

BI/CH 422/622

OUTLINE:

Introduction and review	
Fermentation	
Glycogenolysis	
Glycolysis	
Other sugars	
Pasteur: -Aerobic vs Aerobic	
Fermentations	Exam-1 material
Pyruvate	
Krebs' Cycle	
Oxidative Phosphorylation	
Electron transport	
Chemiosmotic theory	
Phosphorylation	
Fat Catabolism	
Fatty acid Catabolism	Exam-3 material
Mobilization from tissues (mostly adipose)	
Activation of fatty acids	
Transport; carnitine	
Oxidation: β -oxidation, 4 steps:	
Saturated FA	
Unsaturated FA	
Odd-chain FA	
Ketone Bodies	
Protein Catabolism	
Digestion, lysosome, Ubiquitin-Proteosome	
Amino-Acid Degradation	
Dealing with the nitrogen	
Urea Cycle	
Dealing with the carbon	
Seven Families	
One-carbon (1-C) metabolism; THF, SAM	
PLP uses	
Convergence with Fatty acid-odd chain	
Nucleic Acid & Nucleotide Degradation	
Nucleic Acids	
Nucleotides	
Salvage pathway	
Degradation of purines	
Degradation of pyrimidines	

ANABOLISM I: Carbohydrates

PHOTOSYNTHESIS:

Overview of Photosynthesis

Key experiments:

Light Reactions

energy in a photon

pigments

HOW

Light absorbing complexes - "red-drop experiment"

Reaction center

Photosystems (PS)

PSII - oxygen from water splitting

PSI - NADPH

Proton Motive Force - ATP

Overview of light reactions

Carbon Assimilation - Calvin Cycle

Stage One - Rubisco

Carboxylase

Oxygenase

Glycolate cycle

Stage Two - making sugar

Stage Three - remaking Ru 1,5P₂

} Know mechanism

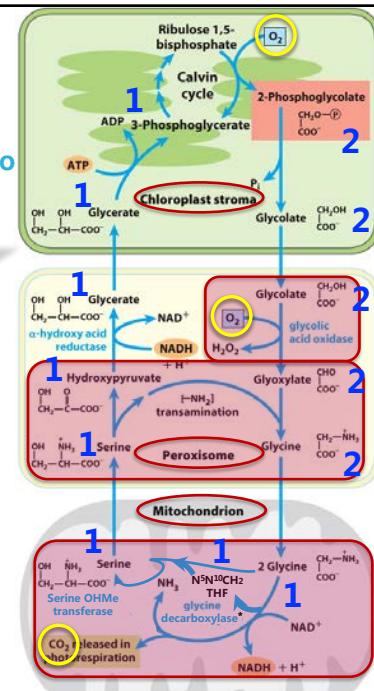
Overview and regulation

Calvin cycle connections to biosynthesis

C4 versus C3 plants

Kornberg cycle - glyoxylate

Photorespiration


First Stage of Calvin Cycle

Dealing with the oxygenase activity of rubisco

The Glycolate Pathway*

- Complex ATP-consuming process for the recovery of C₂ fragments from **photorespiration**. 1st Glycolate is made.
- Uses three organelles
- Loss of C as CO₂ by mitochondrial decarboxylation of glycine (see Pyr family)
- Two 2-PGs are converted to Ser + CO₂.**
- The Ser is cycled back to the chloroplast to generate one 3-PGA.
- Whole cycle costs an ATP per **1** 3-PGA converted back

*Don't confuse with the glyOXylate Cycle

*called Glycine Cleavage Enzyme in bacteria

Photosynthesis

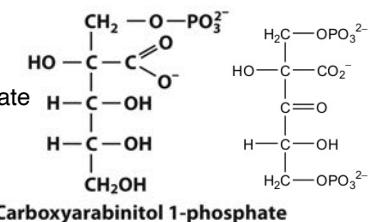
First Stage of Calvin Cycle

Regulation of RUBISCO activity

Rubisco is Inhibited by Several Criteria:

1. pH

- In the stroma the pH is ~8 when light is on
- pH decreases in the dark; rubisco inactive at low pH


2. CO₂ (for the carbamoylation of Lys-210; also better at higher pH)

3. NADPH (indirectly through rubisco activase)

4. a "Nocturnal" Inhibitor

- **2-carboxyarabinitol 1-phosphate** inhibits carbamoylated Rubisco.

