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Biosynthesis Amino Acids &
Nucleotides

Two major sources of Nucleotides:
1. They can be synthesized de novo (“from the beginning”)

* Purine nucleotides: from ', GIn(NHz), Asp( ), , and CO,, and
ribose-5-phosphate (PRPP)
* Pyrimidine nucleotides: from , carbamoyl-phosphate, and ribose-5-

phosphate (PRPP)

2. Nucleotides can be salvaged from RNA, DNA, and cofactor degradation
and diet.

*Recall purines are degraded to uric acid (no energy) but pyrimidines can
be oxidized to acetyl-CoA and succinyl-CoA

* Purine salvage is a significant contribution (80-90%)

*Interesting: Many parasites (e.g., malaria) lack de novo biosynthesis and
rely exclusively on salvage. Therefore, compounds that inhibit salvage
pathways are promising anti-parasite drugs.

3. Because ATP/ADP are involved in so many reactions and regulation
mechanisms, the absolute [nucleotide] are kept low; so cells must
continually synthesize them.

* This synthesis may actually limit rates of transcription and replication.

4. Unlike amino-acid biosynthesis, pathways are conserved in ALL organisms.
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De Novo Biosynthesis of Purines

4. FGAR reacts with GIn (like Glu synthase; ammonia
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Synthesis of AMP and GMP from IMP 11. Add Nitrogen of Asp (recall Urea Cycle)
12. Removal of fumarate (can act as anaplerotic

_OOC—CHz—CIH—COO_ reaction to keep ATP synthesis)
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18. Add water cross imine and oxidize to keto (recall fatty acid oxidation, except at imine not alkene)
14. Add nitrogen from Gin (recall Glu synthase (ammonia channel), and 3™ time we saw use of Gin for this)
Note that ATP is used to synthesize GMP precursor, while GTP is used to
synthesize AMP precursor.




Recall: Nucleotide Degradation
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Salvage Pathway of Purines
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» Over 90% of purine bases are from salvage pathway.

* The brain is especially dependent on salvage pathways.
* The lack of HGPRT leads to Lesch-Nyhan syndrome with neurological impairment

and finger-and-toe-biting behavior.
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Salvage Pathway « The lack of HGPRT leads to

Lesch-Nyhan syndrome with
. neurological impairment and
finger-and-toe-biting behavior.
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Amide N of Pyrimidines
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« Unlike purine synthesis, pyrimidine synthesis proceeds - W
by first making the pyrimidine ring (in the form of orotic bt C .
acid) and then attaching it to ribose 5-phosphate using NADHEHT 2
PRPP. o P

\spariaie and carbamoyl phosphate provide all the ol G 'y
atoms for the heterocycle or pyrimidine. The first e K
pyrimidine is Orotate. °'°ﬁ'*vlatem®M;‘)"‘”':o: [

« This is converted to a nucleotide using PRPP, resulting orofiiiiaie P4 %
nucleotide (orotidylate; OMP). decaronie® Nasco g

+ OMP is decarboxylated to form uridylate (UMP). idlate UMP) @,-o—cu, %

* The other pyrimidine nucleotide used in RNA is made at s U :K :H"
the triphosphate level; UMP is phosphorylated twice to [Nr 200
make UTP. Uridine 5'-triphosphate (UTP)

/—Gln

* UTP is converted to CTP by amination using GIn similaf = = = >D N a
to making AMP from XMP. _-- e w

« The biosynthesis of CTP is the CLASSIC feedback N aop + 7, '."E\ﬁ“

inhibition by the allosteric negative @ector (CTP) on O-O-®-o0—cn, °
ATCase. Also, activation by GTP \~---Cytidine 5'-triphosphate (CTP) Nk" ,.7‘
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Regulation of Pyrimidine Biosynthesis via Feedback
Aspartate Transcarbamoylase
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Recall from 421: ATCase is inhibited by end-product CTP and is

(ATCase)
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ANABOLISM Illl: Biosynthesis Amino
Acids & Nucleotides

Involvement of ribonucleotide-derivatives in all of biology

Dr. Kornberg:
Lecture 04.26.17 (0:00-5:06) 5 min

https:/mvmediabucdu/channcl/BI422/8122485]
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Biosynthesis Amino Acids &
Nucleotides

How are Ribonucleic Acid Precursors
converted to Deoxyribonucleic Acid
GTP Precursors?

........ and how is dTTP made?
AMP-» ADPPATP
2'C-OH bond is directly reduced to 2'-H
UDPRUTP bond ...without activating the carbon for
IcDP¥ C\lf'p dehydration, etc.!
catalyzed by ribonucleotide reductase
Specific kinases, Non-specific kinase,
e.g., UMP kinase, nucleoside
GMP kinase, diphosphate kinase Very unique engyme i all of biochemistry - use of free
Adenylate kinase (works on both oxy- and radicals (without cofactors)
deoxy-rib

¢ GDP->dGDP™ nudsosides) Mechanism: Two H atoms are donated

ADP->dADP by NADPH and carried by thioredoxin or

glutaredoxin to the active site.

UDP->dUDP \—Substrates are the NDPs and the products
CDP->dCDP are dNDP.

Biosynthesis Amino Acids &
Nucleotides

Source of Reducing Structure of Ribonucleotide Reductase
Electrons for a2 are regulatory

Ribonucleotide and half the

catalytic site; need

Reductase to be reduced.

NADPN+N"‘U‘?“:IGM NADP* NADPH + H* NADP* ﬁz are the O-Fher half
of the active site,
and the free-
radical generators

a;B,docking model Radical pathway
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a|a )
/ subunit | subunit
| | Substrates|
— — J
" o 7 T~
Active HS 7 \_.. SH ADP,
site A Hs / SH 4 /\ CDP,
[ \XH I X\ upP,
anoP nbe / S— . | GDP
- NADPH serves as the electron donor. \ el 8/subunity Fett .0@
. 2 e
« Funneled through glutathione or reo” So—ré » /

JoAnne Stubbe T R -
(1946-) 1

thioredoxin pathways




*Most forms of
enzyme have
two catalytic/
regulatory
subunits and
two radical-
generating
subunits.

—contain Fe3+
and dithiol
groups

—enzyme creates
stable Tyr
radical to
abstract He
from sugar

+A 3-ribo-
nucleotide
radical forms.

+2-OHis
protonated to
help eliminate
H20 and form a
radical-
stabilized
carbocation.

«Electrons are
transferred to
the 2-C.

Ribonucleotide f°
reductase

The enzyme

dithiol is reduced, ~ NDP
to complete the dANDP
cycle.

a subunit

A 3'-ribonucleotide
radical is formed.

B subunit

Thioredoxin S—S
(glutaredoxin)

Thioredoxin (SH),
(glutaredoxin)

Proposed
Ribonucleotide

®-@—o—y 0 $” Reductase Mechanism

step € is reversed,
regenerating a tyrosyl (X)
radical on the enzyme.

(=]

5= Involves Free Radicals

w122

Dithiol is oxidized on
the enzyme; two
electrons are transferred
to the 2'-carbon.

e The 2'-hydroxyl is
protonated.

. e H,0 is eliminated to
/N form a radical-stabi-
lized carbocation.

H
|
X
|
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