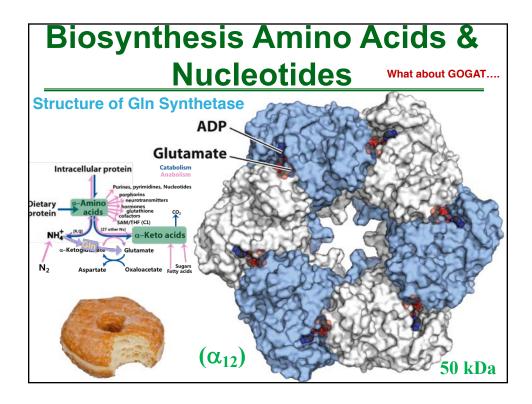
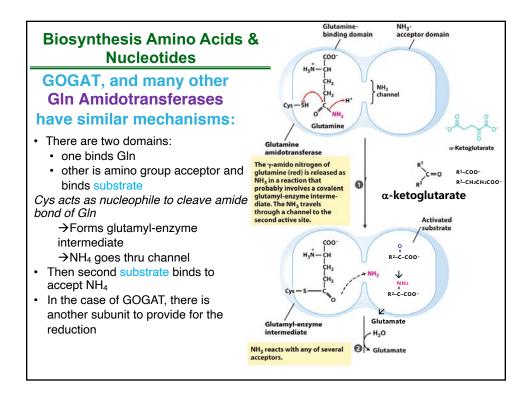
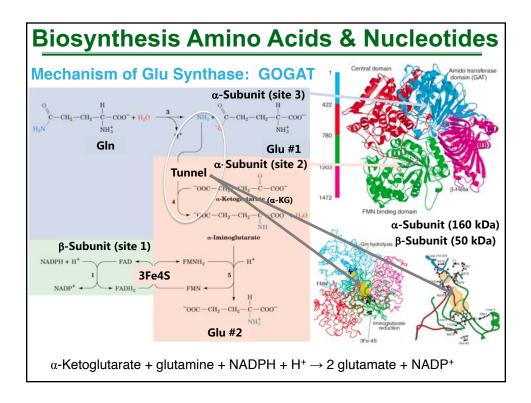
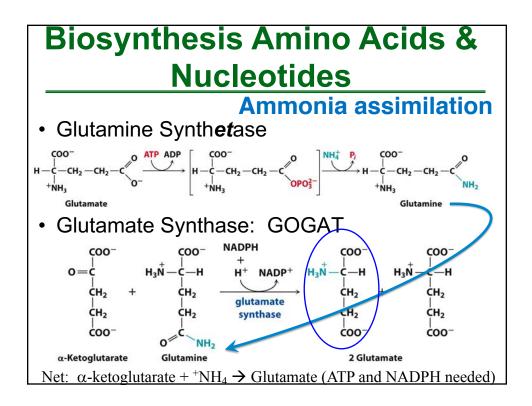
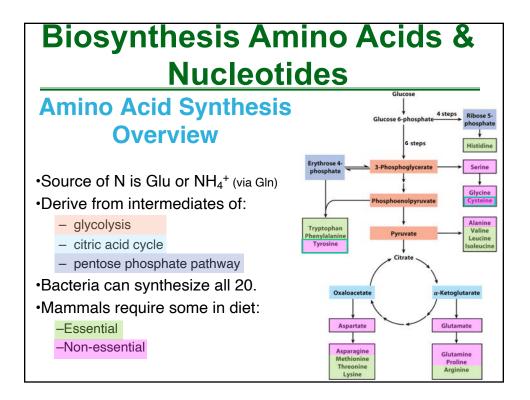