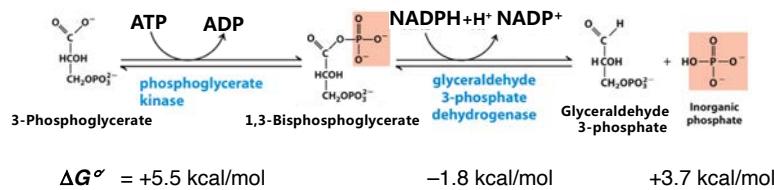
- transition state analog of β -keto acid intermediate
- synthesized in the dark in some plants

2-Carboxyarabinitol 1-phosphate

Photosynthesis

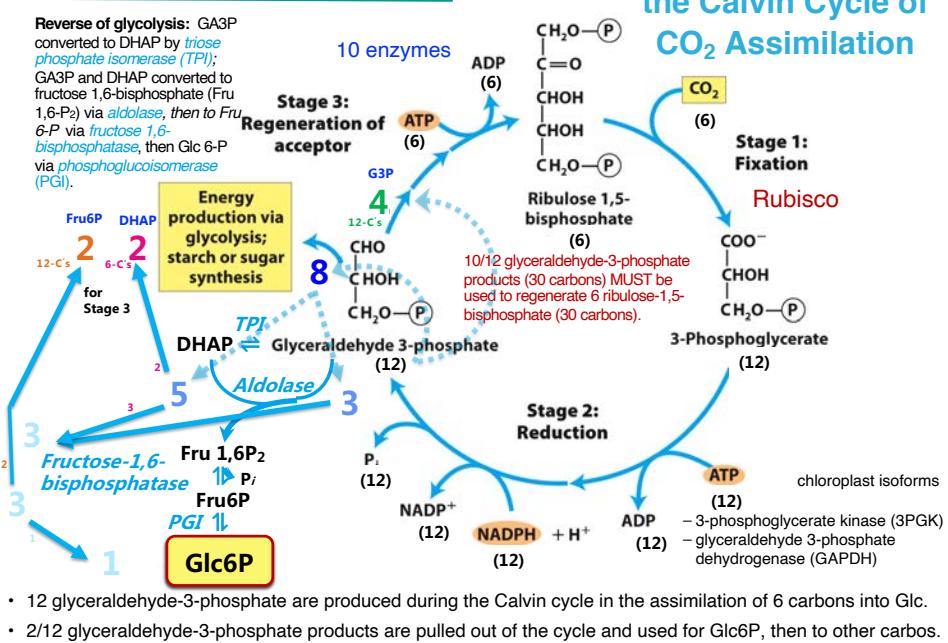
The Three Stages of the Calvin Cycle of CO₂ Assimilation

Overall: 6 CO₂ + 12 NADPH + 10 H₂O + 18 ATP \rightarrow 2 glyceraldehyde 3-phosphate (GA3P) + 4 H⁺ + 12 NADP⁺ + 18 ADP + 16 P_i

