

TABLE 11-7a Transport Systems Described Elsewhere in This Text					
Transport system and location	Figure	Role			
IP3-gated Ca2+ channel of ER	12-11	Allows signaling via changes in cytosolic [Ca2+]			
Glucose transporter of animal cell plasma membrane; regulated by insulin	12-20	Increases capacity of muscle and adipose tissue to take up excess glucose from blood			
Voltage-gated Na ⁺ channel of neuron	12-29	Creates action potentials in neuronal signal transmission			
Fatty acid transporter of myocyte plasma membrane	17-3	Imports fatty acids for fuel			
Acyl-carnitine/carnitine transporter of mitochondrial inner membrane	17-6	Imports fatty acids into matrix for β oxidation			
Complex I, III, and IV proton transporters of mitochondrial inner membrane	19-16	Act as energy-conserving mechanism in oxidative phosphorylation, converting electron flow into proton gradient			
F_0F_1 ATPase/ATP synthase of mitochondrial inner membrane, chloroplast thylakoid, and bacterial plasma membrane	19-25, 20- 20a, 20-24	Interconverts energy of proton gradient and ATP during oxidative phosphorylation and photophosphorylation			
Adenine nucleotide antiporter of mitochondrial inner membrane	19-30	Imports substrate ADP for oxidative phosphorylation and exports product ATP			
Pi-H+ symporter of mitochondrial inner membrane	19-30	Supplies Pi for oxidative phosphorylation			
Malate-a-ketoglutarate transporter of mitochondrial inner membrane	19-31	Shuttles reducing equivalents (as malate) from matrix to cytosol			
Glutamate-aspartate transporter of mitochondrial inner membrane	19-31	Completes shuttling begun by malate-a- ketoglutarate shuttle			

Membrane Transport				
TABLE 11-7b Transport Systems Desc.	ribed Else	where in This Text		
Transport system and location	Figure	Role		
Uncoupling protein UCP1, a proton pore of mitochondrial inner membrane	19-36, 23- 35	Allows dissipation of proton gradient in mitochondria a means of thermogenesis and/or disposal of excess fuel		
Cytochrome <i>bf</i> complex, a proton transporter of chloroplast thylakoid	20-19	Acts as proton pump, driven by electron flow through the Z scheme; source of proton gradient for photosynthetic ATP synthesis		
Bacterorhodopsin, a light-driven proton pump	20-27	Is light-driven source of proton gradient for ATP synthe in halophilic bacterium		
Pi-triose phosphate antiporter of chloroplast inner membrane	20-42, 20- 43	Exports photosynthetic product from stroma; imports Pa for ATP synthesis		
Citrate transporter of mitochondrial inner membrane	21-10	Provides cytosolic citrate as source of acetyl-CoA for lipid synthesis		
Pyruvate transporter of mitochondrial inner membrane	21-10	Is part of mechanism for shuttling citrate from matrix to cytosol		
LDL receptor in animal cell plasma membrane	21-41	Imports, by receptor-mediated endocytosis, lipid-carryin particles		
Protein translocase of ER	27-40	Transports into ER proteins destined for plasma membrane, secretion, or organelles		
Nuclear pore protein translocase	27-44a	Shuttles proteins between nucleus and cytoplasm		
Pastarial protain transporter	27-46	Exports secreted proteins through plasma membrane		

CATABOLISM

Glucose Utilization:

- Storage
 - can be stored in the polymeric form (starch, glycogen)
 - used for short-term energy needs
- Energy production
 - generates energy via oxidation of glucose
- Production of NADPH and pentoses
 - generates NADPH for use in relieving oxidative stress and synthesizing fatty acids, amino acids, etc. (anabolism)
 - generates pentose phosphates for use in DNA/RNA biosynthesis
- Structural carbohydrate production
 - used for generation of cellulose and chitin
 - used for generation of alternate carbohydrates used in cell walls of bacteria, fungi, and plants

Glycogenolysis must deal with Branch Points in Glycogen

Nonreducing (α16) ends linkage	• Glycogen phosphorylase works on nonreducing ends until it reaches four residues from an ($\alpha 1 \rightarrow 6$) branch point.
Glycogen	• Debranching enzyme has two activities; a glycosyltransferase and a glycosidase
Glucose 1-phosphate	 Debranching enzyme transfers a block of three residues to the nonreducing end of the chain.
Debranching enzyme (a16)	 Debranching enzyme hydrolyzes the single remaining (α1→6)-linked glucose, which becomes a free glucose unit (i.e., NOT glucose 1-phosphate).
glucosidase activity of debranching enzyme	• The Glc enters glycolysis, but the Glc 1-P must be converted to the glycolytic
Unbranched (α1→4) polymer; substrate for further phosphorylase action	• How?

Clinical Correlations

Facilitative Diffusion

Aquaporins are important in the kidney nephron. Here water reabsorption is critical for maintaining water balance.

 Loss of these aquaporins leads to NDI (nephrogenic diabetes insipidus), hypokalemia, and hypercalcemia.

Fructose malabsorption arises from a number of known and unknown causes.

• One known cause is loss of **GLUT-5**, the facilitative diffusion transporter specific for fructose

Dr. Kornberg's "Giraffe" story