BI/CH 422/622							
OUTLINE:	ANABOLISM II: Lipids						
Introduction and review Transport Glycogenolysis	Fatty Acids						
Glycolysis Other sugars Exam-1 material	contrasts location & transport						
Pasteur: Anderobic vs Aerobic Exam P Indecida Fermentations Exam-2 material	Synthesis: ACC & fatty acid synthase						
Pyruvate	Diversification of fatty acids						
Krebs' Cycle Oxidative Phosphorylation	elongation desaturation						
Electron transport Chemiosmotic theory: Phosphorylation	Eicosanoids						
Fat Catabolism Exam-3 material	Prostaglandins and Thromboxane Triacylalycerides						
Fatty acid Catabolism Mobilization from tissues (mostly adipose)	Triacylglycerides Membrane lipids Characteristics						
Activation of fatty acids Transport; carnitine	Glyćerophospholipids Isoprene lipids:						
Oxida'tion: β-oxidation, 4 steps: Protein Catabolism	Ketone body synthesis Cholesterol						
Amino-Acid Degradation Dealing with the nitrogen; Urea Cycle	ANABOLISM III: Nitrogen (Amino Acids & Nucleotides)						
Dealing with the carbon; seven Families Nucleic Acid & Nucleotide Degradation	Nitrogen cycle - Nitrogen fi Cofactors in the Nitrogenase Complex						
ANABOLISM I: Carbohydrates	nitrogenase						
PHOTOSYNTHESIS: Exam-4 material	Nitrogen assimilation						
Overview;; Key experiments: Light Reactions	Plants AFe45						
Reaction center Photosystems (PSII & PSI - NADPH)	Nitrate/nitrite reductase						
Proton Motive Force - ATP Carbon Assimilation - Calvin Cycle	Animals Poluster and						
Overview and regulation C4 versus C3 plants	Glutamine synthetase Glutamate synthase						
Carbohydrate Biosynthesis in Animals	Amino-acid Biosynthesis						
Gluconeogenesis Glycogen Synthesis	non-essential Dinitrogenase						
Pentose-Phosphate Pathway	essential Dintrogenase (Baubunit)						
non-oxidative-Ribose 5-P	Nucleotide Biosynthesis						
Regulation of Carbohydrate Metabolism Anaplerotic reactions	Secondary products of amino acids Exam-5 material						

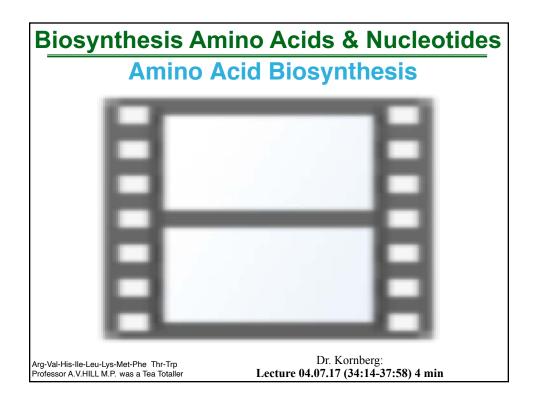


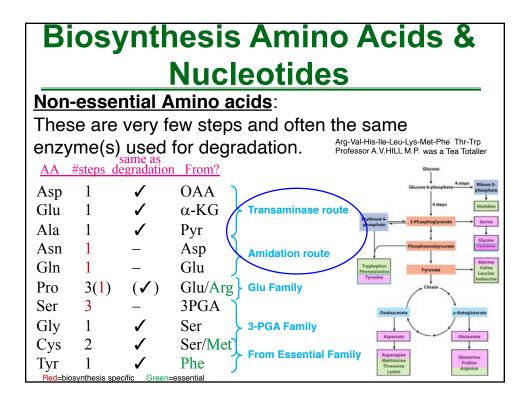

ANABOLISM III: Biosynthesis Amino Acids & Nucleotides

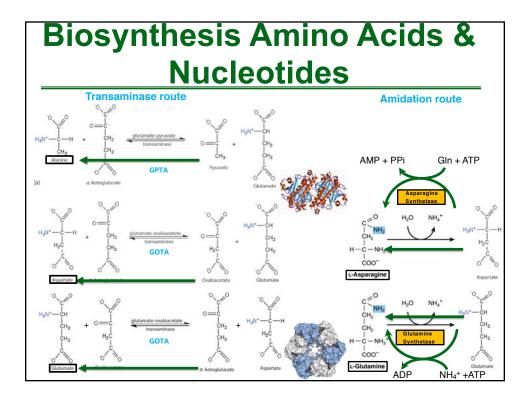

- 1) Nitrogen fixation: $N_2 \rightarrow {}^+NH_4$
- 2) Nitrogen assimilation: incorporation of ammonia into biomolecules
- 3) Biosynthesis of amino acids
 - a) non-essential
 - b) essential
- 4) Biosynthesis of nucleotides
- 5) Control of nitrogen metabolism
- 6) Biosynthesis and degradation of heme; other 2° products of amino acids

