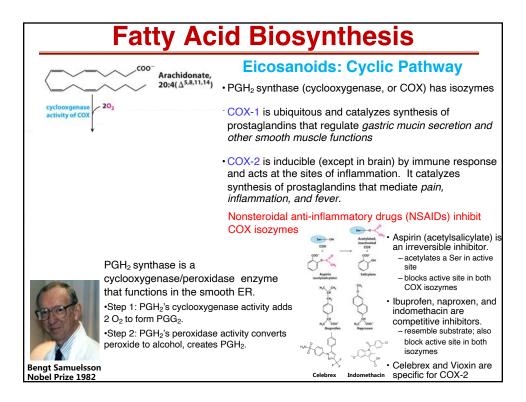
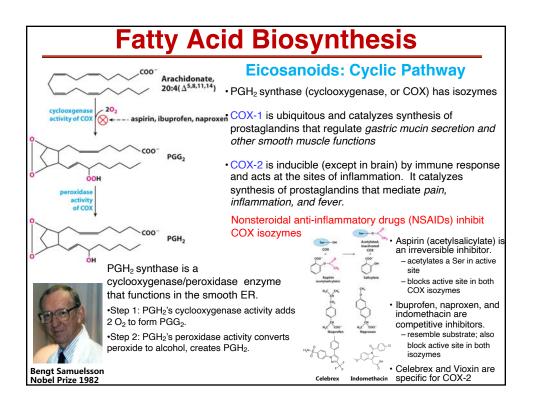
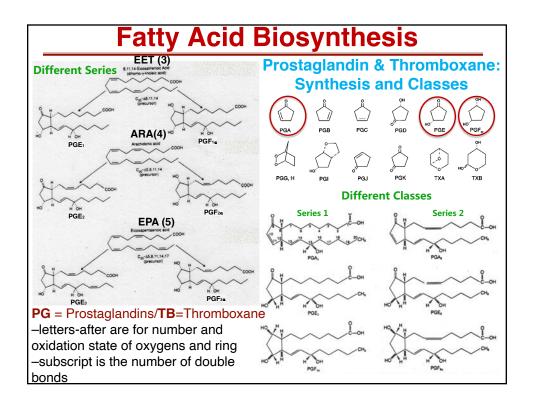
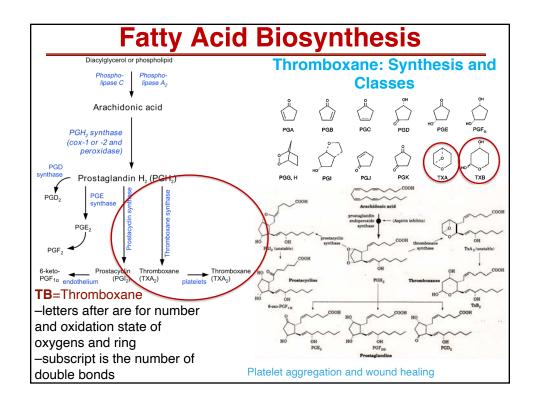

BI/CH 422	/622
ANABOLISM OUTLIN	<u>\E:</u>
Photosynthesis Carbon Assimilation – Calvin Cycle Carbohydrate Biosynthesis in Animals Gluconeogenesis Glycogen Synthesis Pentose-Phosphate Pathway Regulation of Carbohydrate Metabolism	
Anaplerotic reactions Biosynthesis of Fatty Acids and Lip	vids
Fatty Acids	
contrasts Diver	sification of fatty acids
location & transport Ei	cosanoids
1	ostaglandins and Thromboxane
acetyl-CoA carboxylase Tr	iacylglycerides
fatty acid synthase ACP priming Mem	brane lipids
4 steps	Glycerophospholipids
Control of fatty acid metabolism	Sphingolipids
ACC	Isoprene lipids: Cholesterol
Reciprocal control of β-ox	

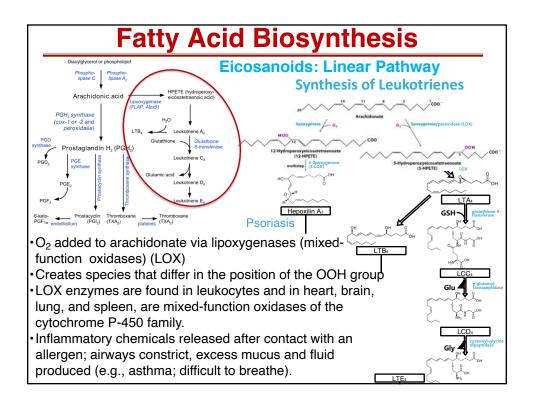
ANABOLISM II: Biosynthesis of Fatty Acids & Lipids










