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Abstract— Measurements of fluorescence intensity from an
isolated fluorescing probe in a confocal microscope can be
viewed as range-only measurements of the position of that
probe. We present an analytical algorithm for determining its
position from a collection of measurements taken at different
locations in the plane. This algorithm, fluoroBancroft, is in-
spired by the Bancroft algorithm in GPS. We investigate the
performance of the algorithm through simulation and compare
it to the standard technique of fitting the data to a Gaussian
profile. Our results indicate that the fluoroBancroft algorithm
is more accurate than the fitting procedure when only a few
measurements are used. Moreover the technique is typically
two orders of magnitude faster in terms of computation time.
These preliminary results indicate the fluoroBancroft algorithm
holds promise for use in a real-time closed-loop controller to
track the motion of single fluorescent probes.

I. INTRODUCTION

Single particle tracking in fluorescence microscopy has be-
come an extremely important tool for understanding molec-
ular processes [1], [2]. Particle tracking is typically achieved
by analyzing a sequence of wide-field images obtained using
a charge-coupled device (CCD) camera. The resolution of an
optical microscope is limited by the Rayleigh criterion to

1.22λ
2N.A.

where λ is the wavelength of the light and N.A. is the
numerical aperture of the objective lens [3]. However, the
location of an isolated point-source can be determined with
much higher accuracy by determining the center of the
diffraction-limited image of the point source [1]. If limited
to the focal plane, this technique can yield a temporal
resolution on the order of milliseconds [4]. When extended
to three dimensions, the temporal resolution is reduced to
the range of seconds [5]. A confocal setup (and related
techniques such as two-photon microscopy) operates in 3D
and. because the fluorescence intensity is measured using an
avalanche photodiode or photomultiplier tube, the temporal
resolution on fluctuations in the fluorescence intensity is
orders of magnitude faster than can be achieved in wide-
field imaging. The trade-off is that the detection volume
is extremely small, typically on the order of femtoliters.
In recent years, researchers have begun to develop algo-
rithms for tracking single fluorescent probes in confocal and
two-photon microscopes [6]–[8]. Because measurements are
taken sequentially, it is important for high-speed tracking that
the position of the probe can be determined rapidly and with
only a few measurements.
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The author recently introduced the fluoroBancroft algo-
rithm for estimating the location of a fluorescent probe from
intensity measurements. Its localization performance in the
wide-field setting is comparable to the current standard tech-
nique of fitting a Gaussian profile to the data [9]. In this paper
we apply the algorithm to the confocal setting. The algorithm
relies on the fact that the fluorescence intensity depends only
on the distance to the probe. Therefore, a measurement of
the intensity can be interpreted as a measurement of the
range to the source. The problem of position determination
utilizing a collection of range measurements occurs in many
engineering applications. The fluoroBancroft algorithm is
inspired by Bancroft’s algorithm for solving the localization
problem in the global positioning system (GPS) [10].

Sub-diffraction limit localization is typically done by
fitting the data to a Gaussian profile using a non-linear least-
squares fit. This can provide precision on the order of 1-
20 nm in a typical system [11], [12]. The algorithm was
developed for the wide-field setting where images are com-
prised of hundreds of pixels and has been used primarily in
localizing a particle in the focal plane. In this paper we also
restrict ourselves to localization in the plane and compare the
performance of the fitting approach with the fluoroBancroft
algorithm in the confocal setting. These results indicate that
the range-based approach is more effective when using a
small number (4-10) of measurements. Moreover, the new
algorithm is analytical, not numerical. As a result, it typically
executes two orders of magnitude faster than the fitting
approach.

In the next section we derive the position estimation
algorithm. The derivation of fluoroBancroft follows the same
basic approach as that of Bancroft’s algorithm in GPS.
However, unlike in the GPS problem in which two possible
solutions are found, in our setting a unique solution is
determined. A closed-form equation for this solution is
derived. In Section III we describe the simulation technique
used to compare the two estimation techniques. The results
of the simulations are presented in Section IV.

II. THE FLUOROBANCROFT ALGORITHM

In confocal fluorescence microscopy the output fluores-
cence intensity from a point source is the product of the
illumination and detection intensity point spread functions

I(u, v) = (hdet(u, v)h∗det(u, v)) (hill(u, v)h∗ill(u, v))

where the amplitude point spread function is

h(u, v) = −i2πnA sin2 α

λ
e

iu
sin2 α

∫ 1

0

J0(vρ)e−
iuρ2

2 ρdρ.

