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Abstract— In this paper, we present a high-level feedback
control algorithm for rapid imaging in atomic force microscopy
(AFM). This algorithm is designed for samples which are
string-like, such as DNA and biopolymers. The tip control of
the microscope is performed in real-time while probing the
unknown sample based on feedback from the tip and a model
of the sample. This model is continually updated based on the
measurements. To avoid exciting unwanted dynamics in the
AFM system, the tip is steered at a constant velocity along
a sinusoidal trajectory whose average is the estimate of the
sample curve. We discuss the advantages of the algorithm and
some of the challenges which must be overcome to make this
technique a viable approach to AFM imaging.

I. INTRODUCTION

In this paper we present a method for the rapid imaging of
string-like structures using an atomic force microscope. Data
being measured by the tip of the microscope are used in real-
time to estimate parameters of the model of the sample curve.
This estimated model is then used to steer the tip such that it
remains in the vicinity of the sample. As a result the overall
imaging time is greatly reduced by reducing the total area
that needs to be imaged. This work builds upon earlier efforts
of one of the authors and proposes a smooth trajectory for
the tip to avoid exciting unwanted dynamics in the actuators.

Atomic force microscopy (AFM) is one of the most versa-
tile tools for studying systems with nanometer-scale features.
It is particularly interesting to controls engineers in that its
operation depends entirely on a feedback loop [1]. Images
are built pixel-by-pixel through a raster-scan and typically
take on the order of a few seconds to minutes to acquire. In
recent years, the technology has been used with increasing
prevalence to study dynamic phenomena in systems with
nanometer-scale features. The standard approach is time-
lapse imaging in which a sequence of images is acquired
and then processed to extract information about the motion.
While the method has been used successfully to study a
variety of phenomena in molecular biology (e.g. [2], [3])
and materials science (e.g. [4], [5]), the achievable time-scale
is far slower than that of many important phenomena. This
severely restricts the applicability of the approach.

Researchers are pursuing several techniques to improve
the temporal resolution of AFM. These include tuning the
components of the microscope to improve performance [6],
novel mechanism designs [7], [8] and actuation schemes [9],
and the use of modern control theory to increase the scanning

speed while maintaining image quality [10]–[12]. For recent
reviews of the control issues and approaches, see [13], [14].

Our approach is both novel and complementary to other
high-speed AFM techniques. Our general methodology is
to take advantage of a priori knowledge about the sample
of interest to develop feedback control laws which replace
the raster scan with a more efficient sampling scheme. Non-
raster methods can be found in a wide variety of engineering
disciplines where a short-range or point sensor is used to
collect data [15]. In prior work we introduced a string
scanning technique in which the tip was steered along short
line segments transverse to the string-like sample. Using the
Frenet-Serret framework for the spatial evolution of a curve,
the evolution of the curve was predicted based on current
measurements.The resulting control law kept the tip in the
vicinity of the sample, greatly reducing the time to acquire
the image [16]. However, the short line segments require
rapid acceleration of the tip since it must be brought to a full
stop at the end of every segment. This can excite unwanted
higher modes of the actuators and the tip-sample system,
leading to errors in the tip trajectory, lower-quality images,
and severe limitations on the imaging speed.

In this work we propose a smooth tip trajectory to replace
the short line segments. The tip is moved at constant velocity
along a sinusoidally varying curve. The spatial frequency of
this curve determines the spatial resolution of the resulting
image of the sample. To ensure that the tip tracks the sample,
the mean of the tip trajectory is set to be the estimated curve
representing the sample. This estimate is continually updated
in real-time based on data measured by the microscope. The
rest of this paper is organized as follows. In the next section
we detail the tip trajectory. The algorithm to estimate the
curve representing the sample is presented in Section III
while the advantages of the approach and challenges that
need to be overcome are described in Section IV.

