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+ Two-step reduction of pyruvate to ethanol
» Humans do not have pyruvate decarboxylase.

* Humans express alcohol dehydrogenase for ethanol metabolism, but is
largely used in the reverse reaction, then aldehyde dehydrogenase takes it
to acetate (recall the different forms with different K, values for why some
people get flush).

+ Both steps require cofactors.

— pyruvate decarboxylase: Mg*+ and thiamine pyrophosphate (TPP)
— alcohol dehydrogenase: Zn** and NAD*
+ CO, produced in the first step is responsible for:
— carbonation in beer
— dough rising when baking bread
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Humans are missing
the gene for this
enzyme.
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Pyruvate
Oxidation

ONLY when O, is present

* This is why its called cellular respiration.
* The end result will be the COMPLETE
oxidation of carbon to CO,

Pyruvate Oxidation
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Pyruvate Oxidation
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Occurs in three major
+Process in which cells consume O, and produce CO, stages:

+Provides more energy (ATP) per glucose than
glycolysis

*Process is slower than glycolysis

* Evolutionary origin: developed about 2,500 mya

*Used by animals, plants, and many microorganisms

1) Pyruvate oxidation (acetyl
CoA production)

2) acetyl CoA oxidation (CO,
production)

3) electron transfer and

+ Other fuel sources (lipids and AA) converge on

oxidative phosphorylation
respiration. P phory

(H,O production)

Pyruvate Oxidation

Localization: In Eukaryotes, Respiration is
Localized to the Mitochondria (Compartmentation)

« Glycolysis occurs in
the cytoplasm.

Mitochondria

* Pyruvate Oxidation
and Citric Acid Cycle
occurs in the
mitochondrial matrix.t

+ Fantastic example of
Compartmentation.

+ Oxidative
phosphorylation
occurs in the inner
membrane.

fExcept succinate dehydrogenase,
Wwhich is located in the inner
Imembrane
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* Net reaction: Pyruvate Acetyl-CoA

— oxidative decarboxylation of pyruvate
» Means pyruvate will get oxidized as the carboxylate leaves (as CO,)

— first carbons of glucose to be fully oxidized (C3 & C4)

Fairly simple reaction done by a complicated process.
Highly thermodynamically favorable/irreversible (AG*'=-8
kcal/mol); mostly due to the loss of CO,

Catalyzed by the Pyruvate Dehydrogenase Complex (PDC)
— Three main enzyme, each with multiple subunits: =1, E2, E3
Regulatory subunits: PD kinase & PD phosphatase
Overall structure of , E254, E354
requires 5 coenzymes
TPP, lipoic acid, and FAD are prosthetic groups.
NAD+ and CoA-SH are co-substrates.
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