Biochemistry II (BB 422/622)

OUTLINE

Review of 421
Goals of 422
Review of chemical principles
Thermodynamics & ENERGY
C/O cycles
Overview of Metabolism
ATP cycle
Energy Coupling
Chemical Reactivity

Bioenergetics
Membranes and Transport

Chemical Reactivity

First, we mentioned the typical type of bond cleavage and kinds of nucleophiles and electrophiles commonly used by the cell in biochemical reactions

Most biochemical reactions fall within only a few categories:

- Cleavage and formation of C–C bonds
- ·Cleavage and formation of polar covalent bonds
 - -Nucleophilic substitution mechanism
 - -Addition-elimination mechanism
 - o Hydrolysis and Condensation reactions
 - o Eliminations (without cleavage)
- Internal rearrangements
- •Group transfers (H+, CH₃+, PO₃²⁻)
 - -Nucleophilic substitution mechanism
- •Oxidations-reductions (e⁻ transfers)

Chemical Reactivity

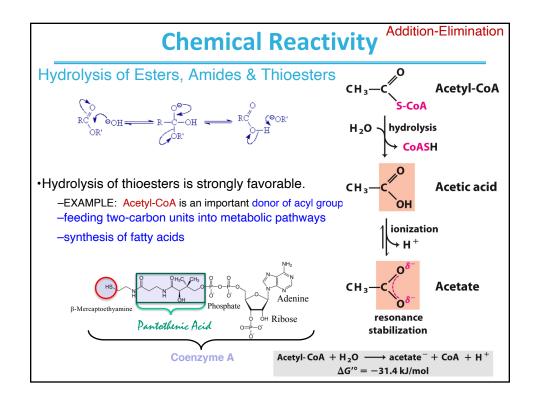
C-C bonds

Examples of Nucleophilic Carbon-Carbon Bond Formation and Cleavage Reactions

Aldol condensation

Acetyl-CoA
$$\downarrow 0$$
 $\downarrow 1$ $\downarrow 1$

Claisen ester condensation


$$R - C - C - C - H + CO_{2}$$

$$H \rightarrow R - C - C - H + CO_{2}$$

Decarboxylation of a β -keto acid

Nucleophilic Substitution & Addition-Elimination

- Substitution from sp³ carbon proceeds normally via the nucleophilic substitution (S_N1 or S_N2) mechanism.
- Substitution from the sp² carbon proceeds normally via the nucleophilic addition elimination mechanism.
 - nucleophile adds to the sp² center, giving a tetrahedral intermediate
 - leaving group eliminates from the tetrahedral intermediate
 - leaving group may pick up a proton

Group Transfers

- · Proton transfer, very common
- · Methyl transfer, various biosyntheses
- · Acyl transfer, biosynthesis of fatty acids
- · Glycosyl transfer, attachment of sugars
- · Phosphoryl transfer, to activate metabolites
 - also important in signal transduction
 - proceeds through a nucleophilic substitution mechanism

Sometimes called "bi-pyramidal"

Example of ATP hydrolysis Z = R - OH (nucleophile) W = ADP (leaving group)

Substitution from sp³ phosphorous proceeds via the nucleophilic substitution (usually associative, S_N2-like) mechanism.

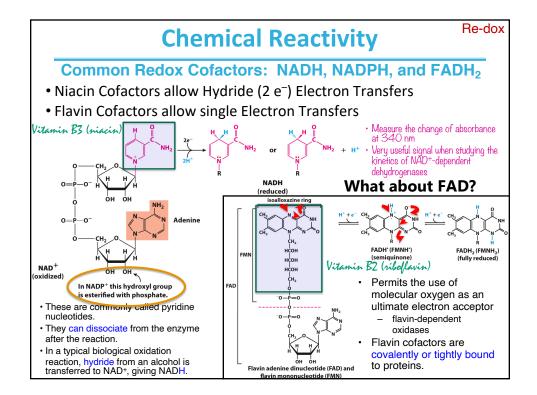
The nucleophile forms a partial bond to the phosphorous center, giving a pentacovalent intermediate or a penta-coordinated transition state.

Chemical Reactivity

Re-dox

Lessons from Quantum Chemistry

- Most organic molecules, including the reduced fuels, are in the singlet spin state.
 H
 H
 H
 H
 - All electrons are paired.

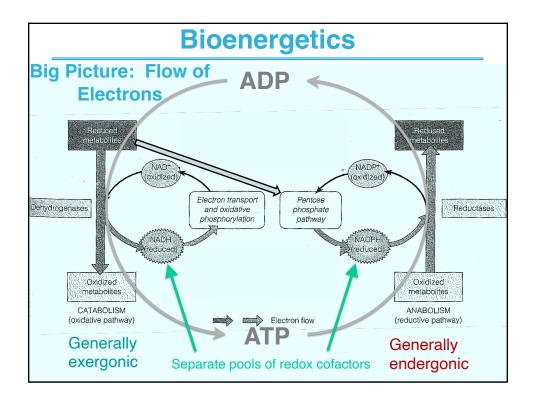

- · Molecular oxygen is in the triplet spin state.
 - Two electrons are unpaired.
- Direct electron transfer from a singlet reduced species to a triplet-oxidizing species is quantum-mechanically unfavorable.
- This is why spontaneous oxidation of biomolecules (carbon oxidation states differ by 2e⁻) does not occur readily, despite the exergonic reaction thermodynamics.
- Cofactors, such as transition-metal ions and flavin adenine dinucleotide (FAD), are able to catalyze consecutive single-electron transfers needed for utilization of O_2 .

