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Abstract— Atomic force microscopy is a powerful tool that
has had a tremendous impact in understanding systems with
nanometer-scale features. In this work we explore the use of
compressed sensing as a means of sampling data and generating
an image. Under this approach only a small number of the
pixels in an image, typically as few as 10%, need to be sampled
to generate an accurate image. We show that when combined
with time-optimal control to move the tip of the microscope
between measurement locations, the imaging time is comparable
to high-speed AFM systems while also greatly reducing the
interactions with and force applied to the sample. In addition,
the approach can significantly reduce the imaging time in
applications such as force mapping in which the tip is moved
point-by-point through a sequence of measurement locations
rather than continuously scanned as in standard imaging.

I. INTRODUCTION

One of the enduring challenges in atomic force microscopy
(AFM) is its poor temporal resolution relative to the rate of
dynamics in many systems of interest [1]. Most commercial
instruments still take on the order of seconds to minutes
to produce a single image, depending on the quality, image
size, and other factors. In addition, because the tip applies a
(small) force to the sample, sample damage and modification
of the natural process being studied are of constant concern,
especially when imaging soft biological samples. As a result,
there are a variety of ongoing efforts aimed at improving the
imaging rate and sensitivity of the instrument [2].

Approaches to high speed AFM can be broadly catego-
rized into two branches. The first targets the hardware, using,
for example, small cantilevers [3], novel actuator designs
[4], [5], and alternative drive mechanisms [6]. The second
targets the controllers and algorithms, using, for example, a
combination of feedforward and feedback control [7], [8],
robust controllers [9], and iterative control schemes [10].
Under all these methods, images are built pixel-by-pixel by
raster scanning the tip across the sample. They aim to speed
up the imaging process by moving the tip of the AFM faster
without sacrificing image quality.

Recently, an entirely different approach to improving the
imaging rate in AFM has been introduced by one of the au-
thors [11]. The fundamental idea is to replace the raster-scan
with a feedback law driving the tip to acquire measurements
only from regions of interest. Imaging time is improved
by reducing the amount of sampling rather than increasing

the scan rate. Work to date has focused on samples which
are string-like in nature, such as biopolymers (e.g., DNA,
actin, microtubules), cell boundaries, or crystal edges. Taking
advantage of the structure of such samples, we designed an
approach called local raster scanning which dithers the tip
back and forth across the sample, tracking the sample along
its length. All measurements are then near the sample, and
improvements in the imaging rate by an order of magnitude
or better are possible.

The main drawback of the local raster-scan scheme is
that it can be used only on string-like samples. Further,
its improvement over a standard raster scan becomes less
pronounced the more a sample “fills” the image. In this
paper, we describe a global non-raster scheme. This scheme
takes advantage of the fact that most images are compress-
ible. Using the theory of compressed sensing (CS) [12],
an accurate image can be reconstructed based on a small
collection of measurements.

The application of CS to improve the imaging rate in
AFM has recently been independently proposed in [13]. In
that work, a series of rectangles was scanned and the full
image reconstructed from the small data set. Such a regular
scan pattern, however, has a low probability of satisfying the
requirements for good reconstruction based on CS theory.
Related ideas have also been proposed in the context of
surface metrology [14] as well as adaptive sampling methods
in AFM based on fractal compression [15].

Here we focus on a random pattern of sampling combined,
guided by the theorems of CS, with minimum-time control
to move the tip rapidly between measurement locations. We
also briefly discuss the results when a continuous spiral scan
pattern is used, similar to that in [13].

II. OVERVIEW OF COMPRESSED SENSING

There are several good tutorials and overviews of CS in
the literature, including [12], [16], [17]. We give here a brief
overview sufficient to motivate our approach and refer the
interested reader to those sources for more information.

Consider a discrete signal x ∈Rn. If the underlying signal
is an image, as in the AFM application, string the pixels
into a single n×1 vector first. Let Ψ = [ψ1 ψ2 · · · ψn] be an
orthonormal basis for Rn such that x can be expressed as

x = Ψq (1)
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where q is the vector of weighting coefficients given by qi =
〈x,ψi〉.

The signal x is said to be k–sparse if only k of the
elements of q are non-zero. In practice, few real signals
are truly sparse. Many however, are approximately sparse
or compressible, such that only a few elements in q are
significant. Given a signal x, it has been shown that the k–
sparse approximation x̂ that minimizes the error

‖x− x̂‖p

for any `p norm is the one given by thresholding, that is
retaining just the k largest elements [18].