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

FrA12.6

1-4244-1498-9/07/$25.00 ©2007 IEEE. 4950



Here (u, v) are the normalized optical coordinates in the
axial and lateral directions, n is the refractive index of the
medium in which the fluorophore is embedded, n sinα is
the numerical aperture of the objective lens, A is the area of
the illumination or detection aperture, λ is the illumination
or emission wavelength, and J0 is the zeroth-order Bessel
function of the first kind [13]. The intensity pattern is
circularly symmetric and gives rise to the familiar Airy disk
in the plane. The intensity as a function of a normalized
radial coordinate (scaling for the wavelength and numerical
aperture of the system) is shown in Fig. 1. The intensity first
falls to zero at r = 3.83. This radius determines the size of
the central disk in the image of a diffraction limited spot and
is termed one Airy unit.

Fig. 1: Normalized output fluorescence intensity in the focal plane
as a function of the normalized radial coordinate. A fitted Gaussian
profile of the form (1) is superimposed on the Airy function.

Superimposed on the Airy function in Fig. 1 is a Gaussian
of the form (1) fitted to the intensity profile. As can be seen,
within the central disk, the intensity is well-approximated
by a Gaussian. Since the Gaussian is mathematically more
tractable, the intensity of a diffraction limited spot is often
modeled by

Ipsf = me−
r2

2σ2 . (1)

Here r is the distance between the measurement location and
the fluorescent probe, m is a scaling factor determined by
the total number of photons emitted by the probe during the
measurement period and 2σ is the full-width, half-maximum
(FWHM) of the image spot, given by

2σ =
1.22λ

2
√

2N.A. ln 2
. (2)

In this work we follow this convention and take (1) as our
intensity model.

The measured intensity is given by the true intensity
together with background and shot noise. The background
noise, arising primarily from unwanted excited and autoflu-
orescence of the sample, is assumed to be constant across

the field of view. For the purposes of position estimation, we
model it as a Gaussian random variable ηB with mean and
variance equal to NB . The shot noise is a Poisson process
with a rate dependent on the total number of photons detected
[1]. We assume that the photon count is high enough to
model this noise as a Gaussian random variable ηshot with
mean and variance Nshot equal to the sum of the intensity
and the expected value of the background noise. The model
for the measured intensity at a distance r away from the
probe is

I = me−
r2

2σ2 + ηB + ηshot. (3)

Taking the expected value of (3) and solving for r2 yields

r2 = 2σ2 ln(2m)− 2σ2 ln(I − 2NB). (4)

Note that because the background noise can be measured to
determine NB , the second term on the right-hand side of (4)
is known. However m is related to the true intensity of the
fluorescent probe and is therefore not known. Let i index the
measurements obtained from the (known) positions (xi, yi).
The range can be expressed as

r2i = (xi − x0)2 + (yi − y0)2

where (x0, y0) is the (unknown) true location of the fluores-
cent probe. Define

b
4
= 2σ2 ln(2m), P 2

i
4
= 2σ2 ln(I − 2NB)

αi
4
= 1
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Then (4) can be rewritten as

0 = αi + Λ−
(
xi yi 1

) x0

y0
b

 . (5)

Stacking together n measurements yields

0 = α+ Λe−B

 x0

y0
b

 (6)

where

α =

 α1

...
αn

 , e =

 1
...
1

 , B =

 x1 y1 1
...

xn yn 1

 .

Pre-multiplying (6) by BT and rearranging yields x0

y0
b

 = B† (α+ Λe) (7)

where B† =
(
BTB

)−1
BT is the pseudo-inverse of B.

Notice that the unknown position (x0, y0) appears both on
the left-hand side and on the right-hand side (through Λ).
Since we are interested only in the location of the fluorescent
probe, we isolate the position by pre-multiplying both sides
of (7) by

Q =
(

1 0 0
0 1 0

)
.
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This yields (
x0

y0

)
= Q

(
B† (α+ Λe)

)
. (8)

We now state an interesting property of B†.
Proposition 2.1: Let e = (1, 1, · · · , 1)T and let A be a

full rank n × 2 matrix, n > 2, such that e is not in the
column space of A. Define B =

(
A e

)
. Then

B†e =

 0
0
1

 .

Proof: The result follows from a direct calculation of
the pseudo-inverse.

To satisfy the conditions of this proposition, at least
three measurements must be used and the locations of these
measurements must not be collinear. Under this assumption,
applying Proposition 2.1 to (8) removes Λ from the equation
and results in the solution(

x0

y0

)
= QB†α. (9)

Since B and α depend only on the measurements and the
locations of those measurements, (9) determines the location
of the fluorescent probe as a closed-form equation.

Thus to determine the position of a fluorescent probe,
one first obtains three or more measurements from different
locations in space. These measurements define the matrix
B and the vector α. The Moore-Penrose inverse of B is
calculated and the location of the probe found from (9).

