

Biochemistry II (BB 422/622)

Review of 421

Goals of 422

Review of chemical principles

Thermo

C/O cycles

Overview of Metabolism

ATP cycles

Energy Coupling

Chemical Reactivity } Common types of organic
chemistry reaction mechanisms

Bioenergetics

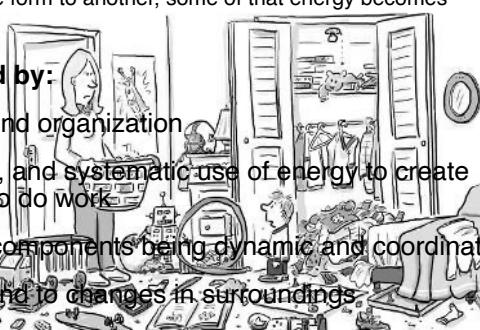
Membrane transport

6

Energetics of Life

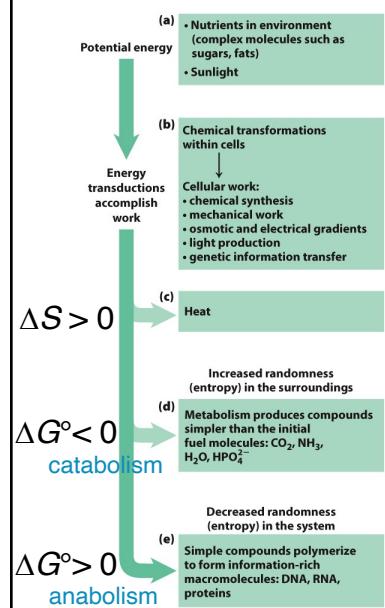
The **laws of thermodynamics** apply to all matter and all energy transformations in the Universe.

1st & 2nd Laws of Thermodynamics:


1) Energy can never be created or destroyed, but can be interconverted.

2) The universe tends toward more disorder (randomness)

[When energy is converted from one form to another, some of that energy becomes unavailable to do work.]


Living matter is characterized by:

- a high degree of complexity and organization
- the extraction, transformation, and systematic use of energy to create and maintain structures and to do work
- the interactions of individual components being dynamic and coordinated
- the ability to sense and respond to changes in surroundings
- a capacity for fairly precise self-replication while allowing enough change for evolution

7

Organisms Use the First Law Big-time (performing energy transformations) to Stay Alive

Favorable and Unfavorable Reactions

- The breakdown of some metabolites releases a significant amount of energy (**exergonic**).
 - Their cellular concentration is far higher than their equilibrium concentration.
 - Metabolites, such as ATP, NADH, NADPH, can be synthesized using the energy from sunlight and fuels.....
- Synthesis of complex molecules and many other metabolic reactions requires energy (**endergonic**).
 - A reaction might be thermodynamically unfavorable ($\Delta G^\circ > 0$).
 - Creating order requires work and energy.

Biochemistry couples exergonic with endergonic reactions to ensure organisms continue to grow and divide.

8

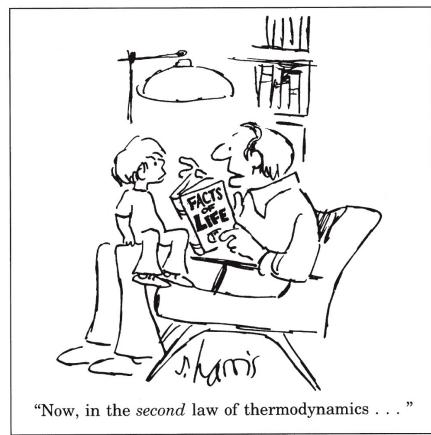
Energetics of Life

- Living organisms cannot create energy from nothing.
- Living organisms cannot destroy energy into nothing.
- Living organisms may transform energy from one form to another.
- In the process of transforming energy, living organisms must increase the entropy of the universe.
- In order to maintain organization within themselves, living systems must be able to extract useable energy from their surroundings and release useless energy (heat) back to their surroundings.