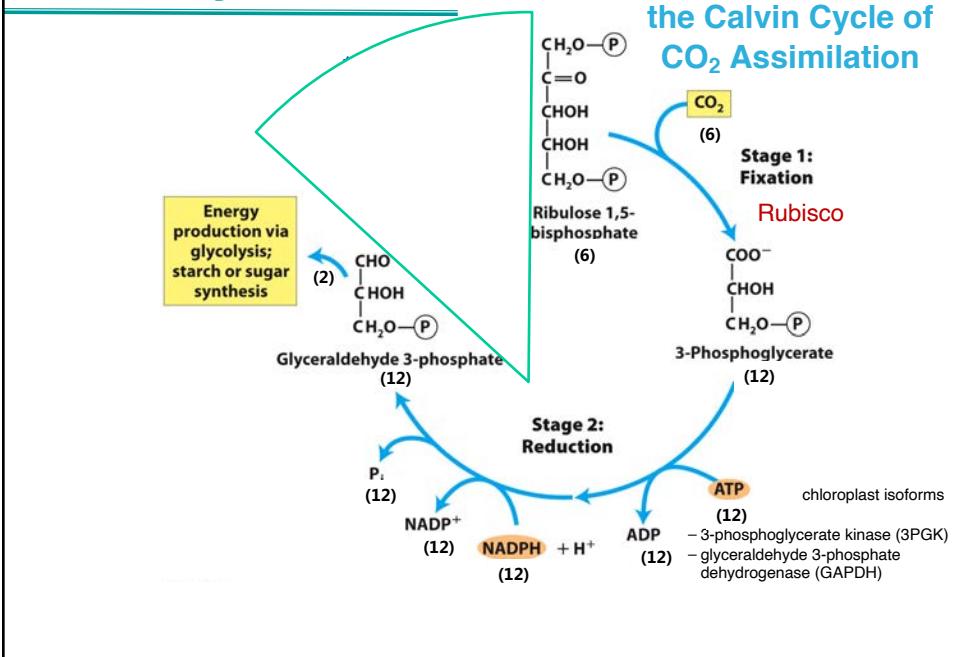

chloroplast isoforms
- 3-phosphoglycerate kinase (3PGK)
- glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

Photosynthesis

Second Stage of Calvin Cycle: making Glucose 3-PGA Reduced to GA3P



- Requires most of the ATP and NADPH from photosynthesis at ratio of 12:12
- Reverse of the key reactions in glycolysis (except NADPH used rather than NADH)
 - uses chloroplast isozymes of 3-phosphoglycerate kinase (3-PGK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
- Driven forward by high concentration of NADPH and ATP in the chloroplast stroma; and the pulling of GA3P and P_i by the cycle and ATP synthase


Photosynthesis

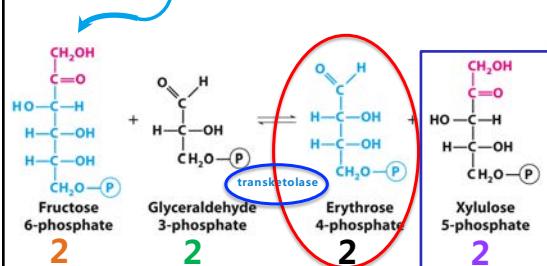
The Three Stages of the Calvin Cycle of CO₂ Assimilation

Photosynthesis

The Three Stages of the Calvin Cycle of CO_2 Assimilation

Photosynthesis

Third Stage of Calvin Cycle

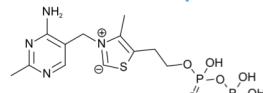

Stage 3: Regeneration of Ru 1,5-P₂

1. We have 3- and 6-carbon compounds and need 5-carbon compounds: put 2 together to make 6 (stop at Fru6P), then can pull 2 carbons from 6 (leaving 4) and with another 3 carbon compound make a 5-carbon sugar.

DO THIS TWICE.

The 2 Fru6P, plus 2 more GA3P to make 2 5-carbon sugars (Xyl5P).

