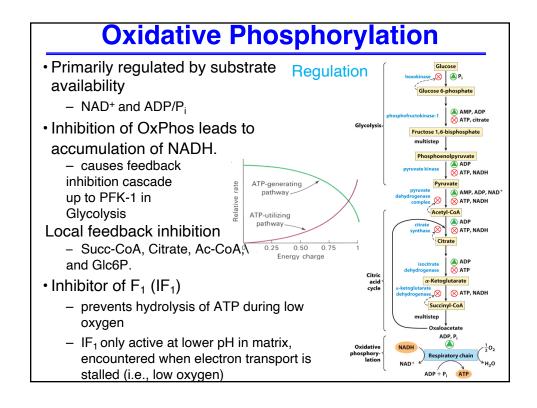
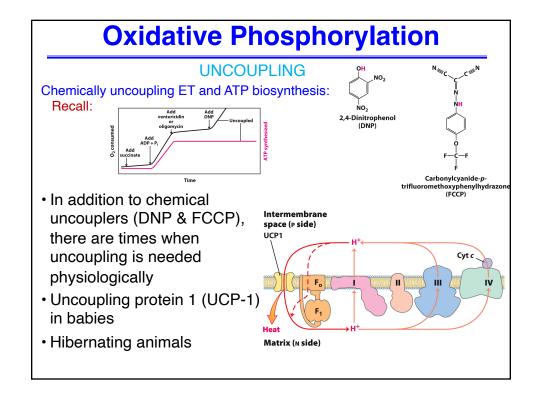


Oxidative Phosphorylation


Net Production of ATP via Catabolic Pathways


TABLE 19-5 ATP Yield from Complete Oxidation of Glucose *		
Process	Direct product	Final ATP
Glycolysis	2 NADH (cytosolic) 2 ATP	3 or 5 ^a 2
Pyruvate oxidation (two per glucose)	2 NADH (mitochondrial matrix)	5
Acetyl-CoA oxidation in citric acid	6 NADH (mitochondrial matrix)	15
cycle (two per glucose)	2 FADH ₂	3
	2 GTP	2
Total yield per glucose		30 or 32
alf the malate/aspartate shuttle is used to transfer reducing equivalents into the mitochondrion, yield is 5 ATP. If the glycerol 3-phosphate shuttle is used, the yield is 3 ATP.		

- Every F₀ turn uses 8-17 H+
- Every turn gets 3 ATP
- Additional 3 H+ to transport P_i

What is the yield for c_{17} ?

- * This Table assumes F₀ is c₉ and uses 9 H⁺ per turn
 - Additional 3 H+ to transport Pi needs 12 H+ per 3 ATP
 - This is 4 H+ per ATP
 - NADH pumps10 H+, so 10/4 = 2.5 ATP/NADH oxidized

Summary: Oxidative Phosphorylation

We learned that:

- the reduced cofactors pass electrons into the electron-transport chain in mitochondria
- stepwise electron transport is accompanied by the directional transport of protons across the membrane against their concentration gradient
- the energy in the electrochemical proton gradient drives synthesis of ATP by coupling the flow of protons via ATP synthase to conformational changes that favor formation of ATP in the active site

End of material for Exam 2

Lipid Degradation