	Re-dox		
Oxidation-Reduct Reactions	tion Reduced organic compounds serve as fuels from which electrons can be stripped off during oxidation. Most energy		Relative ΔG°' of oxidation per carbon (kcal/mol)
$-CH_2 - CH_3$	Alkane	J ,	-196
−CH ₂ −CH ₂ OH	Alcohol		-168
-CH ₂ -C H(R)	Aldehyde (ketone)		-125
-CH ₂ -COH	Carboxylic acid		-68
0=c=0	Carbon dioxide Least of	energy	0

Re-dox

EXAMPLE: Reversible Oxidation of a Secondary Alcohol to a Ketone

- Many biochemical oxidation-reduction reactions, especially those of carbon, involve transfer of two electrons.
- In order to keep charges in balance, proton transfer often accompanies electron transfer.
- In many dehydrogenases, the reaction proceeds by a stepwise transfers of proton (H⁺) and hydride (:H⁻).


Bioenergetics

Energetics of Biochemical Reactions:

Bioenergetics

Energetics of Some Chemical Reactions:

- Hydrolysis reactions tend to be strongly favorable (spontaneous).
 - Recall that being thermodynamically favorable is not the same as being kinetically rapid.
- Isomerization reactions have smaller free-energy changes.
 - isomerization between enantiomers: $\Delta G^{\circ\prime}$ = 0
- Complete oxidation of reduced compounds (redox reactions) is strongly favorable.
 - This is how heterotrophs (sometimes called chemotrophs) obtain most of their energy.
 - In biochemistry, the oxidation of reduced fuels with O₂ is stepwise and controlled.

Bioenergetics

Reduction Potential

determines the Flow of Electrons

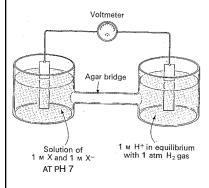
/ /

 $A_{ox} + B_{red} \rightleftharpoons A_{red} + B_{ox}$

- Reduction potential (E)
 - affinity for electrons; higher E, higher affinity
 - electrons transferred from lower E to higher E

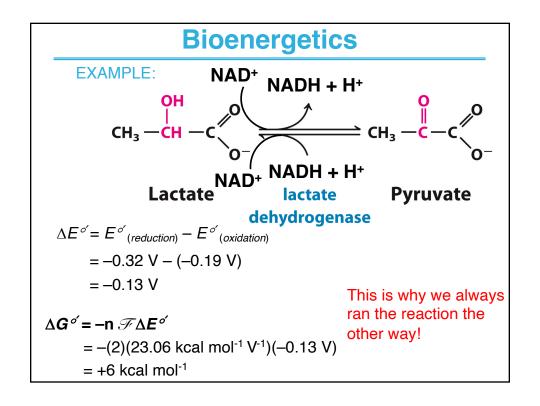
$$\Delta E^{\circ'} = E^{\circ'}_{(e-\text{ acceptor})} - E^{\circ'}_{(e-\text{ donor})}$$
(that which is reduced) (that which is oxidized

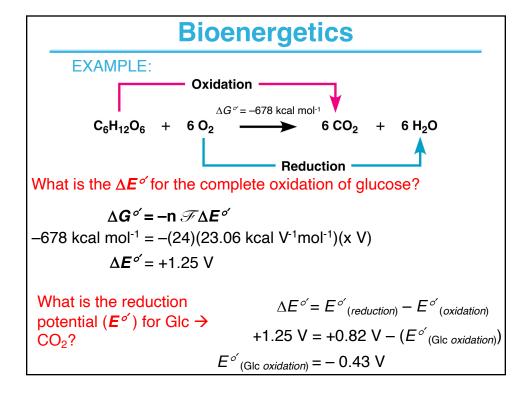
$$\Delta E^{\circ} = (RT / n\mathcal{F}) ln (K_{eq}) = -\Delta G^{\circ} / n\mathcal{F}$$


