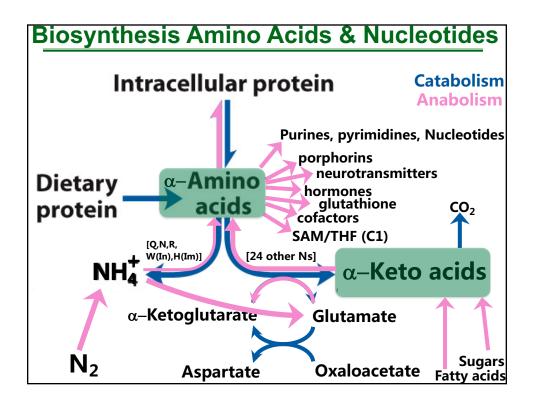
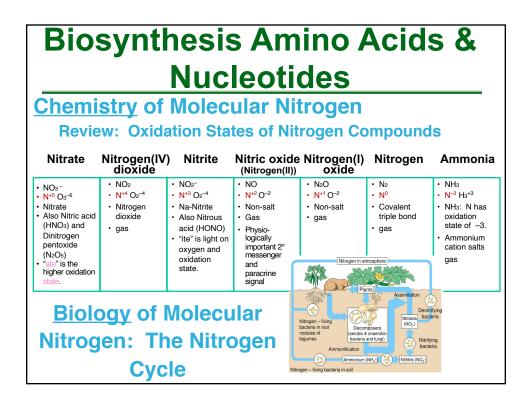

OUTLINE:	BB 422/622
Contraction of review Transport Giveopenolysis Giveopenolys	ANABOLISM II: Biosynthesis of Fatty Acids and Lipids Fatty Acids
Krebs' Cycle Oxidative Phosphorylation Electron transport Chemiosmotic theory: Phosphorylation	Triacylglycerides Membrane lipids Glycerophospholipids
Fat Catabolism Exam-3 material Fatty acid Catabolism (mostly adipose) Activation of fatty acids Transport; carritine Oridation: (I-oxidation, 4 steps: Protein Catabolism Amino-Acid Degradation Dealing with the nitrogen; Urea Cycle Dealing with the carbon; seven femilies Nucleic Acid & Nucleotide Degradation	Sphingolipids Isoprene lipids: Cholesterol Ketone body synthesis Mevalonate Cholesterol bile acids
ANABOLISM I: PHOTOSYNTHESIS: Overview and key experiments: Light Reactions energy in a photon/pigments Proton Motive Force - ATP Carbon Assimilation - Calvin Cycle Rubisco/Oxygenase (Glycolate cycle) , remaking Ru LSP2	steroids metabolism control of cholesterol biosynthesis ANABOLISM III:
Overview and regulation C4 versus C3 plants Komberg cycle - glyggylate Decursors/cont cycle Fluconeogenesis reversible steps irreversible steps - four Glycogen Synthesis Pentose-Phosphate Dathes/branching Pentose-Phosphate Dathes/branching non-oxidative-NADPH non-oxidative-NADPH	Biosynthesis of Amino Acids and Nucleotides Nitrogen fixation nitrogenase Nitrogen assimilation Amino-acid Biosynthesis Nucleotide Biosynthesis
Pequit Mitheavap reacting and the second sec	Control of nitrogen metabolism Biosynthesis of secondary products of amino acids Exam-5 material



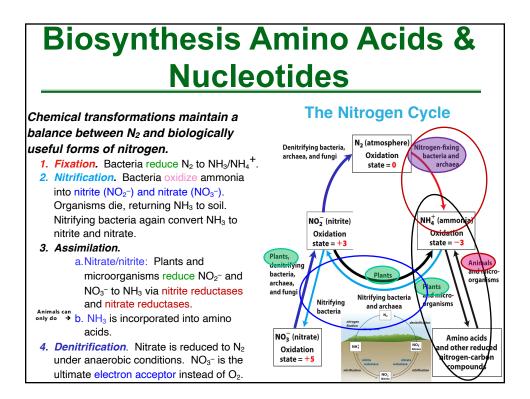
Biosynthesis Amino Acids & Nucleotides

- Nitrogen (after H, O, and C) is a major element of living organisms
- Most nitrogen is inert in the atmosphere as dinitrogen
- Making dinitrogen useful is not easy


Atmosphere is 80% N₂, but is chemically inert need N₂ + 3 H₂ \rightarrow 2 NH₃ Even though $\Delta G'^{\circ} = -33.5$ kJ/mol... *breaking a triple bond has high activation energy (i.e., SLOW, kinetically stable),* this can be accomplished using non-biological processes: N₂ and O₂ \rightarrow NO via lightning N₂ and H₂ \rightarrow NH₃ via the industrial *Haber-Bosch process* requires T>400 °C, P>300 atm Industrial synthesis of NH₃ via the Haber process is one of mankind's most significant chemical processes.