II. A TRAJECTORY FOR SMOOTH SCANNING

We are interested in samples which are well-modeled
as planar curves. Examples include a variety of biological
poymers such as actin, DNA, and microtubules, as well as
materials such as carbon nanotubes and nanowires. Typically
the curve would represent the centerline of the sample but it
may be used to represent the boundary of a sample as well.
The spatial evolution of a curve in the plane can be described
using the Frenet-Serret frame [17]. Under this model, the
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curve is given by
dxd(s)
ds

= q1(s), (1a)

dq1(s)
ds

= κ(s)q2(s), (1b)

dq2(s)
ds

= −κ(s)q1(s). (1c)

Here xd(s) is the position vector with respect to a fixed frame
to the point on the curve at arclength s, q1(s) is the tangent
vector at s, q2(s) the normal vector at that point, and κ(s) is
the curvature. As discussed in Section IV, the rate of change
of the curvature is assumed to be slow relative to the spatial
sampling rate defined by the imaging scheme given by (2)
below.

Motivated by the goal of reducing the time to image
the sample, we want to avoid wasting time acquiring data
unrelated to the sample. To achieve this, we propose to steer
the tip along a trajectory which remains in the vicinity of
curve. One such curve is given by

xtip(s) = xd(s) +A sin(ωs)q2(s). (2)

Here A is a parameter defining the amplitude of the scanning
and ω is the spatial frequency of oscillation. The parameter
A is analogous to the length of a single scan line under the
standard raster-scan approach while ω determines the spatial
resolution of the resulting image. The curve xd is the desired
average trajectory, namely the underlying sample curve, and
s is the arclength parameter of that curve. As discussed in
Section III, this curve can be estimated using only recent
measurements of the tip. In Figure (1) we illustrate the
trajectory defined by (2) for a circular path.

Fig. 1. Example of the tip trajectory along a circular path. The trajectory
is defined by (2) where xd(s) is the circle. The parameters were set to
A = 0.2 units and ω = 10 radians/unit.

In order to steer the tip in an actual instrument, this
trajectory must be defined in terms of time, not as a function
of the arclength of the (unknown) sample curve,

xtip(t) = xd(s(t)) +A sin(ωs)q2(s(t)). (3)

We must therefore determine the relationship between the
arclength parameter and time.

In order to avoid exciting unwanted dynamics in the
actuators and the tip-sample system, it is important to keep
the motion of the tip of microscope as smooth as possible.
To achieve this, we choose a constant speed for the tip,
vtip = ‖ẋtip‖ where ‖ · ‖ is the standard Euclidean norm.
From (2), the time derivative of tip position is

ẋtip(t) =
(
dxd(s(t))

ds
+

Aω cos(ωs(t))q2(s(t)) +A sin(ωs(t))
dq2(s(t))

ds

)
ṡ. (4)

where ˙ indicates the derivative with respect to time. Using
the relationship from (1), and taking the Euclidean norm of
(4), the speed of the tip in terms of s and t is given by

vtip = ṡ
√

(1−Aκ sin(ωs))2 +A2ω2 cos2(ωs). (5)

Define f(s) by

f(s) =
√

(1−Aκ sin(ωs))2 +A2ω2 cos2(ωs).

Integrating (5) under the assumption that the velocity is
constant, we find

vtipt =
∫ s

0

f(σ) dσ (6)

Since the curvature is assumed to be slowly-varying, we
may take it to be constant over small ranges of s and,
by extension, t. We must then consider two cases, κ = 0
and κ 6= 0. When the curvature is zero, that is, when
the underlying path xd is a straight line, f(s) reduces to√

1 +A2ω2 cos2(ωs). Solving (6) yields the relationship
between time and arclength to be

t =
√

1 +A2ω2

vtipω
E(ωs,

Aω√
1 +A2ω2

). (7)

where E is the incomplete elliptic integral of the second kind
defined as

E(φ, k) =
∫ φ

0

√
1− k2 sin2(x) dx.

When κ 6= 0, the solution for xtip must be obtained by
integrating (6).

