









Regulation of Carbohydrate Metabolism Amount of Many Metabolic Enzymes Is Controlled by Transcriptio TABLE 15-5 Some of the Many Genes Regulated by Insulin	
Change in gene expression	Role in glucose metabolism
Increased expression Hexokinase II Hexokinase IV Phosphofructokinase-1 (PFK-1) PFK-2/FBPase-2 Pyruvate kinase	Essential for glycolysis, which consumes glucose for energy
Glucose 6-phosphate dehydrogenase 6-Phosphogluconate dehydrogenase Malic enzyme	Produce NADPH, which is essential for conversion of glucose to lipids
ATP-citrate lyase Pyruvate dehydrogenase	Produce acetyl-CoA, which is essential for conversion of glucose to lipids
Acetyl-CoA carboxylase Fatty acid synthase complex Stearoyl-CoA dehydrogenase Acyl-CoA–glycerol transferases	Essential for conversion of glucose to lipids
Decreased expression PEP carboxykinase Glucose 6-phosphatase (catalytic subunit	Essential for glucose production by gluconeogenesis

Anaplerotic Reactions

Kornberg Cycle = Glyoxylate Cycle

Dr. Kornberg Discovers the Glyoxylate Cycle

Anaplerotic Reactions Pyruvate carboxylase deficiency · Intermediates in the citric acid cycle - an inherited metabolic disorder where can be used in biosynthetic pathways. anaplerosis is greatly reduced. - What is the problem? Must replenish the intermediates in - How to treat this disorder? order for the cycle and central - Other anaplerotic substrates such as metabolic pathway to continue. the odd-carbon-containing triglyceride triheptanoin are used · In animals, these 4-carbon intermediates are formed by Enzyme carboxylation of 3-carbon precursors. Kornberg discovered TABLE 16-2 Anaplerotic Reactions Reaction Tissue(s)/organism(s) Pyruvate + HCO_3^- + $ATP \xrightarrow{\text{pyruvate carboxylase}}$ oxaloacetate + $ADP + P_i$ Liver, kidney Phosphoenolpyruvate + CO₂ + GDP with a constraint of the second seco Heart, skeletal muscle Phosphoenolpyruvate + HCO_3^{-} $\xrightarrow{PEP carboxylase}$ oxaloacetate + P_i Higher plants, yeast, bacteria Pyruvate + HCO_{2}^{-} + $NAD(P)H \xrightarrow{\text{malic enzyme}}$ malate + $NAD(P)^{+}$ Widely distributed in eukaryotes and bacteria MP deaminase, adenylosuccinate NH4⁺ + GDP + Pi + Fumarate Aspartate + GTP Muscle

ANABOLISM I: Summary

What we learned:

- Gluconeogenesis, a process by which cells can use a variety of metabolites for the synthesis of glucose
- The differences between glycolysis and gluconeogenesis
 - how they are both made thermodynamically favorable
 - how they are differentially regulated to avoid a futile cycle
- The pentose phosphate pathway, a process by which cells can generate pentose phosphates and NADPH. The pentose phosphates can be regenerated into glucose 6phosphate, for which NO ATP is required.
- living organisms regulate the flux of metabolites through metabolic pathways by:
 - increasing or decreasing enzyme concentrations
 - activating/inactivating key enzymes in the pathway by phosphorylation/de phosphorylation
- the activity of key enzymes in glycolysis and gluconeogenesis is tightly and coordinately regulated via various activating and inhibiting metabolites (Fru 2,6P2)
- glycogen synthesis and degradation is regulated by hormones insulin, epinephrine, and glucagon that report on the levels of glucose in the body
- the citric acid cycle plays important anabolic roles in the cell: Anaplerosis
- organisms have multiple ways to replenish intermediates that are used in other pathways: Lipid and Nitrogen biosynthesis......