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Amino Acid Degradation Meets Fatty
Acid Degradation
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Amino Acid Degradation Meets Fatty
Acid Degradation
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Amino Acid Degradation Meets
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Amino Acid Degradation Meets

The Co—C bond
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The radical is converted
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Amino Acid Degradation: Overview
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Amino Acid Degradation: Overview

Fates of the 29 nitrogen atoms in the 20 amino acids:
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Amino Acid Degradation: Overview
We learned that:

e amino acids from protein are an important energy source in

carnivorous animals

the first step of AA catabolism is often the transfer of the
NH; via PLP-dependent aminotransferase usually to o-
ketoglutarate to yield L-glutamate

in most mammals, tfoxic ammonia is quickly recaptured into
Gln or directly into carbamoyl phosphate for the urea cycle
amino acids are degraded to pyruvate, acetyl-CoA, a-
ketoglutarate, succinyl-CoA, and/or oxaloacetate

e amino acids yielding acetyl-CoA are ketogenic
e amino acids yielding other end products are glucogenic
e genetic defects in amino-acid degradation pathways result in

a number of human diseases
amino acid catabolism is dependent on a variety of cofactors

including THF, ado-Met (SAM), Cbl, biotin, and PLP

Nucleic-Acid
Degradation




Nucleic-Acid Degradation
The Digestion Pathway

+ Ingestion of food always includes nucleic
; acids.
© ™ + As you know from Bl 421, the low pH of

| LowpH |

stomach +— the stomach does not affect the polymer.

el meainecatisotpancress [N the duodenum, zymogens are converted

Ve Vs oo to nucleases and the nucleotides are

Ly \»»»__«/ = e converted to nucleosides by non-specific
3 e 9 A WL . phosphatases or nucleotidases.

\
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Collecting duct granules

N
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duct

Villiof small intstine + Only the non-ionic nucleosides are taken
up in the villi of the small intestine.

meames - * | the cell, the first step is the release of
‘ | the ribose sugar, most effectively done by
[N a non-specific nucleoside phosphorylase
to give ribose 1-phosphate (Rib1P) and the
free bases.

» Most nucleic acids are degraded to Rib,
nucleoside Rib1P, purines, and pyrimidines.
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Nucleoside + P; ———2—""» base + ribose-1-P
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Nucleotide Degradation: Overview
Fate of Nucleic Acids:

Once broken down to the
v nucleases njtrogenous bases they are either:

Nucleotides 1. Salvaged for recycling
phosphatases/ into new nucleic acids

& p, nucleotidases - (most cells; from internal,
not ingested, nucleic

Nucleosides acids).

Purine Nucleoside . ; idi i ily i
Phosahoryiass P; aD-Rib 1-P & 2. _OX|d|_zed (prlmarlly in t_he
aD-dRib 1-P intestine and liver) by first
converting to nucleosides,

Bases then to
—Uric Acid (purines)
. ... N —Acetyl-CoA &
Purine & Pyrimidine Oxidation succinyl-CoA
Salvage Pathway (pyrimidines)

The Salvage Pathways are in competition with the de novo
biosynthetic pathways, and are both




Nucleotide Degradation

Catabolism of Purines

Nucleotides: AMP —MP XMP GMP
| 5-Nucleotidase l | 5'-Nucleotidase I | 5'-Nucleotidase | I 5'-Nucleotidase
.
N N A -
% Adenosine Y
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1. Dephosphorylation (via 5™-nucleotidase)
2. Deamination and hydrolysis of ribose lead to
production of hypoxanthine and xanthine.
3. Hypoxanthine and xanthine are then oxidized
into uric acid by xanthine oxidase.
Spiders and other arachnids lack xanthine oxidase.
Catabolism of Purines
Nucleotides: AMP — IMP XMP GMP
| 5'-Nucleotidase ] [ 5'-Nucleotidase ] I 5'-Nucleotidase I [ 5'-Nucleotidase
N, o
N Adenosine o NN
SN deaminase | ¢ w7 ¥ v -
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H
Dephosphorylation (via 5-nucleotidase)

2. Deamination and hydrolysis of ribose lead to
production of xanthine. ATTinG padies
3. Hypoxanthine and xanthine are then oxidized

o
into uric acid by xanthine oxidase. 3 : NNJI" -
Spiders and other arachnids lack xanthine oxidase. Uricacid no/]\u ,'?_

—_




Nucleotide Degradation
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Nucleotide Degradation
X Xanthine Oxidase