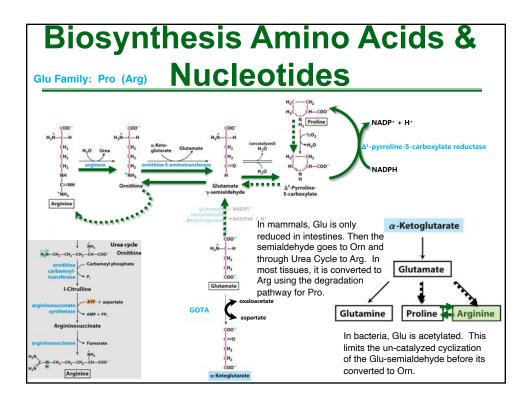


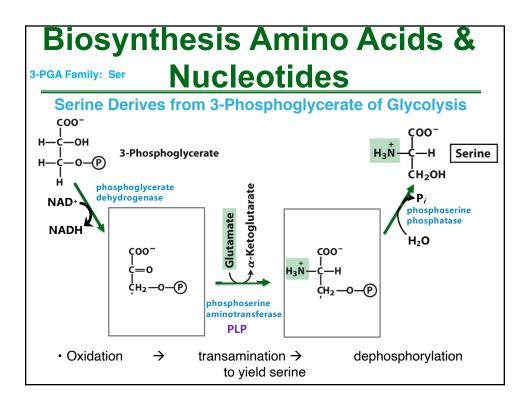


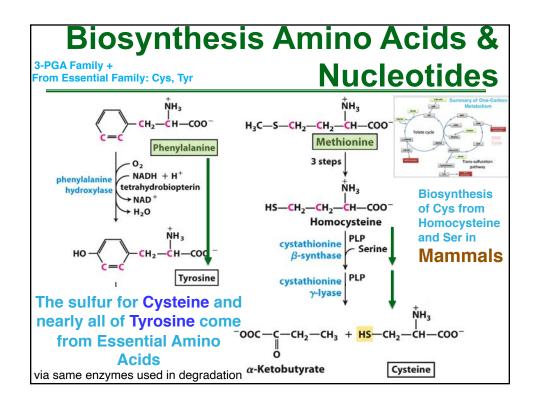


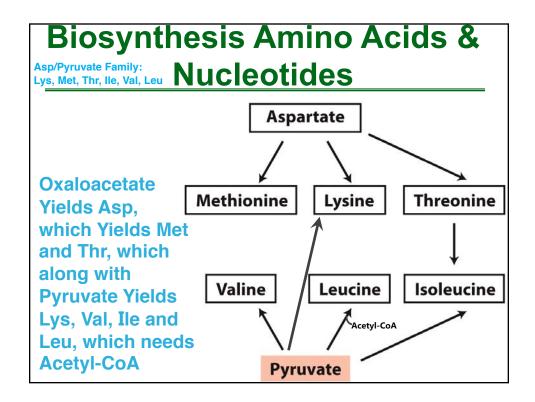


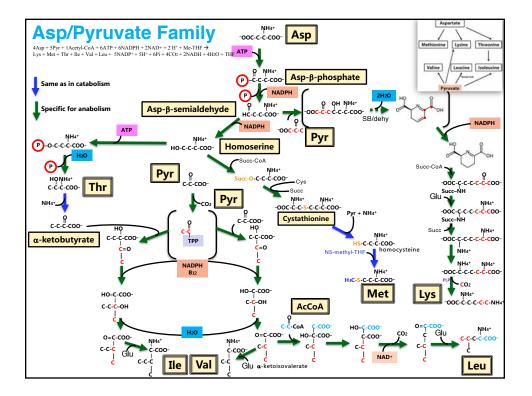



ANABOLISM III: Biosynthesis Amino Acids & Nucleotides 1) Nitrogen fixation: N₂ → ⁺NH₄ 2) Nitrogen assimilation: incorporation of ammonia into biomolecules 3) Biosynthesis of amino acids a) non-essential b) essential 4) Biosynthesis of nucleotides 5) Control of nitrogen metabolism 6) Biosynthesis and degradation of heme; other 2° products of amino acids









E	Biosynthesis Amino Acids &									
Nucleotides										
Asp Glu	1 1	*	OAA α-KG	<u>Esse</u>	ntial A	Amino acids:	Glucose Glucose 6 phosphate 4 steps phosphat			
Ala Asn	1	*	Pyr Asp	These require many steps						
Gln	1	_	Glu	and unique to those used for						
Pro Ser	3(1) 3	(*)	Glu/Arg 3PGA	degrad	dation.		Phesphoenolpyruvste Cythicine Alarine			
Gly	5 1	*	SPGA				Tryptophan Pyruvate Valine Loucine Tyrosine			
Cys	2	*	Ser/Met				Citrate			
Tyr Bed-bio	1 synthesis sne	*	Phe rse of degradation	Met	7	-Asp/Cys/THF/	Craloscetate a Hatoglutarate			
ricu-bic	ayna cala apc		50 of degradation	Thr	5	-Asp/Glu	Aspertate Gutamate			
	A			Lys	9	-Asp/Pyr/Glu	Asparagine Gistamine Methiosise Proline Threasine Arginise			
Asp/Pyruvate Family			Ile	10	-Asp(Thr)/Pyr/C	ilu				
				Val	4	-Pyr/Glu				
				Leu	7	-Pyr/AcCoA/Gh	u			
	Arom	atic F	amily	Phe	10	-E4P/PEP/Glu				
			~,	Trp	12	-E4P/PEP/Gln/R	R5P/Ser			
		His	tidine	His	10	-R5P/ATP/Gln/C	Glu			