Under standard data acquisition, the full n–sample signal
x is first acquired. It is then compressed by calculating the
basis coefficients and then storing only the k largest. The
fundamental idea of CS is to directly acquire a compressed
signal without first sampling the full set of n samples. The
challenge, of course, is that the location of the significant co-
efficients is not known a priori. Surprisingly, despite this, it
is possible to produce an accurate, even exact, reconstruction
of the original signal using far fewer than n measurements.

A. Measurement acquisition

Consider a collection of m � n linear measurements
acquired by taking the inner product between the signal and
a test vector, y j = 〈x,φ j〉. Defining the measurement matrix
Φ = [φ1 φ2 . . . φm]

T , the measurements can be written as

y = Φx = ΦΨq
4
= Aq. (2)

Note that the process is non-adaptive; the measurement
matrix is selected beforehand and remains fixed. To ensure
the m measurements contain sufficient information about
the sparse (or compressible) signal to enable its accurate
reconstruction, Φ should be incoherent with respect to the
chosen basis Ψ. In essence, this means that the rows of
Φ cannot sparsely represent the columns of Ψ and vice
versa. (A related condition is that the combined matrix A
should have the restricted isometry property (RIP) [19].)
One interesting feature of CS is that choosing Φ as a
random matrix from a suitable distribution (e.g., choosing
each entry according to a uniform Bernoulli distribution or a
zero-mean, 1/n–variance Gaussian distribution [20]) ensures
incoherence (and RIP) with high probability.

B. Signal reconstruction

The reconstruction of the signal x from the measurements
y is achieved by solving a nonlinear optimization problem.
It has been shown that under appropriate assumptions, the
solution to the `1 optimization problem

q̂ = argmin‖q‖1 subject to Aq = y (3)

will exactly reconstruct a k–sparse vector and well approx-
imate a compressible vector using O(k log(n/k)) measure-
ments. This convex optimization problem can be solved using
a variety of different algorithms, including basis pursuit and
greedy, stochastic, and variational algorithms [16].

In the presence of noise, it makes sense to relax the
constraints somewhat. In that setting, a common approach
is to solve the optimization problem given by

q̂ = argmin‖q‖1 subject to ‖y−Aq‖2 < ε (4)

where ε is a user-defined parameter establishing an upper
limit on the magnitude of the noise. This is once again a
convex programming problem that can be solved by a variety
of techniques.

If the underlying data set represents an image, one often
uses a variant of the `1 minimization which relies on the
fact that typically the gradient in an image is sparse. In that
setting one defines a gradient operator Di j on each pixel and
then solves the problem

q̂ = argmin∑
i, j
‖Di jq‖2 subject to Aq = y. (5)

As before, this problem can be modified to account for noise
by relaxing the constraints as in (4).

III. ACCURATE AFM IMAGES WITH LESS SAMPLING

One of the challenges in applying CS to the AFM imaging
application is the fact that the sensor in the instrument,
namely the tip, is essentially capable only of measuring a
single point at a time. This directly translates into each row
of the measurement matrix Φ consisting of all zeros except
for a single one at the pixel to be sampled. Note that is true
even when scanning continuously across multiple pixels; due
to the point-like nature of the tip, each pixel can be viewed
as a single measurement even when taken in a single scan.

In this work, then, a measurement matrix is determined by
selecting at random a small number (typically 10% to 20% of
the total) to measure. A traveling salesman problem is then
solved to determine the sequence through which to visit those
pixels to minimize the total path length. Note that this is done
offline and is independent on the sample (since as noted
in Sec. II-A the measurements are non-adaptive). Motion
between the points is then achieved using a robust time-
optimal controller [21]–[23]. At each point, the tip is brought
down until it contacts the sample, the height is measured,
and it is then retracted and moved to the next point in the
sequence. Once all measurements are collected, the image is
reconstructed by solving one of the `1 optimization problems
described in Sec. II-B.

While one of the motivations for alternative scan tech-
niques is the desire to reduce the time it takes to acquire an
image, the rough calculation described below shows that,
due to the need to stop motion in the x-y direction to
engage and then withdraw the tip in the z direction at every
sample location, the acquisition time is approximately the
same as ‘fast’ raster scan methods that have been reported
in the literature on commercial AFMs [24], [25]. Since
the CS approach uses far fewer measurements, and since
the approach to the sample can be finely controlled, the
interaction with the sample is drastically reduced.

Commercially available AFMs typically have raster scan
rates in the range of 1 Hz to 10 Hz, depending upon the
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sample size, imaging resolution desired, and other factors.
Using more advanced controllers on available commercial
AFMs has shown that raster scan rates of over 100 Hz
are achievable [24], [25]. Thus, a 128 × 128 pixel image
would take 128 s to 12.8 s to acquire using commercially
available AFMs, and it would only take 1.28 s to acquire
using AFMs that are on the horizon equipped with more
advanced controllers.

