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Photosynthesis
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Photosynthesis
Light Energy is Converted to ATP

Chloroplast

Light converts Electron carriers pump
H,0 to a good H* in as electrons flow
e~ donor. to NADP.
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Photosynthesis

Summary of light reactions:

* Photosynthetic organisms capture energy from light at a
variety of wavelengths using accessory pigments and funnel it
via excitons to reaction centers: P680 & P700.

* In plants, electrons are freed from H,0, which generates O,
and H*. The electrons popping out of the reaction centers
reduce PQ, which moves them through the photosynthetic
electron-transport chain (cytb,f).

* Per oxygen (O,) produced from 4 photons in PS-II, 12 H* are
mobilized into the lumen from the 2H,0 and cytb.f (Q-cycle).
This produces a proton-motive force sufficient for 3 ATPs

* The final electron acceptor for linear photosynthesis is NADP*,
which requires two electrons for conversion to NADPH. Per 8
photons (4 each to PS-I & PS-II), 2 NADPH are produced.

* When ATP stores are low, the electrons can be transported to
cytochrome b,f and cycled through the second half of
photosynthesis. This cyclic photosynthesis resulting in an
increased proton gradient and more ATP.




ANABOLISM |
Carbohydrates

Photosynthesis and
Carbohydrate Synthesis in
Plants

Photosynthesis
Assimilation of CO, by Plants

e Taking CO, into biological, more |/
reduced, carbon intermediates is ’
CO, assimilation. o

e Question was: What is the first

compound made by plants when ;';;gga;gaf
they assimilated CO,?

Bright light ¢
(energy for ¢

GL.UT
ALA
Calvin and Benson used the . oL sen
'4C radioisotope to A
determine the sequence of w6 SUC o
reactions in CO; fixation. o e
They exposed Chlorella to s

4CO,, then extracted the 3 min 30 min
organic compounds and

separated them by paper

chromatography.

Melvin Calvin, 1911-1997




Photosynthesis

* Plant cells: can also make 3-C intermediates for further
synthesis
— made from CO,, H,0O, plus ATP and NADPH from
photosynthesis

* It occurs in the stroma of chloroplasts via a cyclic process
known as the Calvin cycle.

* Key intermediate ribulose 1,5-bisphosphate is constantly
regenerated using energy of ATP.

* It produces 3-phosphoglycerate, which is rapidly converted
to glyceraldehyde 3-phosphate (GA3P) &
dihydroxyacetone phosphate (DHAP), which are important
intermediates for all other compounds.

* The net result is the reduction of CO, with the NADPH that
was generated in the light reactions of photosynthesis.

PhOtosyntheSiS The Three Stages of

the Calvin Cycle of
0, Assimilation

chloroplast isoforms

hoglycerate kinase (3PGK)
aldehyde 3-phosphate
ydrogenase (GAPDH)

Overall: 6 CO. + 12 NADPH +
phosphate (GA3P) + 4 H* + 12 NA




PhOtosyntheSis The Three Stages of

the Calvin Cycle of

CH,0—P) TP
| CO, Assimilation
10 enzymes ADP ?=° 2
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Stage 3: y ?”OH €0,
Regeneration of ATP CHOH
acceptor (6) | Stage 1:
C H,o—@ Fixation
Energy 10 Ribulose 1,5- Rubisco
production via (10) bisphosphate
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starchorsugar () ?HO
synthesis CHOH ?“0"
CH,0—P) cH,0—@)
Glyceraldehyde 3-phosphate 3-Phosphoglycerate
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Stage 2:
Reduction

(12) ATP
NADP* a2

ADP  _ 3 phosphoglycerate ki
+ phosphoglycerate kinase (3PGK)
(12 'NADPH +H (12) - glyceraldehyde 3-phosphate

(12) dehydrogenase (GAPDH)
Overall: 6 CO2 + 12 NADPH + 10 H.0O + 18 ATP — 2 glyceraldehyde 3-
phosphate (GA3P) + 4 H* + 12 NADP* + 18 ADP + 16 P;

chloroplast isoforms

~Bibulose 1.5-bisphosohate carboxviase/oxygenase (also RuBisCol

Photosynthesis

RUBISCO




Photosynthesis

First Stage of Calvin Cycle

CO, Fixation Is Catalyzed by Rubisco g

- Most plentiful, most important, enzyme &
on Earth (4 tons/yr)

— Low turnover # of k.,; =3 s at 25 C°
— means a LOT of the enzyme needed!
— 50% of plant enzymes are rubisco.

« Large (560 KDa; agfB)(L=56 kDa, S=14 kDa); Mg?+—
dependent enzyme; activated by CO, carbamylation
* pH dependence is sharp, optimal activity at pH=8

- Catalyzes the reaction:
— ribulose 1,5-bisphosphate + CO, > 2 3-phosphoglycerate
— AG® = —=35.1 kcal/mol

Photosynthesis
First Stage of Calvin Cycle
’

Ribulose 1,5-bisphosphate

(L)

: (X(L) e ) - % v
% Structure of Rubisco (Form Il)

There are two distinct forms of rubisco. Form | is found
in vascular plants, algae, and cyanobacteria; Form Il is  ~
confined to certain photosynthetic bacteria.

Structure of Rubisco (Form 1)
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Photosynthesis
First Stage of Calvin Cycle

201

Carbamate—
Mg?® complex
(active)

Role of Mg?*

+ Notice that Mg?* is held by
negatively charged side chains of:
* Glu, Asp, and carbamoylated Lys
+ Mg?* brings together the reactants
in a correct orientation and
stabilizes the negative charge that
forms upon the nucleophilic attack
by the enediolate on COz.

Ribulose 1,5-bisphosphate

+ Rubisco is inactive until Lys?®' is carbamoylated by COz2. But, in the apo-enzyme Lys®' inaccessible).
* Rubisco activase (an enzyme sometimes triggered by light) changes Rubisco conformation, in an

Photosynthesis ausisco 1
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Photosynthesis

= = H20—F)
First Stage of Calvin Cycle [
. . e Ribulose
Oxygenase- ACthlty Of :_?_:: 1,5-bisphosphate
Rubisco CH20—P)
+ O, competes with CO, for the active site. I
~1in every 3 or 4 turnovers, O binds ?u,o-®
* The reactive nucleophile in the rubisco §reon
reaction is the electron-rich enediol form of T _
. . H—C—OH Enediol form
ribulose 1,5-bisphosphate. e1,0-®
* The nucleophile adds to O, to form 3- 0
¢I:u,o—®

phosphoglycerate (same as in Calvin cycle)
and 2-phosphoglycolate (2-PG).

H—0—0—C—OH
{ Enzyme-bound

), intermediate
—2-PG is metabolically difficult. H—¢—oH
—Salvaging its Carbons requires energy C"zo""-_®
—As it is produced in appreciable amounts, an i
elaborate pathway has been cobbled together. 6. D
CH0—(P) \T’
This process is called PHOTO- olé\o * hc—on

R E S P I RATI 0 N 2-Phosphoglycolate 3-Phocs"g;|°gg_?)¥< erate