In order to use this approach to steer the tip, the current
arclength must be determined from the current value of t
by inverting the relationship given by (6). In Figure 2, we
show two examples of the resulting relationship between time
and arclength, one for the case of zero curvature and one
for the case of nonzero curvature. In this example, the scan
amplitude A was set to 2 units, the scan frequency ω was
set to 4 rads/unit, and the tip speed was set to 1 unit/sec.
The inversion can be done off line and the results stored in
a look-up table.
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Fig. 2. Relationship between arclength s and time t for κ = 0 and κ = 0.2.
To implement the desired tip trajectory defined by (3), the arclength s must
be determined given the current time by inverting this relationship.

III. ESTIMATING THE SAMPLE PATH

The path xd(·) of the sample is of course not known a
priori. However, using the equations for the spatial evolution
of the curve as given by (1), this path can be estimated at
least locally if the current position state and the curvature
are known. Assuming that the curvature is slowly changing
with respect to the spatial frequency defined by ω, we may
take the curvature to be constant between two subsequent
crossings of the sample by the tip (see Figure 1). We can
then propagate the estimate of the sample curve using the
current state and curvature according to the Frenet-Serret
frame model and thereby steer the tip according to (2). Upon
the next intersection with the sample, the state of the model
and the curvature are updated and the process is continued.

The model is updated after every crossing of the tip trajec-
tory and the sample curve. In what follows, we introduce a
subscript k to indicate the instance of the kth such crossing.
In between crossings the curvature estimate, κ is assumed to
be constant while the position xd, tangent q1, and normal q2
are evolved according to the Frenet-Serret frame model.

The estimation process described below has been dis-
cussed previously in [16], [18] and thus only an overview
is given here.

A. Estimating the state xd, q1, and q2

The position xd is updated according to the measured
point of intersection with the sample. This measurement can
be obtained from the height data of the tip under contact
mode imaging, from the amplitude data under AC mode
imaging, or from any signal dependent on the tip-sample
interaction. One approach involving a maximum likelihood
estimator to compensate for noisy measurements is described
in [16]. An alternative approach for rapid detection of this
intersection based on the innovations process of a Kalman
filter is described in [19].

To estimate the current tangent and normal vectors, we
introduce a heading direction θ with respect to the global
frame, and relate this to the Frenet-Serret frame according
to

q1 =
(

cos(θ)
sin(θ)

)
, q2 =

(
− sin(θ)
cos(θ)

)
.

The current value of θ is determined using the last two
scanned measurement points from a simple Euler approxi-
mation

θk = tan−1(
[xmk−2]2 − [xmk−1]2
[xmk−2]1 − [xmk−1]1

). (8)

Here xm denotes the measured (scanned) points. While it
is certainly possible to develop more accurate estimators, it
is reasonable to assume that the step size along the sample
will be small enough such that this first-order approach is
sufficiently accurate.

The curvature κ is estimated using Heron’s formula [20].
Let A,B,C be three successive and nearby points on a curve
and let a, b, c denote the Euclidean distances between the
points (see Figure 3). The radius of curvature of the circle
is given by

κ(A,B,C) = ±4

√
l(l − a)(l − b)(l − c)

abc
(9)

where l = 1
2 (a+ b+ c) is the semi-perimeter of the triangle.

The estimate of the curvature of the string at the point
xmk is given by (9) where the points A,B,C correspond
to xmk−2, xmk−1, and xmk. The sign is taken to be positive
if the cosine of the angle between the vector connecting the
points xmk−1 and xmk and the normal vector is positive (so
that the normal vector points ”inside” the curve.

Fig. 3. The curvature is estimated by using Heron’s formula for the circle
defined by the three most recent measured points on the curve.

Noise in the measurement of the height and lateral position
of the tip propagate through these estimators. Furthermore
because the heading direction is estimating a derivative and
the curvature a second-order derivative, any such noise is
amplified. Noise may also be introduced through numerical
error when inverting the relationship between time and
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arclength. As discussed in [16], the effect of these noise
processes can be mitigated through the use of a Kalman filter
on the estimators.

B. Scan initialization

To initialize the scan, a standard raster-scan approach
is performed until an intersection with a sample curve is
detected. To determine the initial heading direction, the tip
is scanned along a circle centered at this intersection point
until the curve is intersected again. With these first two points
the heading direction can be estimated according to (8) and
the algorithm begun under the assumption of zero curvature.
So long as the spatial frequency of the tip trajectory is high
relative to the true curvature, the tip will once again cross the
sample. With three points the true curvature can be estimated
according to (9).