ANABOLISM III: Biosynthesis Amino Acids & Nucleotides

- 1) Nitrogen fixation: $N_2 \rightarrow {}^+NH_4$
- 2) Nitrogen assimilation: incorporation of ammonia into biomolecules
- 3) Biosynthesis of amino acids
 - a) non-essential
 - b) essential
- 4) Biosynthesis of nucleotides
- 5) Control of nitrogen metabolism
- Biosynthesis and degradation of heme; other 2° products of amino acids


Biosynthesis Amino Acids & Nucleotides

Nitrogen Fixation versus Nitrogen Assimilation

 Converts N₂ to NH₃ Requires multiple ATPs 	 Converts NO₃, NO₂, and/or NH₃ to <u>amino acids</u>
 Uses electrons from pyruvate 	 Uses electrons from NADH, NADPH, or photosynthetic transfer from ferrodoxin

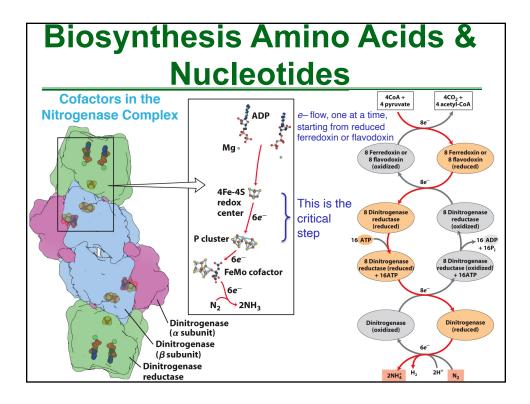
Both:

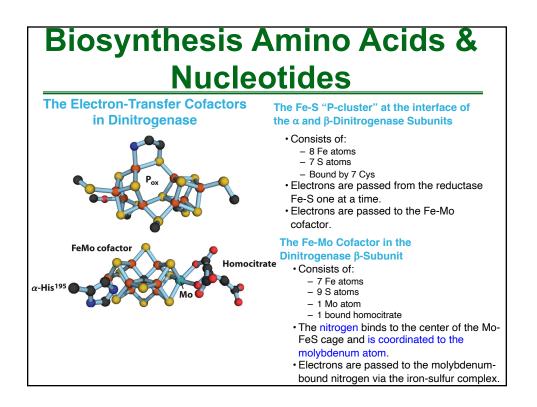
- Are electron transfer processes
- Use Mo cofactor
- Involve multiple redox cofactors, such as Fe-S, NADH, NADPH, ferrodoxin, flavodoxin, and so on

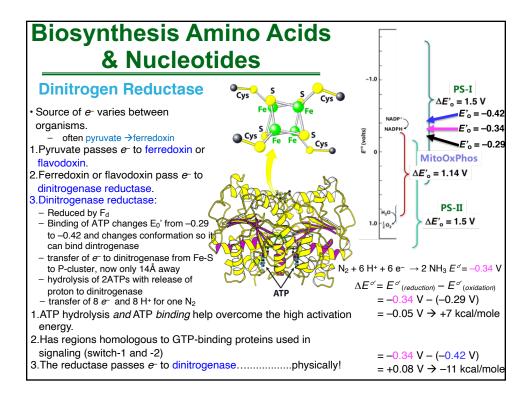
Biosynthesis Amino Acids & Nucleotides

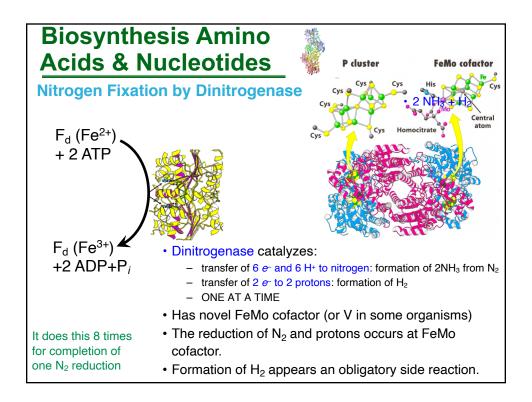
Only a Few Organisms Can "Fix" N₂ to Useful Forms
N₂ + 8 H⁺ + 8 e⁻ + 16 ATP + 16 H₂O → 2 NH₃ + H₂ + 16 ADP + 16 P_i
Most are single-celled prokaryotes (archaea).
Some live in symbiosis with *plants*.