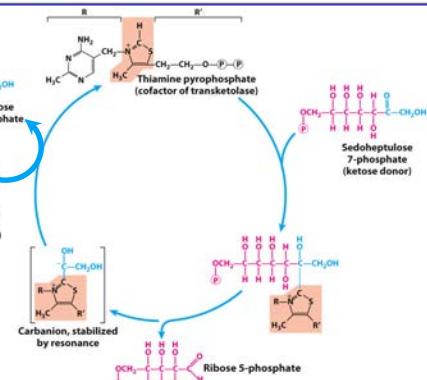
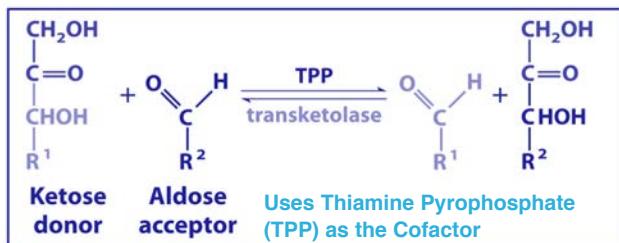
From 4/8 GA3P*

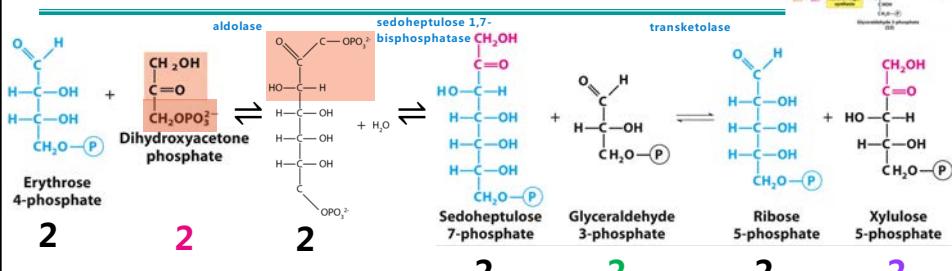

10 \rightarrow use 6 GA3P
 4 GA3P \rightarrow 2 Fru 6-P
 2 GA3P \rightarrow 2 Xyl 5-P
 + 2 Ery 4-P

*the other 4 go to make Glc() and DHAP(2)