C. Algorithm summary

Algorithm 3.1: Curve tracking with smooth tip trajectory
0. Initialize: A raster scan is performed to find the start

of the underlying curve followed by a circular search
to determine the initial heading direction θ. The initial
curvature is set to 0.

1. Update tip trajectory: Steer the tip according to (3)
until another intersection is detected.

2. Estimate parameters: Determine xmk from the point
of intersection, estimate θk and κk according to (8)
and (9) and filter.

3. k → k + 1 and go to 1.

Although not explicitly considered here, we note that the
parameters A and ω can be modified according to the model
estimate. For example, the spatial frequency can be made
small in regions of small curvature to move the tip rapidly
along relatively uninteresting segments of the sample and
large in regions of high curvature to increase the spatial
resolution in particularly interesting regions. The amplitude
A may be set larger if the knowledge of the curve evolution is
less certain, thereby giving a larger “search” range to ensure
intersection or made very small to decrease to path length of
the tip trajectory, thereby reducing the overall imaging time.
Further issues related to these scan parameters is discussed
in the following section.

An example trajectory resulting from this algorithm is
shown in Figure (4). In this simulation the underlying curve
(drawn in blue) is not know a priori but is estimated as
described above. On the figure, the tip trajectory is dotted in
black while the red circles highlights the intersection points.
All length scales are normalized to a reference unit. The
figure indicates the effect of varying the parameters A and
ω.

IV. DISCUSSION

The goal of this work is to develop algorithms for the
rapid imaging of string-like samples through non-raster ap-
proaches. In this section we discuss some of the challenges
which will need to be overcome as the work progresses from
the initial concept presented here to a useful imaging tool.

Fig. 4. Example result of the scanning algorithm. In this image the
unknown true curve xd is indicated in blue and the tip trajectory in black.
The points of intersection are shown in red. Based on these intersections, the
state of the curve model and the curvature are estimated and then updated
according to the Frenet-Serret frame equations. The tip trajectory shown has
different regions which illustrate the effect of varying the scan parameters
ω and A.

When images are generated from a raster scan, the
underlying sample grid has evenly spaced samples. This
makes interpretation of the surfaces generated from the
scans straightforward. However data acquired from non-
raster methods are not uniformly spaced. As a result there
is a need to interpolate the data to produce an image. While
a variety of techniques exist, including triangularization and
Kriging, there is no universally accepted or all-purpose tool.
More research is needed to understand how to create accurate
images from noisy, non-raster data. For further comments,
see [15].

Both the nonlinear interaction of the tip and the sample as
well as the measurement noise will have a large impact on
this imaging technique. Due to the nonlinear characteristics
of the tip-sample system, the estimate of the location of the
sample when the tip moves across the sample curve in one
direction will not exactly match the estimate as the tip moves
across the sample in the opposite direction. This will give rise
to a small but periodic “dither” in the estimates. Similarly,
measurement noise will cause errors in this estimate. These
errors will propagate through to the estimates of the heading
direction and curvature. So long as these errors are small,
it can be expected that the stable nature of the system will
allow the underlying curve to be tracked. However, they will
give rise to relatively large shifts in the normal direction q2.
Because this direction directly influences the tip trajectory,
the commanded path of the tip will become more complex.
This is illustrated in Figure 5. In this image, a small error
in the estimation of the intersection is introduced, giving
rise to interesting variations in the sinusoidal trajectory.
While these effects can be mitigated somewhat through
appropriate filtering, especially the contribution coming from
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measurement noise, it is to be expected that a thorough
understanding of these issues will aid in designing schemes
to reduce their influence.

Fig. 5. Effect of estimation error on the scan trajectory. Due to noise and
nonlinear tip-sample interactions, the estimated position of the intersection
of tip trajectory and the sample curve will have some error. Because the
heading direction and curvature are determined from a sequence of these
positions, the error will propagate and be amplified through the estimates
of these parameters and will thus have a direct effect on the tip trajectory.
As shown here, a small error in the estimate gives rise to a “wobble” of the
tip trajectory. Despite this wobble, a fairly uniform sampling of the curve
is achieved.