9

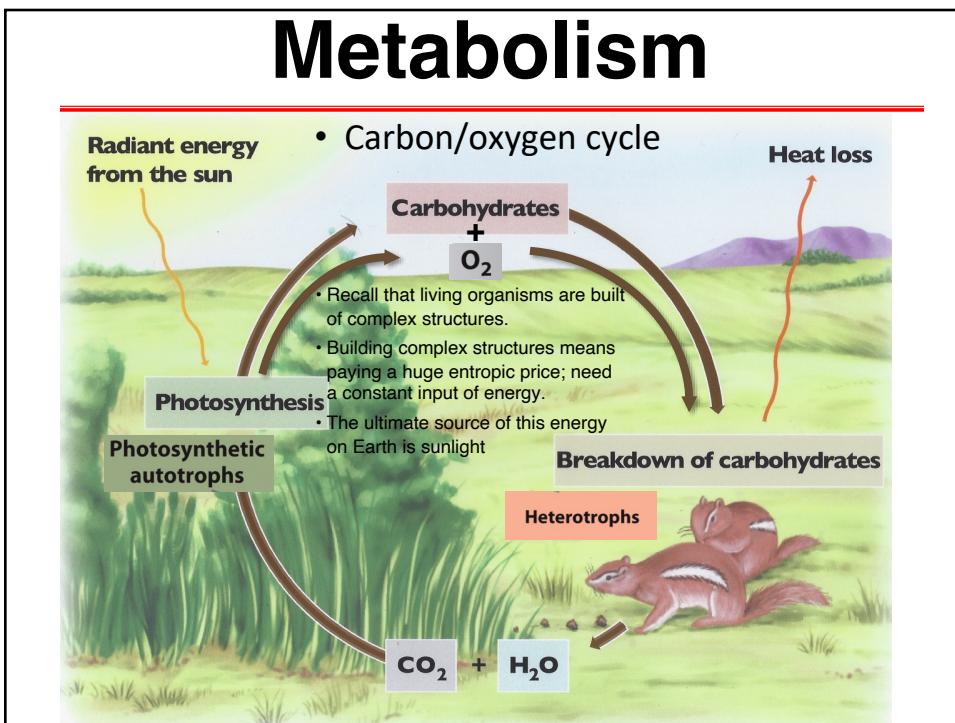
2

Overview of Metabolism

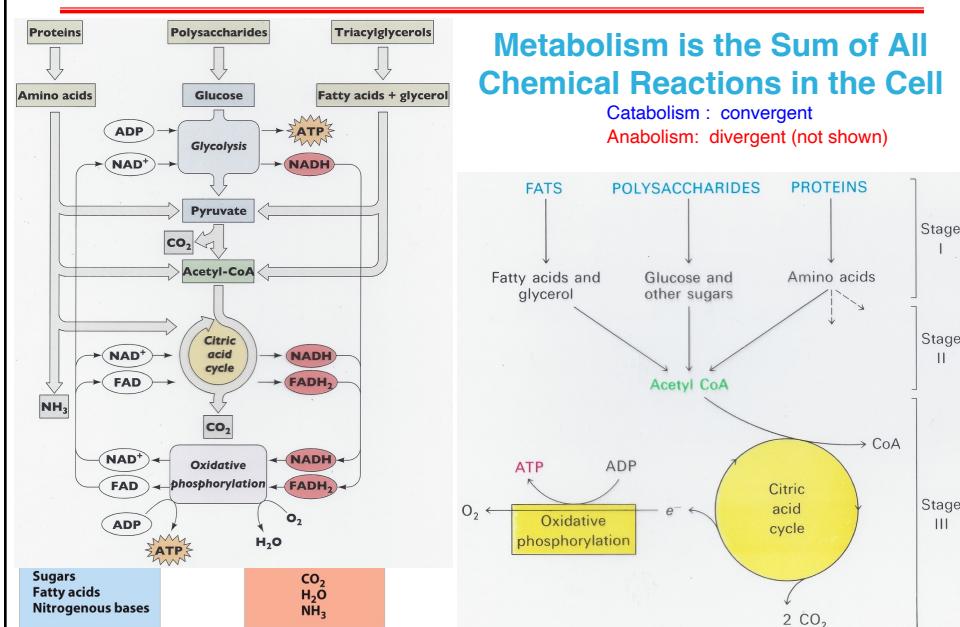

10

Metabolism

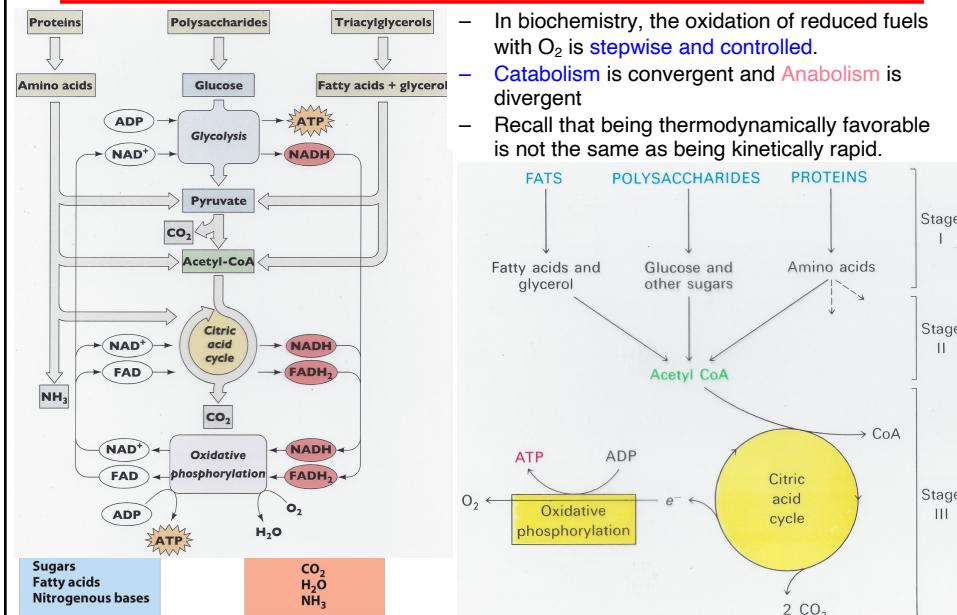
Issues:


- Thermodynamics and biochemistry; carbon/oxygen cycle & nitrogen cycle
- Common organic chemistry principles in biochemistry
- Some biomolecules are “high energy” with respect to their hydrolysis and group transfers.
- Energy stored in reduced organic compounds can be used to reduce cofactors such as NAD^+ and FAD , which serve as universal electron carriers and lead to ATP formation.