1 164 192 527 590 1320

Fe/S domain FAD domain Mo domain

20 kDa 40 kDa 85kDa S—L—V.W&

Nucleotide Degradation

g Excreted by:

| » Degree of further oxidation of uric
B i e vcsa Db acid is organism dependent
“o/c~"/(\u reptiles, insects g p .
I ) * Birds and insects don’t excrete
Cu [~ - oo amino-acid nitrogen as urea, but
LN | as uric acid to conserve water.
’l\ | g Allantoin Most mammals
o ”Nr’ﬁ‘n

H,0
allanlolnlse( A

Conversion of Uric Acid to

N > = .
- e Allantoin, Allantoate, and
allantoicase (H,O U re a
.

| yoxy!
Glyoxylate

Amphibians,
E Urea cartilaginous
4 fishes

2H,0
urease C 2
20, Marine
ANH] invertebrates
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Nucleotide Degradation

Catabolism of Pyrimidines
elLeads to NH,* and urea

*T is degraded to

.~ Uridine/deoxythymidine

i@teser# <] Phosphorylase .
! ) succinyl-CoA.
v W BUY gt
eU & C are degraded to
dihydrouracil | = roeme
dehydrogenase 5 o = acetyI-COA
HN 2 " T
o {‘, 2 0PN Ditydrotymine = e
dihydropyrimidinase "’"":" A ‘j"'
HA o L ., ne "
0" N -wp O < N = ol w—mu:n-
B-ureidopropionase reo, o Like reaction converting
o s 0 Orn to glutamate
L ° el e semialdehyde
S-Alanine D Aminoisobuyrate coAsH \/g| Like reaction putting CoA
p-Alanine R on isobutryl-semialdehyde
aaaaa "a"“e’afe s o - (=] cons in Val degradation
wenpcor > w0 2 i1 " methylmalonyl-CoA =
NAHOH KAD"  OF o7 D NaoH a-o-+
malonic semialdehyd i i § Y
dative d

Nucleotide Degradation

Hyperuricemia: how )

sugar “becomes” fat | "R
Vo
+ The interesting connection it :,\5:':
between sugar metabolism RMED2
and nitrogen metabolism 'TPS,NT
* What is even more Inosine
interesting is that this J{ PNP
metabolism is connected to Hypoxanthine
fat metabolism as well | xo
* The production of Uric Acid ) Xanthinel
converts liver mitochondria - V '
to fatty acid synthesis by Hopadd /

unknown mechanisms.
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Nitrogen Metabolism

Catabolism

Intracellular protein Nucleic Acids

NH;

[N.QH(2),S,T.G,M,W(I)]
a-Ketoglutarate

Urea

[AE,D,QN,P,H,R(4)
CFY,WK(2),V,ILL]

cycle : (
\ Aspartate

Nucleotides
Nucleosides —) Bases

>

co,
Dal

o—Keto acids

2° products

Glutamate

Sugars
Oxaloacetate Fatty ag'cids,

Oxidative Phosphorylation

Malate-Aspartate Converting Cytosolic Electron Carriers
Shuttle (NADH) to the Mitochondria

*This more Intermembrane space
complicated rokde). - -
R 00C ~CH, —(IZ—COO
shuttle is mpstly RAD* i)
present in liver, o Malate
H* + NADH
heart, and 258
kidney. ? dehydrogenase
0C ~CH, —C~C00
«Can be Oxaloacetate rIm"

discussed now
that we did

. . aspartate
am|n0'aC|d aminotransferase
degradation

* It moves NADH

H
Glutamate
a-thoqutaratej
[}

I
00C —CH, ~CH, —C—C00

Q . Malate- Matrix
8 % a-ketoglutarate (n side)
q 4 OH
2 1_transporter I
;,\Q’, ~00C ~CH, ~C—C00"
- NAD*
Malate H
+
P e NADH + H
dehydrogenase

equivalents

form CytOSOl to 'I“H; Aspartate Aspartate NH;

NADH “00C —CH, ~€~C00" S 00C —CHy —¢—C00
. I

equwalents to " Glutamate-aspartate //:B;Z 8

the transporter ]

mitochondria.

Net effect: NAT)H:;bim\BHN

[
, 00C ~CH, ~C—C00 |

N3 oxaloacetate

00C —CH, —CH, ~€~C00

g H

z C Glutamate

é} a-Ketoglutarate
] o

1
00C —CH, —CH, —C~C00

aspartate
aminotransferase

See Ch 19

12



End of Material for
Exam 3
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