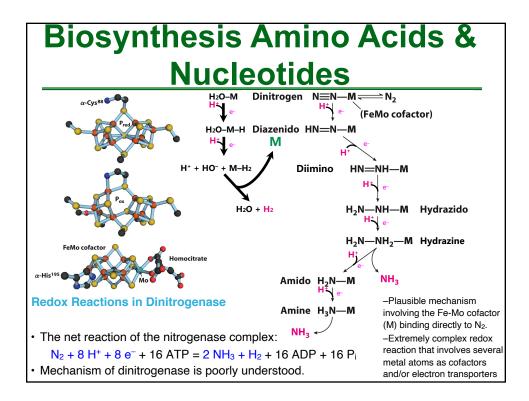
(e.g., proteobacteria with legumes such as peanuts, beans)

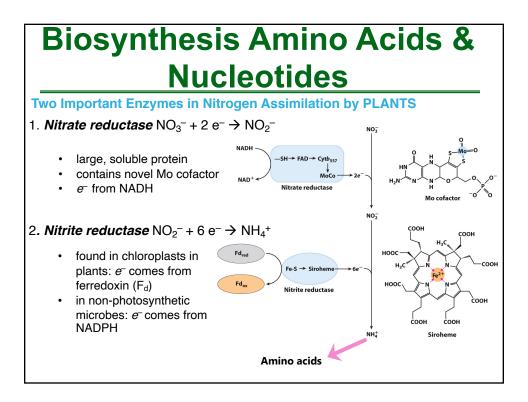

A few live in symbiosis with *animals*.

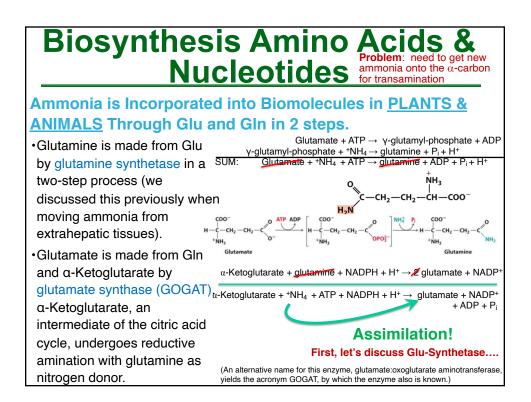

(e.g., spirochaete with termites)

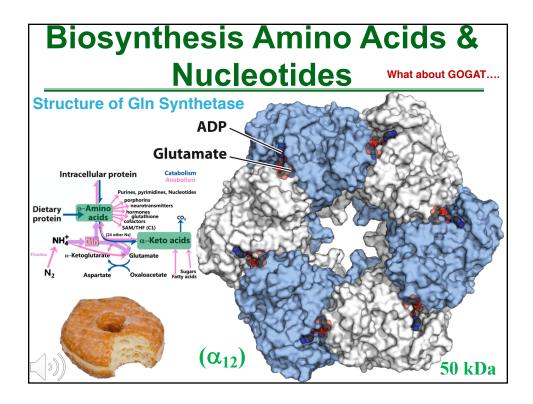

They have enzymes that overcome the high activation energy by binding and hydrolyzing ATP.


Like CO₂ fixation by Rubisco, oxygen can parasitize this process

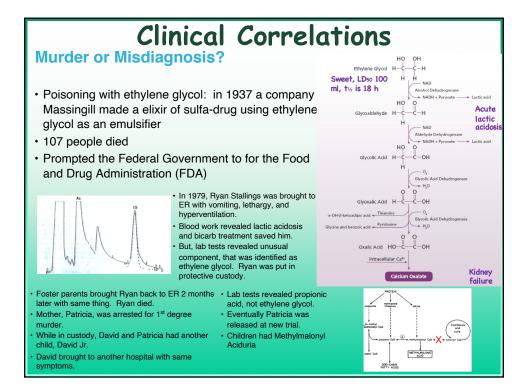









ANABOLISM III: Biosynthesis Amino Acids & Nucleotides


- 1) Nitrogen fixation: $N_2 \rightarrow {}^+NH_4$
- 2) Nitrogen assimilation: incorporation of ammonia into biomolecules
- 3) Biosynthesis of amino acids
 - a) non-essential
 - b) essential
- 4) Biosynthesis of nucleotides
- 5) Control of nitrogen metabolism
- Biosynthesis and degradation of heme; other 2° products of amino acids