Mechanism

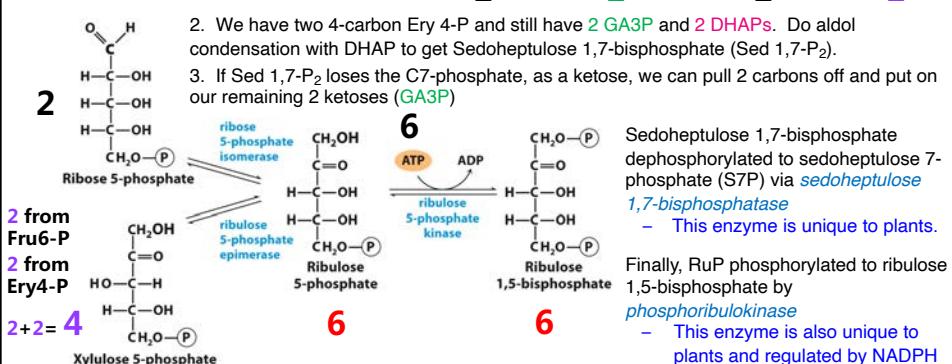
Photosynthesis



Transketolase:
exchange of 2C
from ketose to an
aldose acceptor


- Contains thiazolium anion for nucleophilic attack on carbonyls of ketose

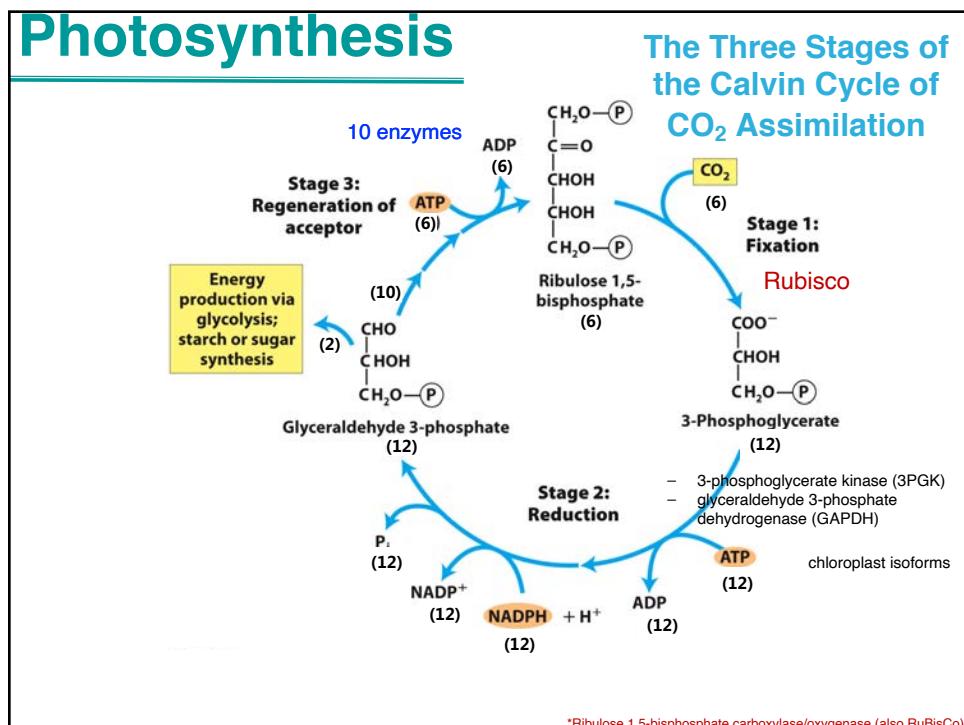
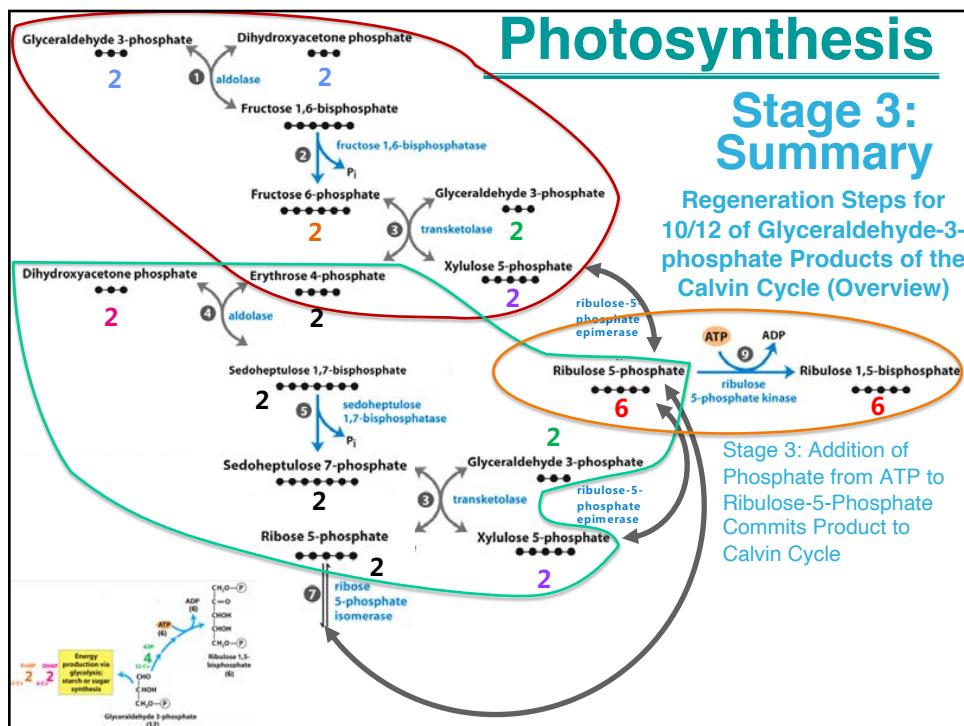
- Also used by:

- pyruvate dehydrogenase in acetyl CoA formation
- pyruvate decarboxylase in ethanol metabolism
- α -ketoglutarate dehydrogenase in CAC
- Branched-chain amino acid dehydrogenase
- transketolase in pentose phosphate pathway

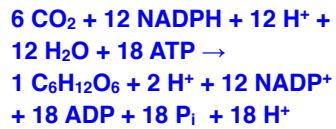


Stage 3 Photosynthesis

2. We have two 4-carbon Ery 4-P and still have **2 GA3P** and **2 DHAPS**. Do aldol condensation with DHAP to get Sedoheptulose 1,7-bisphosphate (Sed 1,7-P₂).