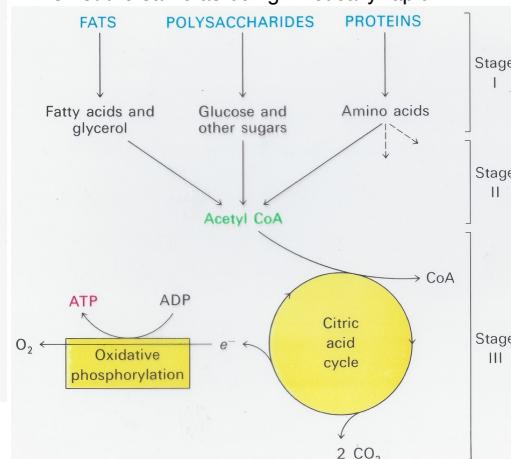
Unnumbered 13 p496
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company


11

Metabolism


12

Metabolism



13

Metabolism

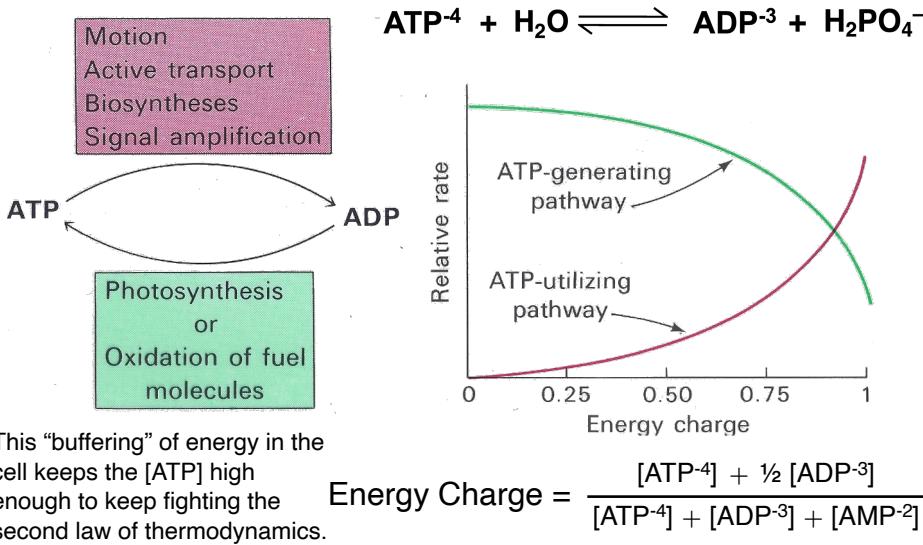
- In biochemistry, the oxidation of reduced fuels with O₂ is **stepwise and controlled**.
- **Catabolism** is convergent and **Anabolism** is divergent
- Recall that being thermodynamically favorable is not the same as being kinetically rapid.