Fatty Acid Biosynthesis			
Omega 3	3	Linoleate 18:2($\Delta^{9,12}$)	Animals can do, plants can do
	α -Linolenate 18:3($\Delta^{9,12,15}$)		Eicosanoids: Synthesis and Classes
	elong desat	Eicosatrienoate	• Linoleate (18:2($\Delta^{9,12}$) gets desaturated on both sides = EET) Y-linolenate (18:3($\Delta^{6,9,12}$) & <u>a-linolenate</u> (18:3($\Delta^{9,12,15}$).
	apentaenoic 20:5(Δ ^{5.8,11,1}	4.17)) desaturatio	 Elongation to C20, and further desaturation of γ-linolenate (18:3(Δ^{6,9,12}) gives Arachidonate, 20:4(Δ^{5,8,11,14})
		acid	
esolvin Frc		aresins Series 2 Po Series 4	• These desaturations are all going closer to the carboxylate and can be accomplished by animals. C Polyunsaturated fatty acids (PUFAs)) bioactive paracrine
oia			
Sig	naling	molecules are mad	
Ecosanci	Mains Educated	molecules are mad	ο.
	Major Site(s) of		e: PG = Prostaglandins TX = Thromboxanes LT = Leukotrienes
Eicosanoi	d Major Site(s) of Synthesis	Major Biological Activities inhibits platelet and leukocyte aggregation, decreases T-cel proliferation and lymphocyte migration and secretion of IL-	e: PG = Prostaglandins TX = Thromboxanes LT = Leukotrienes • Created from the arachidonate or EPA, which are
Ecosanoi PGD ₂ PGE ₂	d Major Site(s) of Synthesis mast cells kidney, spleen,	Najor Biological Activities imbibs plateted and technical activities protection and symphocyte impation and secretion of Li- IALE/Mrk, and L_2 induces subalitation and production of increases vasodiation and cMMP production, enhancement effects of bradylosis and hitsameric, induction of using a protection and symphocyte impation and secretion of Li- potentiation and reproductive mass and secretion of Li-	 PG = Prostaglandins TX = Thromboxanes LT = Leukotrienes Created from the arachidonate or EPA, which are incorporated into membranes phospholipids.
Elcosanoi PGD ₂ PGE ₀ PGE20	d Major Sile(s) of Synthesia mast cells kidney, spleen, heart	Najor Biological Activities imbibis platients and induced and appropriate profession and specific impacts and secretion of Li- IALENHX, and L-2 induces vacabilities and production of increases vasodiation and cMMP production, enhancement effects of brackforms and hitsmanner, induction of utering profession and uterprocept migration and secretion of Li- IALENHX, and L-2 increases vasociatricito, biorchoconstriction and month	 PG = Prostaglandins TX = Thromboxanes LT = Leukotrienes Created from the arachidonate or EPA, which are incorporated into membranes phospholipids. In response to stimuli (hormone, etc.), phospholipase a
Ecosanoi PGD ₂ PGE ₂ PGF2a	d Major Site(s) of Synthesia mast cells kidney, spleen, heart kidney, spleen, heart	Najor Biological Artimites imbibis platistic discoglia aggregation, decreases Tooli prolitention and improports impaction and secretion of Li- IBALPHA; and L-2 induces vascillation and production of increases vascillation and cMMP production; enhancement effects of brackforms and hitamine, induction of users prolitension and improports impaction and secretion of Li- IBALPHA; and L-2 increases vascinition, biorchoconstriction and smooth contraction a thind-ived precursor to thrombourse A, and B, induction	 PG = Prostaglandins TX = Thromboxanes LT = Leukotrienes Created from the arachidonate or EPA, which are incorporated into membranes phospholipids. In response to stimuli (hormone, etc.), phospholipase <i>i</i> is activated
Elcosanol	d Major Site(s) of Synthesis mast cells kidney, spleen, heart kidney, spleen, heart many sites heart, vascular	Nace Biological Activities inhibits platelet in Alexhopts aggregation, decreases T-cell problemation and lymphocyter imgration and association of Li- IsaA.PAN-, and L-2, insuces vascilitation and processors and increases vasoBiolitation and CMM Procedocs, rehancement effects of brackfwinn and half and traction of uterime contractions and or platelet aggregation. Generases T-cell problemation and vasoConstriction and secretion of Li- IsaA.PAN and L-2, brackets vasoLinear and association a thanh-yead precursor to thomboxane A, and B, inductor platelet aggregation and vasoConstriction inhibits platelet and reasociation.	 PG = Prostaglandins TX = Thromboxanes LT = Leukotrienes Created from the arachidonate or EPA, which are incorporated into membranes phospholipids. In response to stimuli (hormone, etc.), phospholipase / is activated