The imaging time when using a smaller number (10% to
20%) of samples can be computed approximately as follows:

tsamples = m×
(
tzup + txy + tzdown + tmeas

)
. (6)

Here, m is the number of points measured, tzup is the average
time needed to move the AFM tip away from the sample in
the z direction after each measurement, txy is the average
time to move to the next (pre-selected) measurement point,
tzdown is the average time needed to move the AFM tip to the
sample in the z direction before each measurement, and tmeas
is the time needed to measure the height at each point.

How large tzup is depends upon the expected sample
topology. Using a 1st-order fit to the identified transfer
function model of the z-direction dynamics of a piezoelectric
tube scanner in [26] yields

Gz(s) =
g

s+a

where g = 4.5127× 105 and a = 1.5534× 104. This 1st-
order fit provides a good match to the measured dynamics
up to approximately 104 rad/sec. The time-optimal rest-to-
rest motion control for this 1st-order system can be easily
computed [27] to consist of one pulse that leads to a
maneuver time of

tzup =
−1
a

ln

 1

1+ a|z0|
g

 ,

where |z0| is the distance moved. This leads to a tzup of 2 to
150 µs for motions of 1 nm to 250 nm in the z-direction.

After lifting the tip off the sample in a time tzup , we
also assume a time-optimal motion in the x-y direction to
the next measurement point. A simplified 2nd-order fit to
the identified transfer function model for the x-direction
dynamics of an AFM x-y stage [24] is

Gx(s) =
K

s2 +2ζ ωs+ω2 ,

where K = 1.8276× 107, ω = 2π(3.175× 102) = 1.9949×
103 rad/s and ζ = 0.6402. This 2nd-order fit provides a good
match to the measured dynamics up to approximately 2×103

rad/sec. For this AFM x-y stage, the y direction has similar
dynamics that are relatively decoupled to the x direction. The
time-optimal control for a 2nd-order system with complex
conjugate poles can be computed as discussed in [23]. As a
result, the minimum maneuver time txy can be upper bounded
by 4.1 ms and 1 ms for moves of less than 15.7 and 1 µm,
respectively.

The average tzdown time is necessarily greater than the
average tzup time since care must be taken to approach and

detect contact carefully so as not to damage the sample (or
the AFM tip). Here, we will assume that the average tzdown
is 5 times tzup . Finally, tmeas = 0.5 ms is a sufficient amount
of time to measure the height at each measurement point.

In Sec. IV, we apply the CS approach to two samples,
a grating and DNA. For the grating sample considered in
Fig. 1, we then have

tzup ≈ 150µs for 250 nm motion up in z,

txy10 ≈ 1.25 ms for 1.5 µm average motions in x-y
for 10% sampling,

txy20 ≈ 0.8 ms for 0.75 µm average motions in x-y
for 20% sampling,

tzdown ≈ 750 µs.

Hence, when the image is 128 × 128 pixels, applying (6)
for 10% sampling (or 1,638 samples) and 20% sampling (or
3,277 samples), we have

t10%samples,grating ≈ 4.34 s

and
t20%samples,grating ≈ 7.21 s.

For the DNA sample considered in Fig. 3, we would then
have:

tzup ≈ 2µs for 1 nm motion up in z

txy10 ≈ 0.1 ms for 25 nm average motions in x-y
for 10% sampling

txy20 ≈ 0.09 ms for 12.5 nm average motions in x-y
for 20% sampling

tzdown ≈ 10µs

Again, applying (6) for 10% and 20% sampling of a 128 ×
128 pixel image yields

t10%samples,DNA ≈ 1.00 s

and
t20%samples,DNA ≈ 1.97 s.

While these are only approximate calculations, they show
that the imaging time when using the 10% to 20% sampling
approach is comparable and will likely not be shorter than
‘fast’ raster scan methods that have been achieved in many
research labs. The primary benefit of the reduced sampling
approach, then, is minimizing the interaction with the sam-
ple. In the standard raster scan, the tip essentially interacts
with the sample everywhere. Further, even in tapping mode
the instrument applies shear forces that make imaging soft
samples challenging and that can damage fragile samples.
Under this scheme, there are no lateral forces applied as the
tip is brought directly down upon the sample. Further, the
approach phase can be carefully controlled to minimize the
applied normal force.

