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V̇ ≤ 0. In such case, the LaSalle’s invariance principal
guarantees the system to asymptotically converge to the
equilibrium ρ = ρ0, ψ = π, which proves (22).
(For a less conservative estimation of the invariant set for
(19) with control laws of the type (20) see [13].)

We note that in previous work [2], we used a similar
approach to develop a control law to track a given level
set ∆Φ = const near the extremum. That law required
knowledge of model parameters that in general are difficult
to determine. The control introduced here relies only on the
measured phase shift and its derivative. Explicit parameter
values are not needed, though an estimate of the value of β
is required to ensure Assumption 1 is satisfied and a value
of ρ0 such that the tip stays in the set Ω.

B. Tracking in three dimensions

To develop a tracking controller in the axial direction, we
first define the scalar potential ∆Φ̃ : R3 → R in an analogous
fashion to the planar potential in the previous section. We
also extend Assumption 1 to R3 as follows:

Assumption 2: Let r = 0 be the position of the particle’s
center. Then there exists a neighborhood Ω̃ = {r ∈ R3 : z >
0
∣∣∣|∆Φ̃ (r) | > β̃ } such that∥∥∥∇(∆Φ̃

)∥∥∥ ≥ 0, r ∈ Ω̃. (26)

and
sup
r∈Ω̃

∣∣∣∆Φ̃(r)− f̃p (‖r‖)
∣∣∣ ≤ ε, (27)

where fp is a radial function ε is a small positive constant.
Note that this assumption guarantees that for any fixed

displacement z0 between the particle center and the tip, the
extremum of ∆Φ̃(r) will be achieved for rxy = 0. Then, with
ρ and ψ as before, we can write for the tracking system the
following equations:

ρ̇ = sinψ

ψ̇ = ω +
1
ρ

cosψ (28)

ż0 = v,

where v is the vertical control of the tip. Note, that in this
case:

df̃p
dt

= −
∥∥∥∇xy (∆Φ̃

)∥∥∥ sinψ +
∂∆Φ̃
∂z

v. (29)

Theorem 2: Define the constant C as:

C = |f̃p(ρ2
0 + zd)| > β̃. (30)

for a given zd > 0. Then there exists a neighborhood B ⊂ R2

of Z0 = {ρ = ρ0, ψ = π, z0 = zd}, such that under the
control law:

ω =
1
ρ0

(
1−K d

dt
|∆φ|

)
, v = Kz(|∆φ| − C),K,Kz > 0,

(31)
the system (28) converges to Z0, for all ∀Z(t) ∈ B.

Proof: Linearizing (28) around Z0 under the control
(31) yields:

d

dt

 δρ
δψ
δz

 = A

 δρ
δψ
δz

 ,
where

A =

 0 −1 0
1
ρ20
− KzKMzMxy

ρ0
−K
ρ0
Mxy −KKz

ρ0
M2
z

−KzMxy 0 −KzMz

 .
Here Mxy =

∥∥∥∇xy (∆Φ̃
)∥∥∥ > 0 and Mz = −∂|∆Φ̃|

∂z . Under
the model in Section II, the magnitude of the force increases
as the tip becomes closer to the particle. Therefore it can be
verified that the linearized system matrix is Hurwitz.
Note, that the convergence of (28) to Z0 corresponds to the
tip converging to circular trajectory in the horizontal plane
z0 = zd.

IV. NUMERICAL SIMULATIONS

In this section, we describe a set of simulation studies of
the proposed tracking scheme. The simulations consider a
100 nm diameter particle and include a model of thermal
noise in the measurements. Parameter values were chosen as
in Fig. 2 in Section II. Note that the the primary effect of
different size particles is a change in the magnetic moment
and thus the signal-to-noise ratio in the measurements.

The simulations take into account that the actual control
should be implemented in the discrete domain. We assume
that the control action is piece-wise constant, ω(t) = const,
v(t) = const, t ∈ [tk, tk+1), where tk corresponds to
the update time of the controller. We take the interval
tk+1 − tk to be equal to 1

B , where B is the bandwidth of
the measurements. For the purposes of these simulations, the
bandwidth was set to 300 Hz. The parameter values in the
control law described in Section III were taken to be ρ0 = 60
nm, K = 100, and Kz = 12. The horizontal distance which
the tip travels between two consecutive updates is dtip = 10
nm, which corresponds to ‖ṙxy‖ = 3µm/s. The desired
vertical displacement between the tip and the particle was
set to zd = 90 nm.

We considered first a fixed particle. Fig. 4(a) depicts the
planar projection of the trajectory of the tip for a fixed
particle, overlaid on a phase surface image corresponding
to fixed z0 = 90 nm. It can be verified by the figure that
the horizontal component of the trajectory converges to the
desired radius ρ0 = 60 nm. Fig. 4(b) shows how z0 varies
with time. The tip begins initially at 150 nm above the
center of the particle (or 100 nm above the surface) and
then converges within 0.2 s (60 samples) to 90 nm above
the particle center. The effect of noise on the trajectory can
clearly be seen in the figure.

We then considered a particle moving with a speed of
0.6 µm/s in the plane and -0.15 µm/s in the axial direction.
The resulting trajectory in the plane is shown in Fig. 5(a)-
(c) at three snapshots in time. The image on the background
corresponds to an MFM phase image at the current the tip -
particle vertical separation. The vertical trajectory is shown
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(a) Planar trajectory (b) Vertical trajectory

Fig. 4. The trajectory of the tip for a static particle. (a) Planar tra-
jectory.Trajectory colors correspond to time with the most recent points
depicted in black. The trajectory is overlaid on an MFM phase image at
a tip-sample separation of 90 nm. The tip converges to a nearly circular
trajectory with a radius of 60 nm. Noise in the measurements gives rise to
variations in the trajectory. (b) Vertical trajectory. After 0.2 s (60 samples)
the axial component has converged to the desired tip-sample separation.

in Fig. 5(d). Three distinct phases of the tip motion can be
observed. In the first, the tip engages the particle and moves
rapidly in the z direction, following a spiral-like trajectory.
In the transition stage the tip converges to a neighborhood of
the particle. The final steady state phase corresponds to stable
tracking. The background MFM phase image illustrates the
improvement in the signal-to-noise ratio as the tip approaches
the particle.

(a) t = 0.2 s (b) t = 0.7 s

(c) t = 1.2 s (d) Vertical trajectory

Fig. 5. Tracking a moving particle with velocity V = 0.62 µm/s. (a-c)
Snapshots of the planar trajectory of the tip. Colors correspond to time with
the most recent points in black. (d) The vertical separation of the particle’s
center and the tip as function of time for a moving particle.

V. CONCLUSIONS

In this paper we proposed a novel approach to study the
dynamics of single molecules through the use of tracking.
While experimental study is needed, simulation studies were
shown that indicate effective tracking in a practical system
can be achieved.
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