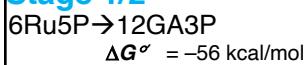


3. If Sed 1,7-P₂ loses the C7-phosphate, as a ketose, we can pull 2 carbons off and put on our remaining 2 ketoses (GA3P)

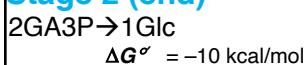
Sedoheptulose 1,7-bisphosphate
dephosphorylated to sedoheptulose 7-
phosphate (S7P) via *sedoheptulose*
1,7-bisphosphatase


Finally, RuP phosphorylated to ribulose 1,5-bisphosphate by *phosphoribulokinase*

- This enzyme is also unique to plants and regulated by NADPH

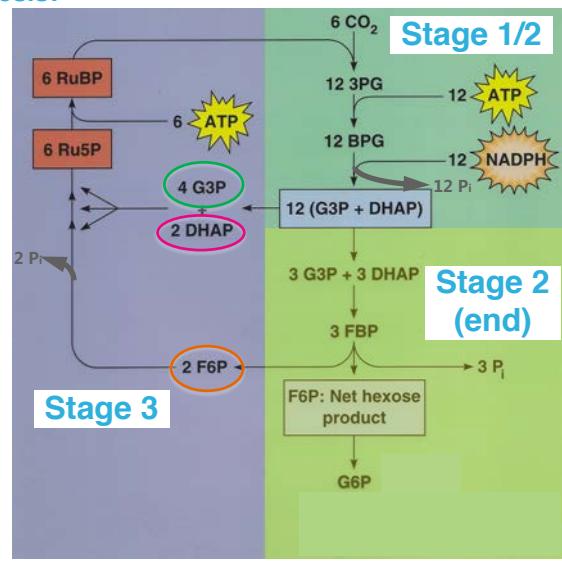
Photosynthesis


Stoichiometry and Energetics of CO₂ Assimilation in the Calvin Cycle & NET Reaction for Photosynthesis:

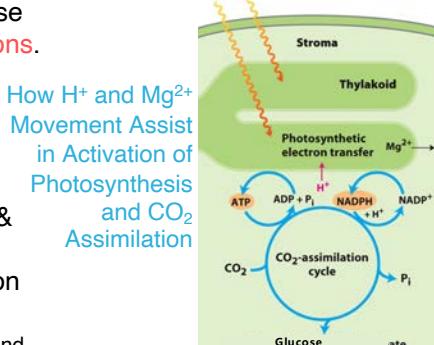

This is 3:2 ATP:NADPH! (from 8 photons)

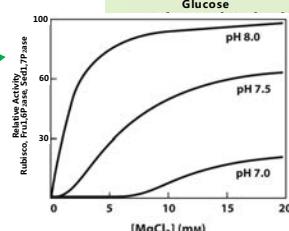
For every NADPH, 4 photons needed
 \therefore need $12 \times 4 = 48$ photons to make 1 Glc

Stage 1/2


Stage 2 (end)