14

Metabolism

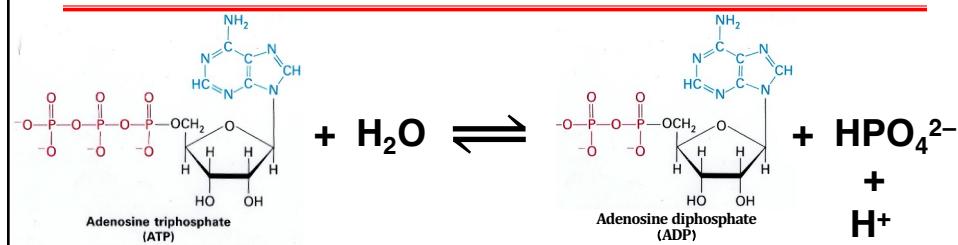
NAD⁺ and NADP⁺ Are Common Redox Cofactors

- These are commonly called pyridine nucleotides.
- They **can dissociate** from the enzyme after the reaction.
- In a typical biological oxidation reaction, **hydride (H:⁻)**, from an alcohol is transferred to NAD⁺, giving NADH.


FAD and FMN are another Common Redox Cofactors

- These are commonly called flavins.
- They are usually **covalently bound** at the active site of enzymes.
- They can undergo both 1-electron and 2-electron redox reactions.

15


Metabolism

THE ATP CYCLE

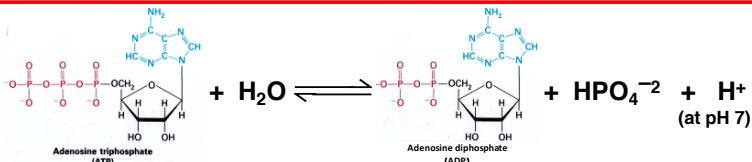
16

Metabolism

If this reaction is allowed to come to equilibrium, what is the ΔG ?

Recall, at equilibrium, $\Delta G=0$

Also, recall that the actual free-energy change of a reaction depends on:


- A constant (the standard change in free energy, ΔG°)
- actual concentrations of products and reactants
- For the reaction $aA + bB \rightleftharpoons cC + dD$:

[In biochemistry, we add a prime (') because we pull $[\text{H}^+]$ out of the expression and set it to 10^{-7} , not 1 M]

$$\Delta G' = \Delta G^\circ + RT \ln \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

17

Metabolism

At equilibrium, $\Delta G = 0$

$$\Delta G' = \Delta G^\circ + RT \ln \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

BUT, If we are at equilibrium, this equation becomes:

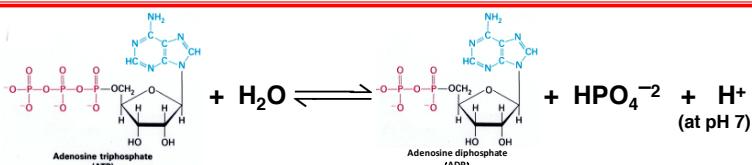
$$\Delta G' = \Delta G^\circ + RT \ln K'_{eq}$$

$$\Delta G^\circ = -RT \ln K'_{eq}$$

For the above reaction (hydrolysis of ATP):

$$\Delta G^\circ = -7.3 \text{ kcal/mole}$$

TABLE 13-3 Relationships among K'_{eq} , ΔG° , and the Direction of Chemical Reactions		
When K'_{eq} is ...	ΔG° is ...	Starting with all components at 1 M, the reaction ...
>1.0	negative	proceeds forward
1.0	zero	is at equilibrium
<1.0	positive	proceeds in reverse

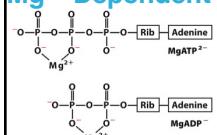

But, what is the actual $\Delta G'$ of ATP Hydrolysis IN THE CELL?

