BI/CH 422/622	
OUTLINE:	ANABOLISM I: Carbohydrates
Transport Giycogenolysis Giycolysis	Carbon Assimilation - Calvin Cycle
Pasteur: Anaerobic vs Aerobic Exam-1 material	Carboxylase Know mechanism
Pyruvate Exam-2 material	Oxygenase
Krebs' Cycle	Glycolate cycle
Electron transport	Stage Two - making sugar Stage Three - remaking Ru 1 5P2
Chemiosmotic theory: Phosphorylation	Overview and regulation
Fat Catabolism Exam-3 material	Calvin cycle connections to biosynthesis
Mobilization from tissues (mostly adipose)	C4 versus C3 plants
Activation of fatty acids Transport; carnitine	Kornberg cycle – gly ox ylate
Oxidation: β-oxidation, 4 steps: Protein Catabolism	Carbohydrate Biosynthesis in Animals
Amino-Acid Degradation	Cori cycle
Dealing with the nitrogen; Urea Cycle Dealing with the carbon; Seven Families	Gluconeogenesis reversible steps
Nucleic Acid & Nucleotide Degradation	irreversible steps – four
PHOTOSYNTHESIS:	2-steps to PEP in mitochondria: Pyr carboxylase-biotin & PEPCK FBPase
Overview of Photosynthesis	G6Pase Glycogen Synthesis
Key experiments:	UDP-GIC
Light Reactions	Glycogen synthase branching
energy in a photon	Pentose-Phosphate Pathway
HOW	oxidative-NADPH _ non-oxidative-Ribose 5-P
Light absorbing complexes-"red-drop experiment"	Regulation of Carbohydrate Metabolism
Photosystems (PS)	Pyruvate/PEP
PSII – oxygen from water splitting	F6P/FBP: Fru 2,6P2 Glc/Glc6P: seguestration
Proton Motive Force - ATP	Glycogen: PKA/PP1
Overview of light reactions	Anaplerotic reactions End of Exam-4 material

Regulation of Carbohydrate		
Metabolism		
The Amount of Many Metabolic Enzymes Is Controlled by Transcription		
TABLE 15-5 Some of the Many Genes Regulated by Insulin		
Change in gene expression	Role in glucose metabolism	
Increased expression Hexokinase II Hexokinase IV Phosphofructokinase-1 (PFK-1) PFK-2/FBPase-2 Pyruvate kinase	Essential for glycolysis, which consumes glucose for energy	
Glucose 6-phosphate dehydrogenas 6-Phosphogluconate dehydrogenas Malic enzyme	e Produce NADPH, which is essential for conversion of glucose to lipids	
ATP-citrate lyase Pyruvate dehydrogenase	Produce acetyl-CoA, which is essential for conversion of glucose to lipids	
Acetyl-CoA carboxylase Fatty acid synthase complex Stearoyl-CoA dehydrogenase Acyl-CoA–glycerol transferases	Essential for conversion of glucose to lipids	
Decreased expression PEP carboxykinase Glucose 6-phosphatase (catalytic su	Essential for glucose production by gluconeogenesis	

ANABOLISM I: Summary

What we learned:

- Gluconeogenesis, a process by which cells can use a variety of metabolites for the synthesis of glucose
- The differences between glycolysis and gluconeogenesis
 - how they are both made thermodynamically favorable
 - how they are differentially regulated to avoid a futile cycle
- The pentose phosphate pathway, a process by which cells can generate pentose phosphates and NADPH. The pentose phosphates can be regenerated into glucose 6-phosphate, for which NO ATP is required.
- living organisms regulate the flux of metabolites through metabolic pathways by: - increasing or decreasing enzyme concentrations
 - activating or inactivating key enzymes in the pathway
- the activity of key enzymes in glycolysis and gluconeogenesis is tightly and coordinately regulated via various activating and inhibiting metabolites (Fru 2,6P2)
- glycogen synthesis and degradation is regulated by hormones insulin, epinephrine, and glucagon that report on the levels of glucose in the body
- the citric acid cycle plays important anabolic roles in the cell: Anaplerosis
- organisms have multiple ways to replenish intermediates that are used in other pathways: Lipid and Nitrogen biosynthesis......

End of Material for Exam 4

ANABOLISM II: Biosynthesis of Fatty Acids & Lipids

ANABOLISM II: Biosynthesis of Fatty Acids & Lipids

- 1. Biosynthesis of fatty acids
- 2. Regulation of fatty acid degradation and synthesis
- 3. Assembly of fatty acids into triacylglycerol and phospholipids
- 4. Metabolism of isoprenes
 - a. Ketone bodies and Isoprene biosynthesis
 - b. Isoprene polymerization
 - i. Cholesterol
 - ii. Steroids & other molecules
 - iii. Regulation
 - iv. Role of cholesterol in human disease

