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OUTLINE:

Pyruvate
pyruvate dehydrogenase
Krebs’ Cycle
How did he figure it out?
Overview
8 Steps

Citrate Synthase

Pyruvate Oxidation_
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* Net reaction: Pyruvate Acetyl-CoA

— oxidative decarboxylation of pyruvate
+ Means pyruvate will get oxidized as the carboxylate leaves (as CO.)

— first carbons of glucose to be fully oxidized (C3 & C4)

+ Fairly simple reaction done by a complicated process.
+ Highly thermodynamically favorable/irreversible (AG*=-8
kcal/mol); mostly due to the loss of CO,
Catalyzed by the Pyruvate Dehydrogenase Complex (PDC)
— Three main enzyme, each with multiple subunits: =1, E2, E3
Regulatory subunits: PD kinase & PD phosphatase
Overall structure of , E254, E354
requires 5 coenzymes
TPP, lipoic acid, and FAD are prosthetic groups.
NAD+ and CoA-SH are co-substrates.




Pyruvate Oxidation

PDC is a large (up to 10 MDa) multienzyme complex.

-dihydrolipoyl transacetylase (E2)
-dihydrolipoyl dehydrogenase (Es)

Cryo-Electron Microscopy
Nobel Prize for Chemistry in 2017 S

« Samples are in a near-native frozen (% .% .
hydrated state. "','-'.'
« Low temperature protects biological #7% %
specimens against radiation
damage.
* Electrons have a smaller
wavelength and produce much
higher-resolution images than light. &8
* No need for a crystal. (a) FSoom 1 ® Honm'

Pyruvate Oxidation

Box in a box

4 t,)‘ The lipoic acid is
- covalently linked to the
Transacetylase enzyme via a lysine
domain residue; becoming a
Prosthetic group.
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Enzyme 2 B
+ Formation of acetyl-CoA: simple thio-ester exchange
Pyruvate Oxidation
o
0 C?“ CoA-SH CH —c S-CoA
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Pyruvate IIpoyIIyslne
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/ CH,
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TPP
NAD*

Dihydrolipoyl
Enzyme 3 dehydrogenase
» Step 4: Reoxidation of the lipoamide cofactor; reductiomof FAD/Cys/Cys

— Disulfide interchange with dihydrolipoyllysine and 2 adjacent Cys in disulfide bond
— The reduced Cys reform disulfide using FAD, which funnels electrons to NAD+
: Regeneration of the oxidized FAD/Cys/! ive site — forming NADH
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« Step 4: Reoxidation of the lipoamide cofactor; reduction of FAD/Cys/Cys

— Disulfide interchange with dihydrolipoyllysine and 2 adjacent Cys in disulfide bond
— The reduced Cys reform disulfide using FAD, which funnels electrons to NAD+

NADH + H*

Hydroxyethyl L5) ) Why?

TPP

Pyruvate Oxidation
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AHON S NADH + H*
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TR =2
YEN Dihydrolipo , , ,
g [ AE°=FE° (reduction) — E° (oxidation)

Enzyme 3

AE®= E? nap*) — E (Fan)

. um e > P =-0.320 V — (+0.031 V*)

e sl £ = —0.351V

- FADM, or IONH,
wipE e ) )
g : AG° =—-n FAE°
Scomspune form — o A P——
el m P MII:III; - = —(2)(23.06kcalV-'mol)(-0.351 V)
— = +16 kcal mol™

*from Maeda-Yorita et al., (1994) Biochem. 33, 6213




Pyruvate Oxidation
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AE“= E®° (reduction) — E ° (oxidation)

/ g ,
= Standard Redox Potentials Eg - AEO = EO (NAD+) -_ EO (FAD)
alf reaction Half reaction ExV)
[Succinate + CO, + 2H" +2¢ | [a-ketoghitarate + H,0 | -0.670
pecme s 2 ¢ 2 =-0.320 V — (+0.031 V*)
PH" +2¢ [ [Hy 04821
+C0; + 28" 420 |& feitrate -0.380
c)smozﬂ‘»zfo - -—;c:\sw'ne -0.340 = —0_351 V
INAD" +2H" 2 | [NADH < H' -0.320
INADP" + 2H" 42¢ > [NADPH + H 0324
4 OH' 42 < [ethanol 0197 , ,
T e AG°=-n FAE°
FAD +2H' +2¢ - [FADH 0.031
e — = m— ~(2)(23.06kcalV-'mol)(-0.351 V)
2 cytochrome by, +2¢ | |2 cytochrome by 0070
v oo 030 = +16 kcal mol
120, +2H + Aad ;1 o — 0. ;?lb *from Maeda-Yorita et al., (1994) Biochem. 33, 6213
Pyruvate Oxidation
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« Step 1: Decarboxylation of pyruvate to an enol (hydroxyethyl-TPPI
+ Step 2: Acylation of enol to a thioester on lipoic acid.
Enzyme 2 - Step 3: Formation of acetyl-CoA: simple thio-ester exchange
Enzyme 3 + Step 4: Reoxidation of the lipoamide cofactor; reduction of FAD/Cys/Cys