The CS scheme can also be applied directly to other
imaging applications in AFM, including force mapping and
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(f) Line scan

Fig. 1. Grating sample results using 20% of the pixels. (a) The full raster-scan image is filled with the regular pattern of the grating. (b) Reconstruction
using the relaxed TV optimization problem (see Sec. II-B). (c) Reconstruction using the relaxed `1 optimization problem. (d) The pixels used in the CS
reconstruction are shown in white and are randomly distributed. (e) An interpolation from the samples using Delaunay triangulation. (f) Line scans from
the line indicated in red on images (a-c,e).

magnetic force microscopy. In these settings, the tip is
typically moved from point to point along a regular grid,
engaging the tip at each point and either measuring the
force curve, or measuring the height and then withdrawing
to measure the magnetic response. Since the measurements
already involve the approach and withdraw process, the CS
approach will reduce the measurement time by exactly the
fraction of measurements acquired.

IV. SIMULATIONS

To illustrate the CS approach, simulations with two sam-
ples were performed. The first sample was a grating provided
by the Altug lab at Boston University. The grating was
imaged in contact mode using an Agilent 5500 with a
resolution of 128 × 128 pixels (see Fig. 1a). The grating was
a regular pattern that filled the entire image. The image was
imported into Matlab and a random collection of 20% of the
pixels was sampled. An image of the same size as the original
was then reconstructed using either the relaxed `1 problem in
(4) (shown in Fig. 1c) or a variant of the TV (gradient based)-
problem as in (5) but with relaxed constraints to account
for noise in the measurements (shown in Fig. 1b). Both
algorithms were solved using the solvers in the `1 Magic
collection [28]. The pixels used in both reconstructions are
Shown in Fig. 1d. Note that since the sampling for the CS

approach was done in Matlab based on the original image,
there were no dynamics involved in the measurement process
and thus we do not have an equivalent imaging time.

While the `1–based reconstruction is clearly poor, the
TV–based reconstruction does a good job at recovering
the image. The primary error is found on the edges and
likely arises from a small instability due to the size of the
gradient filter implemented in `1 Magic. Away from the
edges, the reconstruction clearly captures both the edges and
the relatively flat areas of the sample. This is particularly
clear from the line scan (at the indicated line in each of the
reconstructions) shown in Fig. 1f.

While the CS approach produces a good image, the
optimization step is computationally intensive. A rational
alternative to building an image based on a nonraster col-
lection of data is to interpolate the results. As a comparison,
then, we created an interpolated image based on Delaunay
triangulation, shown in Fig. 1e. While the grating is easily
discernible, the image is clearly of lower quality than the
reconstruction in Fig. 1b, especially with respect to high
spatial frequencies.

Finally, we also considered for comparison a smooth
sampling pattern represented by a spiral scan as illustrated in
Fig. 2a. In practice one might use a circular spiral (as in [29])
but since the data was already given as a collection of pixels,
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the square pattern was adopted. While such a scan pattern is
likely to be coherent with respect to the image and thus to
not satisfy the conditions in CS for accurate reconstruction,
the path is easy for the tip to follow and the scan times are
directly reduced by the reduction in total scan length. Note
that the total number of pixels sampled along the scan pattern
was again 20% of the original 16,384 samples.

An image, shown in Fig. 2b, was reconstructed from
the samples using the gradient-based variant. While the
reconstructed image is good in the center, the edges of the
image are much poorer than in the randomly sampled case.
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Fig. 2. Grating sample results using a spiral scan with 20% of the original
pixels based on spiral scan. (a) The spiral scan superimposed on the original
image. (b) The reconstruction based on the modified TV–problem.

The second example is based on an AFM image of DNA.
The original image, shown in Fig. 3a, was acquired using an
Asylum Research MFP-3D in intermittent contact (tapping)
mode. Unlike the grating, this sample is visually sparse since
most of the image is of substrate. As before, the image
was imported into Matlab, a random sampling of pixels was
chosen (shown in Fig. 3d), and two reconstructions were
performed. A Delaunay triangulation based on the data was
also created (shown in Fig. 3e).

Despite the sparsity of the sample, the results are quite
similar to the grating example. The TV–based image is
visually quite good, though the instability in the gradient
filter is more predominant, due perhaps to the fact that
the sample height is much smaller than with the grating.
The `1–based image is still poor, though the rough outline
of the DNA is visible. The Delaunay triangulation is also
reasonable, though it blurs the image significantly.

V. CONCLUSION

In this paper we have described a CS approach to AFM
imaging. Using a random sampling of pixels across the
sample, a good reconstruction of the image can be created
using only a small fraction of total pixels desired. While the
need to engage and withdraw the tip of the instrument at
every measurement location leads to a total sampling time
that is roughly equivalent to a fast-AFM raster scan, the
method allows for much less interaction with the sample and
lower forces through optimized engaging. Furthermore, when
applied to applications such as force mapping, the scheme
can yield significant reductions in imaging time.
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region. (b) Reconstruction using the relaxed TV optimization problem (see Sec. II-B). (c) Reconstruction using the relaxed `1 optimization problem. (d) The
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