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Amino Acid Degradation
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Amino Acid Degradation Meets Fatty
Acid Degradation

a-Ketobutyrate Family
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Amino Acid Degradation Meets

The Vitamin B, Story

Dr. Kornberg: Lecture 16 02.27.17 (28:19-29:33) VitB-12 1.3 min

Amino Acid Degradation Meets
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Amino Acid Degradation: Overview
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Amino Acid Degradation: Overview

Fates of the 29 nitrogen atoms in the 20 amino acids:
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Amino Acid Degradation: Overview

We learned that:

® amino acids from protein are an important energy source in

carnivorous animals

e the first step of AA catabolism is transfer of the NH; via
PLP-dependent aminotransferase usually to a-ketoglutarate
to yield L-glutamate

in most mammals, toxic ammonia is quickly recaptured into
carbamoy!l phosphate and passed into the urea cycle

amino acids are degraded to pyruvate, acetyl-CoA, a-
ketoglutarate, succinyl-CoA, and/or oxaloacetate

amino acids yielding acetyl-CoA are ketogenic

amino acids yielding other end products are glucogenic
genetic defects in amino-acid degradation pathways result in
a number of human diseases

amino acid catabolism is dependent on a variety of cofactors,

including THF, ado-Met (SAM), Cbl, biotin, and PLP




Nucleic-Acid
Degradation

Nucleic-Acid Degradation
The Digestion Pathway

+ Ingestion of food always includes nucleic
| 1 acids.
W\ « As you know from BI 421, the low pH of
s | the stomach does not affect the polymer.

Stomach s
/ |
il seainecsisotpancreas ¢ [N the duodenum, zymogens are converted

/

£ U/ =5 to nucleases and the nucleotides are
.5 '\‘_»/_ A converted to nucleosides by non-specific
‘j)\ e 4 u{m‘:}‘m phosphatases or nucleotidases.

(i it % emaimesse  + Only the non-ionic nucleosides are taken

diesterases  fintestine §,

up in the villi of the small intestine.

memameee - |11 the cell, the first step is the release of

; the ribose sugar, most effectively done by
S a non-specific nucleoside phosphorylase
to give ribose 1-phosphate (Rib1P) and the
free bases.

+ Most ingested nucleic acids are degraded
nucleoside to Rib1P, purines, and pyrimidines.

\ I

Nucleoside + P; ~———>——» base + ribose-1-P

Duodenum \
_ Non-specific phosphatases
e |}




Nucleotide Degradation: Overview
Fate of Nucleic Acids:

Once broken down to the
v nitrogenous bases they are either:
Nucleotides

1. Salvaged for recycling
into new nucleic acids
(most cells; from internal,

Purine Nucleoside
Phosphorylase

-

Nucleosides

Bases

not ingested, nucleic
acids).

aD-Rib 1-P & 2. Oxidized (primarily in the
oD-dRib 1-P

intestine and liver) by first
converting to nucleosides,
then to

—Uric Acid (purines)

—Acetyl-CoA &
succinyl-CoA
(pyrimidines)

—Both yield ammonia

Purine & Pyrimidine . .
Salvage Pathway Oxidation

The Salvage Pathways are in competition with the de novo
biosynthetic pathways, and are both

Nucleotide Degradation

Catabolism of Purines

Nucleotides: AMP — IMP XMP GMP
I 5'-Nucleotidase | [ 5'-Nucleotidase ] I 5'-Nucleotidase I l 5'-Nucleotidase
N, o
¥ Adenosine o NN
Y deaminase | @ v ¥ v v
Nucleosides:  Adenosine — Inosine Xanthosine Guanosine
Purine nucleoside Purine nucleoside Purine nucleoside
phosphorylase phosphorylase phosphorylase
; %
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1. Dephosphorylatlon V|a5 -nucleotidase)

2. Deamination and hydrolysis of ribose lead to
production of xanthine.

3. Hypoxanthine and xanthine are then oxidized
into uric acid by xanthine oxidase.

Spiders and other arachnids lack xanthine oxidase.

Xanthine oxidase

o
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Nucleotide Degradation
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Nucleotide Degradation
..../3\«" =™ |« Degree of further oxidation of uric
Ll g s e | acid is organism dependent.

‘ 02 + 2H20
urate oxidase r

Cu ‘\co, + H202
.
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Most mammals

(l. C l Allantoate  Bony fishes
7 SN T So Y
H H
|
1~H,0
allantoicase|
- coo-
| Glyoxylate
‘ CHO il
'
Amphibians,
Urea cartilaginous
AN fishes
|
L~ 2H,0
urease( 2
|53% Marine
ANH{ invertebrates

* Birds and insects don’t excrete
amino-acid nitrogen as urea, but
as uric acid to conserve water.

Conversion of Uric Acid to
Allantoin, Allantoate, and
Urea




Nucleotide Degradation

Catabolism of Pyrimidines
elLeads to NH,* and urea

*T is degraded to

.~ Uridine/deoxythymidine

i@teser# <] Phosphorylase .
! ) succinyl-CoA.
v W BUY gt
eU & C are degraded to
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Nucleotide Degradation

Hyperuricemia: how )

sugar “becomes” fat | "R
Vo
+ The interesting connection it :,\5:':
between sugar metabolism RMED2
and nitrogen metabolism 'TPS,NT
* What is even more Inosine
interesting is that this J{ PNP
metabolism is connected to Hypoxanthine
fat metabolism as well | xo
* The production of Uric Acid ) Xanthinel
converts liver mitochondria - V '
to fatty acid synthesis by Hopadd /

unknown mechanisms.
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Nitrogen Metabolism

Catabolism

Intracellular protein Nucleic Acids

NH;

[N.QH(2),S,T.G,M,W(I)]
a-Ketoglutarate

Urea

[AE,D,QN,P,H,R(4)
CFY,WK(2),V,ILL]

cycle : (
\ Aspartate

Nucleotides
Nucleosides —) Bases

>

co,
Dal
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2° products

Glutamate

Sugars
Oxaloacetate Fatty ag'cids,

Oxidative Phosphorylation

Malate-Aspartate Converting Cytosolic Electron Carriers
Shuttle (NADH) to the Mitochondria

*This more Intermembrane space
complicated rokde). - -
R 00C ~CH, —(IZ—COO
shuttle is mpstly RAD* i)
present in liver, o Malate
H* + NADH
heart, and 258
kidney. ? dehydrogenase
0C ~CH, —C~C00
«Can be Oxaloacetate rIm"

discussed now
that we did

. . aspartate
am|n0'aC|d aminotransferase
degradation

* It moves NADH

H
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q 4 OH
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+
P e NADH + H
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equivalents

form CytOSOl to 'I“H; Aspartate Aspartate NH;

NADH “00C —CH, ~€~C00" S 00C —CHy —¢—C00
. I

equwalents to " Glutamate-aspartate //:B;Z 8

the transporter ]

mitochondria.

Net effect: NAT)H:;bim\BHN

[
, 00C ~CH, ~C—C00 |

N3 oxaloacetate

00C —CH, —CH, ~€~C00

g H

z C Glutamate

é} a-Ketoglutarate
] o

1
00C —CH, —CH, —C~C00

aspartate
aminotransferase

See Ch 19
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End of Material for
Exam 3

12



