		DI/OLI 400	
Introduction and review		BI/CH 422	
		ANABOLISM II OUT	I TNE:
		Discurthenin of Eathy Anida and Li	
Pasteur: "Anaerobic vs Aerobic Formentations	Exam-1 material	BIOSYNTHESIS OF PATTY ACIAS and LI	bias
Pyruvate	Even 2 meterial	contrasts	
Krebs' Cycle	zxam-z matenai	Control of fatty acid metabolism	
Oxidative Phosphorylation		Diversification of fatty acias	
	Phosphorylation	Eicosạnoids: Prostaglandins and Thr	omboxane
Fat Catabolism	Exam 2 matarial	Triacyl glycerides	
Fatty acid Catabolism	Exam-5 material	Membrane lipids	
Activation of fatty acids		Sphingolipids	
Transport; carnitine Oxidation: β-oxidation, 4 steps:		Isoprene lipids: Cholesterol	
Protein Catabolism		Ketone body synthesis	
Dealing with the nitrogen; Urea Cycle		Cholesterol: bile acids, steroids	
Dealing with the carbon; Seven Families Nucleic Acid & Nucleotide Deparadation		control of cholesterol biosynthesis	
		ANABOLISM III OUTLINE:	
Overview and Key experiments:	Exam-4 material	Biosynthesis of Amino Acids and Nucleot	ides
Light Reactions		Nitrogen cycle	
Reaction center & Photosystems (PSII & PSI)		nitrogenase complex	
Proton Motive Force - AIP Carbon Assimilation - Calvin Cycle		Nitrogen assimilation	
Rubisco/Oxygenase (Glycola	te cycle)	Plants Nitrate (nitrite reductores	Even E meterial
Overview and regulation		Animals	EXam-5 material
C4 versus C3 plants Komberg cycle – cly ov ylate		Glutamine synthetase	
Carbohydrate Biosynthesis in Animals		Glutamate synthase (GOGAT)	
precursors/Cori cycle Gluconeogenesis		non-essential	
revěrsible steps irreversible steps – four		essential	
Glycogen Synthesis ' UDP-Glc/Glycogen synthase/branching		Nucleotide Biosynthesis	
Pentose-Phosphate Pathway		KINA PRECURSORS	
non-oxidative-Ribose 5-P Regulation of Carbohydrate Metabolism		Purines	
Anaplerotic reactions		Pyrimidines	
location & transport		Control of nitrogen metabolism	
Synthesis; acetyl-CoA carboxyla	se + FAS	Biosynthesis and degradation of heme;	

Biosynthesis Amino Acids & Nucleotides

Two major sources of Nucleotides:

- 1. They can be synthesized *de novo* ("from the beginning")
 - Purine nucleotides: from Gly, Gln(NH₃), Asp(NH₃), THF, and CO₂, and ribose-5-phosphate (PRPP)
 - Pyrimidine nucleotides: from Asp, carbamoyl-phosphate, and ribose-5-phosphate (PRPP)
- 2. Nucleotides can be salvaged from RNA, DNA, and cofactor degradation and diet.
 - Recall purines are degraded to uric acid (no energy) but pyrimidines can be oxidized to acetyl-CoA and succinyl-CoA
 - Purine salvage is a significant contribution (80-90%)
 - Interesting: Many parasites (e.g., malaria) lack *de novo* biosynthesis and rely exclusively on salvage. Therefore, compounds that inhibit salvage pathways are promising anti-parasite drugs.
- 3. Because ATP/ADP are involved in so many reactions and regulation mechanisms, the absolute [nucleotide] are kept low; so cells must continually synthesize them.
 - This synthesis may actually limit rates of transcription and replication.
- 4. Unlike amino-acid biosynthesis, pathways are conserved in ALL organisms.