K'_{eq}	ΔG°	
	(kJ/mol)	(kcal/mol) ^a
10 ³	-17.1	-4.1
10 ²	-11.4	-2.7
10 ¹	-5.7	-1.4
1	0.0	0.0
10 ⁻¹	5.7	1.4
10 ⁻²	11.4	2.7
10 ⁻³	17.1	4.1
10 ⁻⁴	22.8	5.5
10 ⁻⁵	28.5	6.8
10 ⁻⁶	34.2	8.2

^a A kcal/mol and 1000 cal/mol are the standard units of energy and are used throughout this text. In addition, standard conditions are 1 atm and 25 °C. Values in kcal/mol are 4.184 times larger than in kJ/mol. To convert from kJ/mol to kcal/mol, divide the number of kilojoules by 4.184.

18

Metabolism



Go back the original equation: $\Delta G' = \Delta G^\circ + RT \ln \frac{[C]^c [D]^d}{[A]^a [B]^b}$

$$\Delta G = \Delta G^\circ + RT \ln \frac{[MgADP^2-] \cdot [P_i]}{[MgATP^2-]}$$

At 25 °C:

ΔG° of ATP Hydrolysis is Mg⁺⁺ Dependent

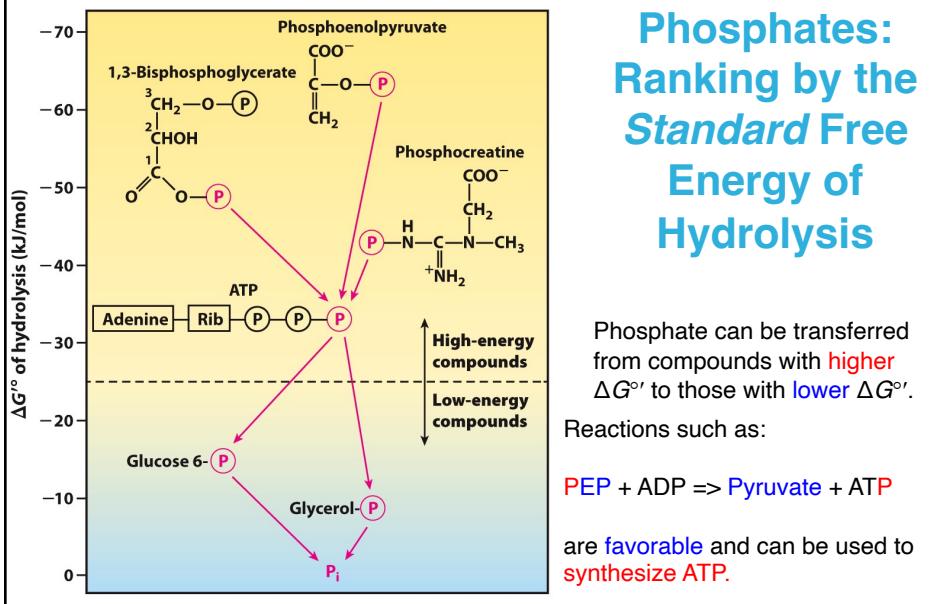
$$\Delta G' = \Delta G^\circ + RT \ln \frac{[ADP^3-] [HPO_4^{2-}]}{[ATP^4-]}$$

$$\Delta G' = \Delta G^\circ + 0.59 \ln \frac{[ADP^3-] [HPO_4^{2-}]}{[ATP^4-]}$$

$$\Delta G' = \Delta G^\circ + 1.36 \log (1.5 \times 10^{-4})$$

$$\Delta G' = (-7.3) + (-5.2) \quad \text{WOW! Other than concentrations, what makes the } \Delta G' \text{ of ATP so high?}$$

$$\Delta G' = -12.5 \text{ kcal/mole}$$


19

Metabolism

21

Metabolism

22

Metabolism

TABLE 13-5 Total Concentrations of Adenine Nucleotides, Inorganic Phosphate, and Phosphocreatine in Some Cells