$$\Delta G^{\circ} = -n \mathcal{F} \Delta E^{\circ}$$

– For negative ΔG , need positive ΔE

$$E^{\circ'}_{(acceptor)} > E^{\circ'}_{(donor)}$$


Bioenergetics


Standard Reduction Potential (E°') determines the Flow of Electrons

Half-reaction	E° (v
1/ ₂ O ₂ + 2H ⁺ + 2e ⁻ → H ₂ O	0.816
Fe ³⁺ + e ⁻ → Fe ²⁺	0.771
$NO_3^- + 2H^+ + 2e^- \rightarrow NO_2^- + H_2O$	0.421
Cytochrome $f(Fe^{3+}) + e^{-} \rightarrow \text{cytochrome } f(Fe^{2+})$	0.365
$Fe(CN)_6^{3-}$ (ferricyanide) + $e^- \rightarrow Fe(CN)_6^{4-}$	0.36
Cytochrome a_3 (Fe ³⁺) + $e^- \rightarrow$ cytochrome a_3 (Fe ²⁺)	0.35
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.295
Cytochrome a (Fe ³⁺) + $e^- \rightarrow$ cytochrome a (Fe ²⁺)	0.29
Cytochrome c (Fe ³⁺) + $e^ \rightarrow$ cytochrome c (Fe ²⁺)	0.254
Cytochrome c_1 (Fe ³⁺) + $e^- \rightarrow$ cytochrome c_1 (Fe ²⁺)	0.22
Cytochrome b (Fe ³⁺) + $e^- \rightarrow$ cytochrome b (Fe ²⁺)	0.077
Ubiquinone + 2H ⁺ + 2e ⁻ → ubiquinol	0.045
Fumarate ²⁻ + 2H ⁺ + 2e ⁻ → succinate2-	0.031
2H ⁺ + 2e ⁻ → H ₂ (at standard conditions, pH 0)	0.000
Crotonyl-CoA+ 2H+ + 2e- → butyryl-CoA	-0.015
Oxaloacetate ²⁻ + 2H ⁺ + 2e ⁻ → malate ²⁻	-0.166
Pyruvate- + 2H + 2e- → lactate-	-0.185
Acetaldehyde + 2H ⁺ + 2e ⁻ → ethanol	-0.197
FAD + 2H+ + 2e ⁻ → FADH ₂	-0.219 ^a
Glutathione + 2H ⁺ + 2e ⁻ → 2 reduced glutathione	-0.23
S + 2H ⁺ + 2e ⁻ → H ₂ S	-0.243
Lipoic acid + 2H ⁺ + 2e ⁻ → dihydrolipoic acid	-0.29
NAD+ + H+ + 2e- → NADH	-0.320
NADP+ + H+ + 2e- → NADPH	-0.324
Acetoacetate + 2H ⁺ + 2e ⁻ → β-hydroxybutyrate	-0.346
α-Ketoglutarate + CO₂ + 2H+ + 2e- → isocitrate	-0.38
2H ⁺ + 2e ⁻ → H ₂ (at pH 7)	-0.414
Ferredoxin (Fe ³⁺) + e ⁻ → ferredoxin (Fe ²⁺)	-0.432

uction Potentials with higher affinity at botto				
Standard reduction potenti Oxidant	als of some reactions Reductant	n	E° (V) Ha	
Succinate + CO ₂	α-Ketoglutarate	2	-0.67	
Acetate	Acetaldehyde	2	-0.60	
Ferredoxin (oxidized)	Ferredoxin (reduced)	1 .	-0.43	
2 H ⁺	H ₂	2	-0.42	
NAD ⁺	NADH + H+	2	(-0.32)	
NADP ⁺	NADPH + H+	2	-0.32	
Lipoate (oxidized)	Lipoate (reduced)	2 .	-0.29	
Glutathione (oxidized)	Glutathione (reduced)	2	-0.23	
Acetaldehyde	Ethanol	2	-0.20	
Pyruvate	Lactate	2	-0.19	
Fumarate	Succinate	2	0.03	
Cytochrome b (+3)	Cytochrome b (+2)	1	0.07	
Dehydroascorbate	Ascorbate	2	0.08	
Ubiquinone (oxidized)	Ubiquinone (reduced)	2	0.10	
Cytochrome c (+3)	Cytochrome c (+2)	1 .	0.22	
Fe (+3)	Fe (+2)	1 . 1	0.77	
$\frac{1}{2}$ O ₂ + 2 H ⁺	H ₂ O	2	0.82	

Summary

We learned that:

- The rules of thermodynamics and organic chemistry still apply to living systems
- Reactions are favorable when the free energy of products is much lower than the free energy of reactants
- Biochemical phosphoryl transfer reactions are favorable when:
 - the phosphate donors are destabilized by electrostatic repulsion
 - the reaction products are often stabilized by resonance
- Unfavorable reactions can be made possible by chemically coupling a highly favorable reaction to the unfavorable reaction
- Oxidation-reduction reactions commonly involve transfer of electrons from reduced organic compounds to specialized redox cofactors in generally favored reactions
 - Reduced cofactors can be used in biosynthesis, or may serve as a source of energy for ATP synthesis.

Biological Membrane Transport

"Crossing the Berlin Wall of the cell - Membrane Transport" – Dr. Kornberg

Physical Properties of Membranes

- Not permeable to large polar solutes and ions
- Permeable to nonpolar compounds and some small polar compounds (e.g., water)
- Permeability can be artificially increased by chemical treatment.
 - when we want to get DNA into the cell
- Very stable yet dynamic and flexible structures
- Can exist in various phases and undergo phase transitions
- Can fuse; and can have shapes, e.g., endocytosis
- Additional functionality provided by embedded proteins
 - recall peripheral, integral, and amphitropic proteins
 - recall that membrane proteins have hydrophobic regions