« Step 5: Regeneration of the oxidized FAD/Cys/Cys active site — forming NADH
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Pyruvate Oxidation

Overall Reaction of PDC
Pyruvate + Coenzyme-A (CoASH) + NAD*

PDC (TPP lipoic acid, FAD) /I L AG? = -8 kcal/mol

CO, + Acetyl-Coenzyme-A (Ac-CoA) + NADH + H*

Fates of Acetyl CoA
(HMG-CoA) K Acetyl COAN— Fatty acids

Amino acids
Che ' et Oxidation
g2 7 2. Lipid metabolism
; 3. Amino acid metabolism

The Citric Acid Cycle
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The Citric Acid
Cycle

a.k.a. Krebs Cycle,
a.k.a. Tricarboxylic Acid Cycle (TCA)

Otto Warburg
1883-1970

Warburg Apparatus
. . Substrates
-respiration (e.g., glucose)
-Measure rates of O, consumption

UTube instructions Tissucs ™=fl0; > HyCO; > 2H + CO52
(http://youtu.be/M-HYbZwN430) - KyCO3 + H0



http://youtu.be/M-HYbZwN43o

Time B.C. (Before the Cycle) .

S-uccinic

o G-lutari
In 1920 BC, what was known about respiration? A_dlfp?gc
1) Glycolysis gives rise to pyruvate P-imelic

2) Adding pyruvate to respiring tissues in a Warburg apparatus, there are 2.5 O;

consumed: 3120, + C3H,03 > 2 > = > 3CO, + 2H,0

3) Any intermediate in the process will be oxidized at a rate =pyruvate
4) Many intermediates were tried, but few met this criteria, they were:

succinate, fumarate, malate, alpha-ketoglutarate, etc.

H-0
| [e]
Hzc COOH Hzc COOHY  H,C—COOH HOOC—CH H—G—COOH _ “C—COOH
t—COOH ™ HC—COOH iy G—COOH Hy C—COOH
H,C—C - — o
o0=C— COOH o0=C— SCoA & 2 = Albert Szent-Gyorgy!
a- ketoglutarate succinate = fumarate - malate - oxaloacetate 1893-1986
5) Others had already
worked out several
N compounds and their
HoC—COOH HoC—COOH H,C—COOH interconversion.
HO—C—COOH —* HC—COOH - HC—COOH Specifically, Albert
H,C—COOH ﬁ—COOH HO—ﬁ—COOH Szent-Gyc")rgi had

worked out the
interconversion of the

6) In 1937, with help of German biochemist Franz Koop, Carl Martinus, dicarboxylic acids. Carl
demonstrated a series of reactions using citrate that produced o~ Martinus worked out

. ) . . . . the interconversion of
ketoglutarate. Thus tricarboxylic acid and dicarboxylic acids would be ) o
. . L the tricarboxylic acids
interconverted with loss of CO,, but also support respiration.

citrate > aconitate > isocitrate

Time B.C. (Before the Cycle) .

S-uccinic
G-lutaric
glutarate = succinate > fumarate > malate > oxaloacetate A-dipic
A P-imelic

citrate - aconitate = isocitrate

Hans Krebs

1900-1981
Krebs confirmed that the pathway was consistent with succinate,
fumarate, and malate. And these proved to be useful because all these ~Dr- Komberg: Lecture 02.08.17
molecules increased oxygen consumption in the pigeon breast muscle. (19:34-20:39)

(1 min)
The first clue came from an experiment with fumarate. Krebs did careful HOoC—eH
measurements using the Warburg manometer. Fumarate gave greater e
than expected oxygen consumption in the pigeon breast muscle. 30, + C4H40,24CO0, + 2H,0

~1 pmole fumarate would consume 3 pmole O2
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