	Concentration (mM) ^a				
	ATP	ADP ^b	AMP	Energy Charge	P _i
Rat hepatocyte	3.38	1.32	0.29	0.81	4.8
Rat myocyte	8.05	0.93	0.04	0.94	8.05
Rat neuron	2.59	0.73	0.06	0.87	2.72
Human erythrocyte	2.25	0.25	0.02	0.94	1.65
<i>E. coli</i> cell	7.90	1.04	0.82	0.86	7.9

^a For erythrocytes the concentrations are those of the cytosol (human erythrocytes lack a nucleus and mitochondria). In the other types of cells the data are for the entire cell contents, although the cytosol and the mitochondria have very different concentrations of ADP. PCr is phosphocreatine, discussed on p. 516.

^b This value reflects total concentration; the true value for free ADP may be much lower (p. 509).

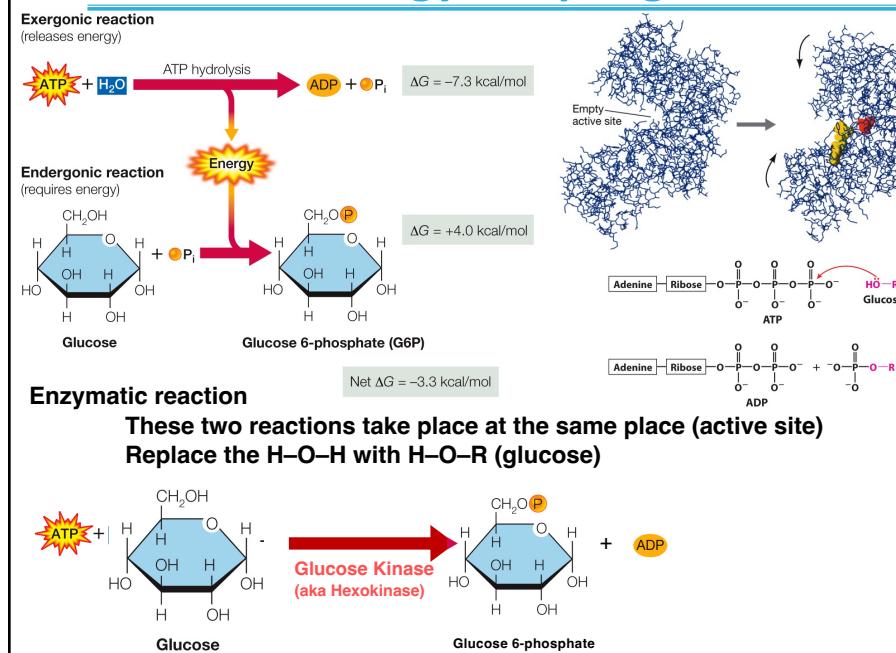
Cellular ATP concentration is usually far **above the equilibrium concentration**, making ATP a very potent source of chemical energy.

23

Energy Coupling

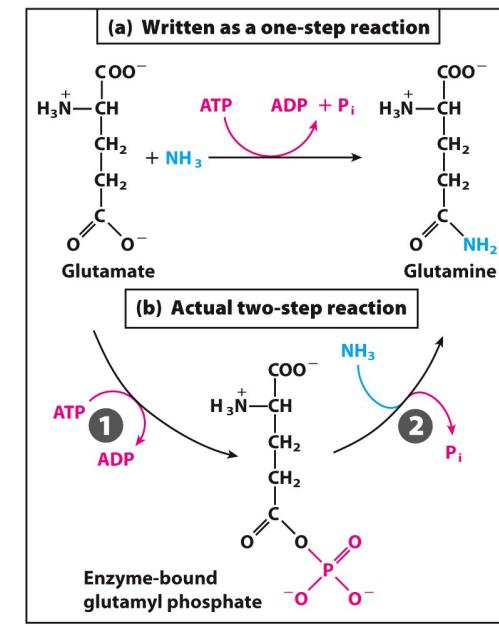
Recall that metabolism must deal with both **Favorable and Unfavorable Reactions**

Biochemistry couples exergonic with endergonic reactions to ensure organisms continue to grow and divide.