As discussed above, the choice of ω defines the spatial
resolution of the scan while the choice of A defines the
spatial extent of the scan. However, these parameters can-
not be selected completely independently of the underlying
curvature or the rate of change of curvature. There are two
possible errors which can arise from a mismatch between
the sample and the parameters. In the first, a large or rapidly
varying curvature may bend the curve in such a way that the
tip crosses the sample farther along than the distance defined
by ω. This is illustrated in Figure 6. In this case, a “jump”
along the sample occurs and a region of the sample will not
be imaged at all. While it may be possible to detect such
an event, perhaps by monitoring the phase of the sinusoid at
which the intersection occurs, in general the system will be
unaware that such a jump occurred and thus the generated
image will be false. This event can be prevented by adapting
the amplitude and spatial frequency to the curvature of the
sample. How such an adaptation would be performed remains
an open question.

The second possibility is that the sample curve can bend
away from the tip trajectory fast enough so that no inter-
section occurs. In this case the sample will be lost entirely,
as illustrated in Figure 7. Once again, proper choice of the
amplitude and spatial frequency can prevent this event.

Finally, the trajectories produced by the algorithm intro-
duced here are quite different from the standard raster-scan
pattern. As a result, one must consider the capabilities of the
actuation system to steer the tip along these paths. One of the

Fig. 6. Large curvatures or rapid changes in curvature can give rise to
undesired intersections. As shown in the figure, if the amplitude of the scan
is too large with respect to the curvature and rate of change of curvature,
the tip trajectory may intersect the sample at an undesired position, leading
to a skip of a section of the sample.

Fig. 7. Large curvatures or rapid changes in curvature can lead to a miss
of the sample. If the spatial frequency (and amplitude) are too small with
respect to the curvature or rate of change of curvature, it is possible that the
tip trajectory will not intersect the sample at all. Under this event imaging
will be halted.

most common actuators is the three-degree-of-freedom piezo
tube as developed by Binnig and Smith [21]. Because such a
scanner has similar mechanical properties in the two lateral
directions, it is particularly well-suited for the trajectories
generated by the approach discussed in this paper. However,
the lateral directions are not commonly provided with sensors
and are therefore controlled in an open-loop mode. However,
with the arbitrary trajectories necessary for the non-raster
approach, a feedback control approach is essential to mitigate
the effect of measurement noise on the path estimation.

An alternative approach is the use of a separate x-y scanner
based on a frame-within-a-frame design. This scheme mini-
mizes physical coupling between the different directions and
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typically includes sensing on the lateral position. However,
the stage is often asymmetric. With the standard raster-scan
approach, this asymmetry can be taken advantage of by using
the lower-mass axis as the fast-scan direction. Under the non-
raster approach, the overall system would be limited in speed
by the slower of the two axes.

Advanced control schemes motivated by the need for
high-speed AFM will likely also be useful when developing
controllers for accurate tracking of the desired tip trajectory.
An overview and discussion of these approaches can be find
in [13]. While still in the research phase, new designs of
actuation systems for high-speed AFM are symmetric and
include accurate sensing on the lateral position [8]. Such
systems may be particularly relevant to non-raster methods.
For further discussion of actuation schemes in AFM, see [1].

V. CONCLUSIONS

In this paper we have proposed an algorithm for the
rapid of imaging of string-like samples using atomic force
microscopes. The approach builds upon prior work of one of
the authors and introduces a smooth trajectory for the micro-
scope tip. Such a trajectory will allow the tip to be moved at a
constant speed throughout the imaging process, avoiding the
excitation of unwanted dynamics in the actuators. This will
allow the tip to be moved at higher speeds while maintaining
tracking accuracy along the desired path. We have outlined
several challenges that need to be overcome in order that this
approach can be a viable method for fast imaging in AFM.
Our ongoing work is addressing these issues.
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