III. SIMULATION METHODS

To investigate the performance of the fluoroBancroft algo-
rithm, we modeled a point source fluorescing at a wavelength
of 540 nm at a rate of 40 photons/ms. The fluorescence was
imaged using a 1.2 N.A., 20× magnification objective lens
through a circular pinhole onto a point detector. The signal-
to-noise ratio (SNR) depends on the pinhole radius [14].
The pinhole radius was set to 2.86 µm, corresponding to
approximately half an Airy unit.

The noise-free intensity value of the fluorophore in the
detector plane was modeled as a Gaussian as in (3) with
the parameter m determined by the fluorescence rate and the
integration time (the time spent collecting photons at a single
location). With the given parameters, the FWHM was 140
nm. The total number of photons collected by the detector
from the fluorescent probe was determined by integrating the
exponential over the area of the pinhole and multiplying the
result by the quantum efficiency of the detector. Background
noise was introduced by adding a sample from a Poisson
process with parameter NB = 10 photons/ms. Finally, shot
noise was included by adding a sample from a Poisson
distribution whose parameter was given by the total number
of photons collected by the detector. For a small circular
pinhole, the SNR for the model taken here can be shown to
be given approximately by [14]:

SNR =
√
QEnp

πrdN.A.
λM
√

1 +NB/N

where N is the fluorescence rate of the molecule, λ is the
wavelength of the emitted fluorescence, M is the magnifi-
cation of the objective, QE is the quantum efficiency of the
detector, and np is the total number of photons emitted by
the molecule during the integration time. For all simulations,
QE was set to 0.55 and an integration time of 15 ms was
chosen, leading to a signal-to-noise ratio of approximately
17.

In Fig. 2 we show the simulated measured fluorescence
signal measured along a radial line. The fluorescent probe
was located at the origin and measurements were taken
at every 10 nm. Given that NB = 10 photons/ms, the
integration time was 15 ms, and the presence of the shot
noise, the expected fluorescence level in the absence of a
fluorophore is 300 photons. From the theoretical model, the
fluorescence signal from the probe drops to zero at one
Airy unit, corresponding to approximately 274 nm for the
parameters chosen here. As seen in Fig.2, the signal falls to
the noise floor at approximately 300 nm as expected.

Fig. 2: Simulated intensity measurements along a radial line with
an SNR of 16.2 The fluorescent probe is located at the origin.

For each simulation run, the location of the fluorescent
probe was determined by sampling from a uniform density
on a circle centered on the origin and with radius rd where
rd is the radius of the pinhole projected back into the sample
plane.

Intensity measurements were made from different posi-
tions in the plane and then used to estimate the location of
the fluorescent probe. Measurement positions were approx-
imately uniformly spaced around a circle centered on the
origin. Because the location of the probe was unknown, the
radial distance for each measurement location was selected
randomly from a uniform distribution on [0, rd]. This sam-
pling pattern ensured measuring the fluorescence intensity at
several different ranges to the fluorescent probe. An example
for the case with eight measurements is shown in Fig. 3. The
circle drawn on the figure denotes the region over which
the probe might be. We note that the problem of optimal
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selection of measurement locations remains open.

Fig. 3: Typical pattern of measurement locations. Locations are
selected approximately uniformly spaced around a circle. The radial
distance to each location is selected randomly from a uniform
distribution from [0, rd]. The fluorescent probe is located at an
unknown location inside the circle.

For every fixed number of measurements, 500 iterations
of the simulation were run. The location of the fluorescent
probe was determined using the fluoroBancroft algorithm (9)
as well as by using a nonlinear least-squares fit of the data
to a Gaussian given by

I(x, y) = Ae−
(x−x0)2+(y−y0)2

2σ2

in which x0, y0, A and σ were allowed to vary. The sim-
ulations were performed in Matlab and the Gaussian fit
performed using the built-in routine lsqnonlin. Because
there are three unknowns (the location of the fluorescent
probe in the plane and the number of photons emitted by
the fluorophore), at least three independent measurements
are needed to produce a unique answer. Additional measure-
ments help to reduce the error and standard deviation of the
estimates. In this study, simulations were run with from four
to 36 measurements (that is from every 90o to every 10o).

IV. RESULTS AND DISCUSSION

Fig. 4 shows the standard deviation of the error across the
500 iterations for both fluoroBancroft and the Gaussian fit
algorithm. As the figure shows, the fluoroBancroft algorithm
is accurate relative to the Rayleigh criterion across the range
of numbers of measurements. The Gaussian fit approach has
a larger standard deviation than fluoroBancroft for the entire
range of numbers of measurements. From (2), the FWHM
for the simulations parameters is approximately 200 nm.
Therefore for less than eight measurements, the standard
deviation of the fit is larger than the FWHM of the point

Fig. 4: Standard deviation of the position estimates of the flu-
orescent probe. The simulations indicate that the fluoroBancroft
algorithm performs very well even with only four measurements
while Gaussian fit technique needs approximately 20 measurements
to achieve similar performance. Moreover, when less than eight
measurements are used, the Gaussian fit error is larger than the
Rayleigh resolution criterion, indicating that the algorithm is yield-
ing no information.

