BB 422/622	
	8 Steps
	Citrate Synthase
Introduction and review	Aconitase Toositasta dabudaaaaasa
Transport	isociirale denvalogenase Ketoolutarate dehvdrogenase
Glycogenolysis	Succinyl-CoA synthetase
Glycolysis	Succinate dehydrogenase
Introduction & overview; 2 phases	Fumarase
Phase I	Malate dehydrogenase
Phase II Summary: logic energetics labeling st	chergences, Regulation
Other sugars	id ative. Of each equilation
Pasteur: Angeropic vs Aeropic	laative Phosphorylation
Fastear. Anderobic vs Aerobic	Energetics
Fermentations: anaerobic fates of	Mitochondria
pyruvate	Transport of protons out
Lactate-lactate dehydrogenase	Electron transport
Exam-1 material Acetoacetate decarboxylase	Discovery
Exam-2 material Ethanol-pyruvate decarboxylase &	Four Complexes
alcohol dehydrogenase	Complex I: NADH \rightarrow CoQH ₂
Pyruvate oxidation.	Complex II: Succinate \rightarrow CoQH ₂
	Complex III: COQH2 \rightarrow Cylochiollie C (Fe ⁻¹) Complex IV: Cytochrome C (Fe ²) \rightarrow H ₂ O
aerobic tates of pyruvate	Phosphorylation
pyruvate dehydrogenase	Electron transport and Phosphorylation are Coupled
complex	Complex M. ATDaga
Krobs' Cuolo	Complex V: Alpase
Krebs Cycle	Chemiosmotic theory: Mitchell Hypothesis
How did he figure it out	? Binding-Change Model
Overview	Connection to the proton-motive force ATP synthesis

Phosphorylation		
How Does Oxidative Phosphorylation Form ATP?		
 Complex V, when purified separately from the membrane is an effective 	Adenine nucleotidePhosphatetranslocaseF1-ATPasetranslocase(antiporter)(symporter)	
ATPase enzyme, hence it was initially called the F ₁ - ATPase.	Intermembrane ATP^{4-} space ADP^{3-} $H_2PO_4^{-}$ ++++++++++++++++++++++++++++++++++++	
• The F ₁ part had 9 subunits $(\alpha_3\beta_3\gamma\delta\epsilon)$	Fo mana	
• When more careful purifications were performed, it was clear that its activity was closely coupled to an intact inner membrane with little activity.	Matrix	
• When membrane proteins were isolated, the F ₀ part had 15 subunits of 3 different proteins (a, b ₂ , c ₁₀)	 Inhibited by venturicidin or oligomycin 	

Phosphorylation
 Chemiosmotic Theory ADP + P_i → ATP is highly thermodynamically unfavorable.
 How do we make it possible? Phosphorylation of ADP is not a result of a direct reaction between ADP and some high-energy phosphate carrier.
• The energy released by the exergonic flow of electrons to oxygen in electron transport is used to transport protons against the electrochemical gradient. Secondary active transport principles are at work.
• Energy needed to phosphorylate ADP is provided by the flow of protons down this electrochemical gradient. This can be calculated.
 If all that was needed was a proton gradient, could one be established without the ET chain and still drive ATP biosynthesis?
one be established without the ET chain and still drive ATP biosynthesis?