Stage 3


NET: $-104/6 = -17.3$ per CO₂

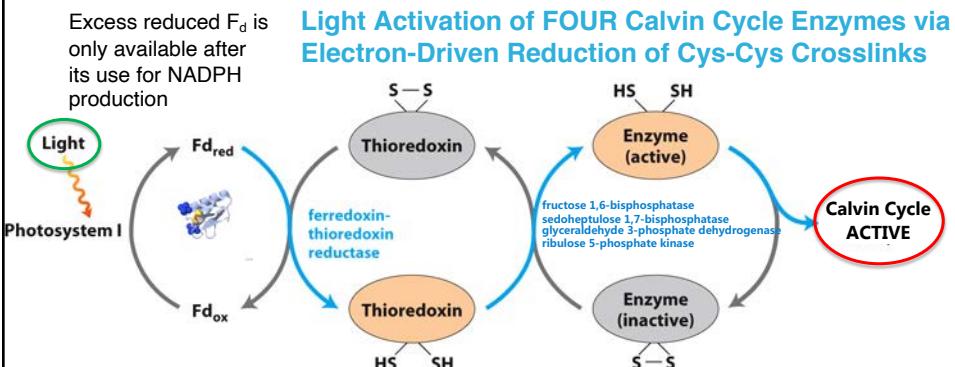

Photosynthesis

Photosynthesis: Control by Light and CO₂ to Glucose

- The assembly of one molecule of glucose requires the capture of roughly **48 photons**.
 - H⁺ move from the stroma to the thylakoid
 - creates alkaline conditions in the stroma
- Accompanied by Mg²⁺ transport from thylakoid to stroma
- Enzyme for photosynthesis and CO₂ assimilation more active in the alkaline & high [Mg²⁺] conditions of the stroma
- This is a source of coordinated regulation by several enzymes:
 - Target enzymes regulated by NADPH, Mg²⁺, and pH, or all three are:
 - Rubisco
 - fructose 1,6-bisphosphatase
 - sedulosephosphate 1,7-bisphosphatase
 - glyceraldehyde 3-phosphate dehydrogenase
 - ribulose 5-phosphate kinase (phosphoribulokinase)

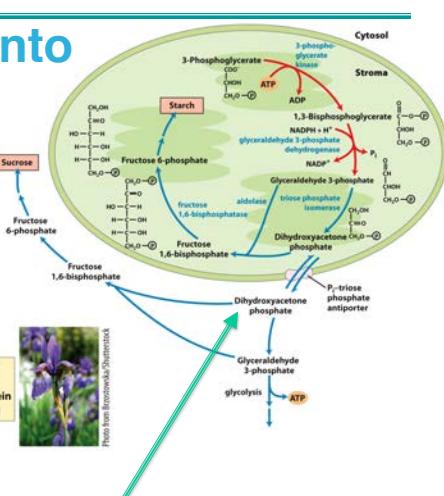
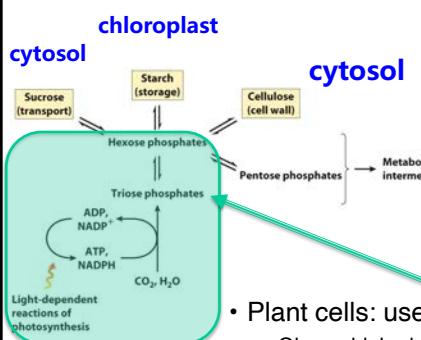
How are these regulated by NADPH?

Photosynthesis


Photosynthesis: Control from Light and CO₂ to Glucose

Target enzymes regulated by Fd:NADPH:

fructose 1,6-bisphosphatase
sedulohexitose 1,7-bisphosphatase
glyceraldehyde 3-phosphate dehydrogenase
ribulose 5-phosphate kinase (phosphoribulokinase)
Rubisco activase



If oxidized (Cys residues in Cys-Cys disulfide form) → enzymes are inactive.

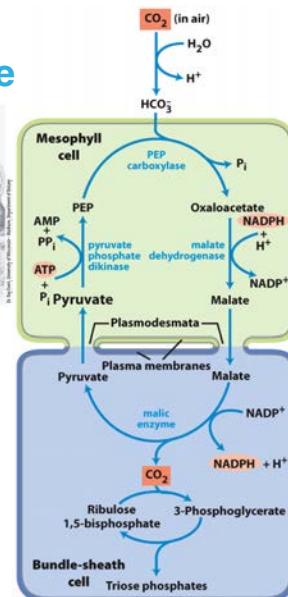
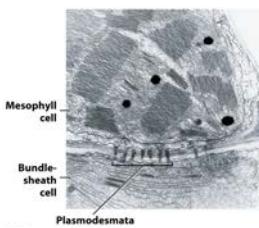
In light, photosystem I sends e⁻ to *ferredoxin*, which sends them to *thioredoxin*, which donates them to disulfide bonds to reduce them to free Cys.

