BB 422/622		
OUTLINE: Introduction and review Transport Glycogenolysis Other sugars Pasteur: Annarrobic vs Aerobic Fermentations	Exam-1 material Exam-2 material	Exam-3 material
Pyruvate pyruvate d Krebs' Cycle How did he Overview 8 Steps Cvidative Phosphory Energetics Mitochondri Transport Electron tra Chemiosmot	ehydrogenase (ox-decarbox; S-ester) a figure it out? Citrate Synthase (C-C) Aconitase (=, -OH) Isocitrate dehydrogenase (ox-decarbox; =-O) Ketoglutarate dehydrogenase (ox-decarbox; S Succini-CoA synthetase (sub-level phos) Succini-CoA synthetase (sub-level phos) Succinate dehydrogenase (=O) lation (-O.16 V needed for making ATP) a (2.4 kcal/mol needed to transport H ⁺ out) ansport Discovery Four Complexes Complex III: Succinate → CoCH= Complex III: Succinate → CoCH= Complex IV: Cytochrome C (Fe ²⁺) · ic theory: Phosphorylation ATPase Mitchell Hypothesis Binding-Change Model Connection to the proton motive force Net ATP production Regulation Exam-2 material	Catabolism: Lipid Degradation Digestion and storage FOUR stages lipid catabolism Mobilization from adipose tissues Activation of fatty acids Transport into mitochondria Oxidation Saturated Unsaturated Odd-chain Ketone Bodies Oxidation in other organelles Catabolism: Nitrogenous Digestion & turnover of proteins Urea Cycle C(Fet) Amino-acid Degradation

Lipid Degradation: Fatty Acids

- Fatty Acid Oxidation is a Major Energy Source
- About one-third of human energy needs comes from dietary triacylglycerols (fat).
- There are differences in tissue utilization. About 80% of energy needs of mammalian heart and liver are met by oxidation of fatty acids.
- Many hibernating animals, such as grizzly bears, rely almost exclusively on fats as their source of energy.

There are FOUR stages in the catabolism of fatty acids:

- 1) Mobilization from tissues (mostly adipose)
- 2) Activation of fatty acids
- 3) Transport
- 4) Oxidation

Lipid Degradation: Fatty Acids

There are FOUR stages in the catabolism of fatty acids:

- 1) Mobilization from tissues (mostly adipose)
- 2) Activation of fatty acids
- 3) Transport
- 4) Oxidation

Clinical Correlations

Lactic Acidosis

- This term refers to the acidification of the blood. Blood pH dropping to anything below 7.40 causes hyperventilation, lethargy, disorientation, etc.
- Lactate is the major cause of acidosis, although any acidic metabolic intermediate, if accumulating too high, will cause this acidosis. Lactate often goes from 1.2 mM to 5 mM in the blood.
- Finding and treating the underlying causes of the acidosis is the challenge for physicians. Otherwise, all they can do is treat the symptoms: Bicarbonate administration
- For example, treatments for diabetes often involve inhibition of gluconeogenesis (Metformin) or OxPhos (phenformin).
- Thiamin deficiency (alcoholics)

Clinical Correlations Exercise intolerance: Q-cycle defects Cytochome d Mitochondrial disease arises from specific mutations in the gene encoding the subunit of Complex III that binds to cytochrome b's ($b_{\rm H}$ and $b_{\rm I}$). This is the only subunit of Complex III encoded on the mitochondrial **Complex III** DNA. These patients show severe exercise intolerance. Often only affect muscle, suggesting a somatic mutation (not inherited from mom). . The specific mutations have been identified. Both substitute a Gly for a bulkier acidic residue (Asp or Glu). One is at the Q_P site and one is at the Q_N site. More severe mutations have more severe outcomes and include lactic acidosis.