24

Energy Coupling

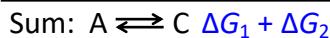
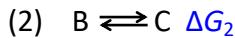
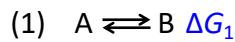
- Question is how do cells use these “high-energy compounds” to ensure that thermodynamically unfavorable reactions can become favorable?
- Chemical coupling of exergonic and endergonic reactions allows otherwise unfavorable reactions.
- TWO basic mechanisms:
 - e.g., The hydrolysis of the “high-energy” molecule (ATP), which is exergonic, is coupled with an otherwise endergonic reaction **during an enzyme mechanism**.
 - e.g., a series of otherwise endergonic reactions **during a metabolic pathway** are linked in the reaction series to an overwhelming exergonic reaction (all catalyzed by enzymes).


25

Energy Coupling

26

Energy Coupling

Two-Step Group Transfers Facilitate ATP-Dependent Reactions

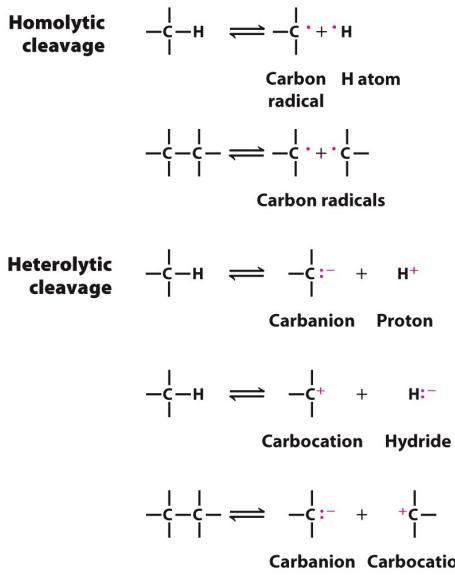
27

Energy Coupling

Standard free-energy changes are additive:

Coupling exergonic and endergonic reactions:

28

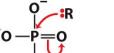
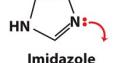

Chemical Reactivity

First lets quickly review **bond cleavage** and **nucleophilicity** in terms of biochemical instances

29

Chemical Reactivity

Chemistry at Carbon: Homolytic versus Heterolytic Cleavage



- Covalent bonds can be broken in two ways.
- Homolytic cleavage is rare in biochemistry but makes up some of the most interesting reactions.
- Heterolytic cleavage is the most common, but the products are highly unstable, dictating the chemistry that occurs..... mostly carbanion chemistry

31

12

Chemical Reactivity

Nucleophiles and Electrophiles in Biochemistry

Nucleophiles	Electrophiles
 Negatively charged oxygen (as in an unprotonated hydroxyl group or an ionized carboxylic acid)	 Carbon atom of a carbonyl group (the more electronegative oxygen of the carbonyl group pulls electrons away from the carbon)
 Negatively charged sulfhydryl	 Protonated imine group (activated for nucleophilic attack at the carbon by protonation of the imine)
 Carbanion	 Phosphorus of a phosphate group
 Uncharged amine group	 Proton
 Imidazole	
 Hydroxide ion	

Definition: *-phile* (suffix, Latin): to love, or demonstrate fondess towards

- Nucleophiles love nuclei. The nuclei of an atom contains positively charged particles (protons), so nucleophiles love to react with positive charges and are electron rich.
- Electrophiles love electrons. Electrons are negatively charged, so electrophiles must be positively charged.

33

Chemical Reactivity

Most biochemical reactions fall within only a few categories:

- Cleavage and formation of C–C bonds
- Cleavage and formation of polar covalent bonds
- (Addition-Elimination Reactions)
 - nucleophilic substitution mechanism
 - addition–elimination mechanism
 - hydrolysis and condensation reactions
 - Eliminations (without cleavage)
- Internal rearrangements
- Group transfers (H⁺, CH₃, PO₃²⁻, NH₃⁺)
- Oxidations-reductions (e⁻ transfers)

34