Photosynthesis

Assimilation of CO₂ into Biomass

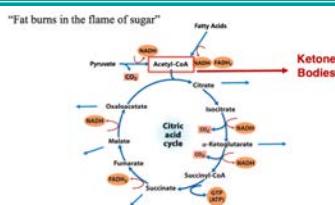
- Plant cells: use 3-C intermediates for further synthesis
 - Glyceraldehyde 3-phosphate (G3P) is the most important one.
 - made from CO₂, H₂O, plus ATP and NADPH from photosynthesis

Photosynthesis



The C₄ Pathway

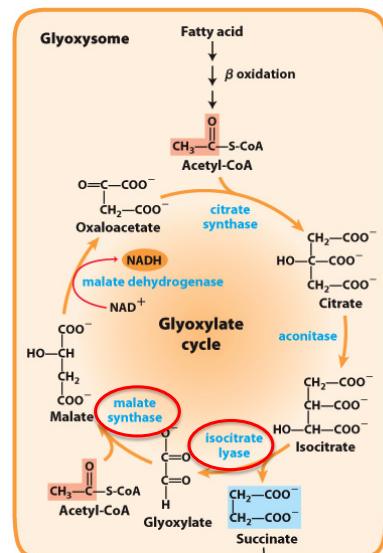
C₄ versus C₃ Plants; Benefits of C₄ Plants: Heat and Drought Resistance

- C₄ plants (tropical, hot climates) have an earlier step, in different cells, that isolate Rubisco from the air.


– In heat, the Rubisco's oxidase is favored.
– C₄ plants spatially separate CO₂ fixation from rubisco activity, resulting in less reaction of rubisco with oxygen and avoidance of the costly glycolate pathway.

- Physical separation of reactions:
 - CO₂ is captured into **oxaloacetate** in **mesophyll cells** of the leaf.
 - Oxaloacetate then passes into **bundle-sheath cells** where CO₂ is released for Rubisco.
- The C₄ pathway has a higher energy cost than the glycolate cycle on a stoichiometric basis, but its all about the ratio of carboxylase:oxidase. This pathway has overall increased efficiency in heat.
- Another pathway to avoid photorespiration was first discovered in **Crassulaceae (Crassulacean Acid Metabolism (CAM))** in high, dry conditions
 - Stomata open/close; the CO₂ from C4 fixation is stored as malate in **vacuoles**.

Photosynthesis


Recall in animals:

GlyOXylate Cycle

Kornberg Cycle Plants Use Fats and Proteins for Carbohydrate Synthesis:

- In the TCA cycle, in the **glyoxysome**, instead of burning isocitrate, it short circuits TCA, taking isocitrate directly to succinate
- The result is the glyoxylate intermediate
- Re-cycle this glyoxylate by making malate from more acetyl CoA in a similar reaction as citrate synthase

We'll come back to this later.....

Photosynthesis: Carbon Fixation Summary

We learned that:

- ATP and NADPH from photosynthesis are needed in order to assimilate CO_2 into carbohydrates by **Rubisco**
- This key enzyme of the Calvin cycle fixes carbon dioxide as well as oxygen.
- assimilations of six CO_2 molecules via the Calvin cycle lead to the formation of one molecule of **glucose** for use in **anabolic** reactions
- enzymes of Calvin Cycle have common regulation mechanisms via pH, Mg^{2+} , and/or NADPH (F_d)
- low selectivity of rubisco causes a wasteful incorporation of molecular oxygen in C_3 plants. C_4 and CAM plants have evolved separate methods for reducing this waste.
- plants can convert acetyl-CoA into carbohydrates via the **Kornberg Cycle (glyoxylate cycle)**