Fig. 5: Standard deviation of the position estimates of the fluo-
rescent probe, zoomed in the vertical direction to show the perfor-
mance of the fluoroBancroft algorithm. The standard deviation of
the fluoroBancroft algorithm is less than 30 nm even with only four
measurements and improves, albeit slowly, as more measurements
are used. The Gaussian fit approach improves rapidly as more
measurements are added until about 20 data points are used.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrA12.6

4953



spread function. This implies that the technique fails to
localize the fluorescent probe. Fig. 5 shows the same data but
now magnified in the vertical direction. The results indicate
that the fluoroBancroft algorithm has a standard deviation of
less than 30 nm, significantly below the diffraction limit,
even when using only four measurements. The standard
deviation quickly improves as measurements are added up
to approximately 10 measurements. After that, the rate of
improvement is slow. By contrast the standard deviation of
the Gaussian fit drops quickly as more measurements are
added up to approximately 20 measurements. After this the
two algorithms have similar rates of improvements. It should
be noted that in a previous simulation study based on CCD
imaging, the Gaussian fit was shown to have a lower standard
deviation than the fluoroBancroft approach when large data
sets (larger than 64 measurement locations) were used [9].

The mean of the absolute error in the measurement is
shown in Figs. 6 and 7. The fluoroBancroft algorithm has
a small error of approximately 35 nm even with only four
measurements. However, the rate of decrease in this error
is extremely slow. The Gaussian fitting approach has an
initially high error, once again indicating that the method
is unable to localize the fluorescent molecule based only on
a few measurements. However, the error rapidly decreases
and after approximately 17 measurements, it outperforms the
fluoroBancroft approach.

Fig. 6: Absolute error in the position estimates of the fluorescent
probe. The error in the fluoroBancroft algorithm slowly decreases
as more measurements are used. The Gaussian fit approach error
decreases rapidly until approximately 12 measurements. After that
the rate of improvement is similar to the fluoroBancroft algorithm.

Because one of the main goals of this estimator is in
a closed-loop tracking system, it is important to consider
the execution time of the algorithm. All calculations were
done using Matlab. Because Matlab is typically slower than
a custom program, the exact times are not meaningful.
However, the ratio provides a rough measure of the relative

Fig. 7: Absolute error in the position estimates of the fluorescent
probe, zoomed in the vertical direction to more clearly show the
performance of the algorithms with larger numbers of measure-
ments.

computational complexity. The resulting ratio is shown in
Fig. 8. The figure indicates that fluoroBancroft is two to three
orders-of-magnitude faster than the fitting procedure. More-
over, because the fitting process is a numerical optimization,
the execution time depends upon the initial conditions, the
SNR, and the number of measurements and can vary widely.

Fig. 8: Ratio of execution times of the Gaussian fit procedure to the
fluoroBancroft algorithm. The execution time for fluoroBancroft is
generally two orders of magnitude lower than that of the numerical
approach.

One aspect which this study did not consider was the
effect of the choice of measurement location on the accuracy
of the estimation. However it is to be expected that this
plays an important role in the performance of the algorithms,
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particularly when only a few measurements are used. It is
clear that measurements at a range of more than one Airy
unit from the fluorescent probe will consist almost entirely
of noise. However even when all measurements are within
one Airy unit, the location will influence the accuracy and
may possibly result in a bias as well. Fig. 9 indicates some
dependence of the error on the measurement locations. In this
figure the mean error in the x and y directions are shown
as a function of the number of measurements. Although the
mean error is small, it does appear to vary in a somewhat
regular pattern, indicating the need for further theoretical and
experimental study.

Fig. 9: Mean of the errors in the x (top) and y (bottom) directions.
These results indicate that some bias may be introduced into the
estimate depending on the choice of sampling pattern.

V. CONCLUSION

In this paper we have presented a new algorithm for sub-
diffraction limit estimation of the position of a fluorescing
probe. It was compared in simulation to the current standard
approach of fitting a Gaussian to the data to determine the
center of the diffraction spot. This study indicates that the
new algorithm is both more accurate and more computa-
tionally efficient than the fitting procedure when only a few

measurements are used in the estimation. It is expected that
this approach will be useful in closed-loop algorithms for
tracking single fluorescing probes.

These preliminary results are promising but a theoretical
analysis of the algorithm still needs to be performed to
understand the bias and variance properties of the estimator
and to develop sampling patterns which optimize the perfor-
mance. It is also important to note that both the intensity and
noise models are rough approximations. Better performance
is expected once more faithful models are developed. In on-
going work, the fluoroBancroft algorithm has been extended
to three-dimensional localization and similar studies in that
setting are being carried out.
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