Announcements

• Chapter 3 and 11 are both due at the end of Chapter 4 lab

Chapter 4: Enzyme Kinetics

Purpose:

- A) Re-assay LDH activity using Chapter 3 cocktail (*containing potassium phosphate buffer)
- B) Assay LDH activity using varying concentrations of one substrate (pyruvate) \rightarrow *Tris buffer cocktail
 - To determine $K_m \& V_{max}$ of pyruvate
- C) Characterize the effect of an unknown inhibitor on enzyme activity \rightarrow *Tris buffer cocktail
 - Solve for K_1

Review: LDH catalyzes the last step of anaerobic glycolysis

- Multiple forms of LDH found in different tissues
 - → Isozymes
 - Each isozyme has slightly different kinetic and structural properties, but same function and overall structure

Michaelis-Menten Kinetics

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

Lineweaver-Burk Manipulation

Double-Reciprocal Plot

- Competitive Inhibition Binds to free enzyme only & competes with substrate for active site
- Uncompetitive Inhibition Binds to distinct site from substrate active site and binds only to ES complex
- Pure Non-Competitive Inhibition Binds to a distinct site on the free enzyme or ES complex that decreases overall activity $(K_1 = K_1')$
- Non-Competitive Inhibition (Mixed) Binds to free enzyme or ES complex $(K_1 > K_1')$ or $K_1 < K_1'$)

- Competitive Inhibition Binds to free enzyme only & competes with substrate for active site
- Uncompetitive Inhibition Binds to distinct site from substrate active site and binds only to ES complex
- Pure Non-Competitive Inhibition Binds to a distinct site on the free enzyme or ES complex that decreases overall activity $(K_1 = K_1')$
- Non-Competitive Inhibition (Mixed) Binds to free enzyme or ES complex $(K_1 > K_1')$ or $K_1 < K_1'$)

- Competitive Inhibition Binds to free enzyme only & competes with substrate for active site
- Uncompetitive Inhibition Binds to distinct site from substrate active site and binds only to ES complex
- Pure Non-Competitive Inhibition Binds to a distinct site on the free enzyme or ES complex that decreases overall activity $(K_1 = K_1')$
- Non-Competitive Inhibition (Mixed) Binds to free enzyme or ES complex $(K_1 > K_1')$ or $K_1 < K_1'$)

- Competitive Inhibition Binds to free enzyme only & competes with substrate for active site
- Uncompetitive Inhibition Binds to distinct site from substrate active site and binds only to ES complex
- Pure Non-Competitive Inhibition Binds to a distinct site on the free enzyme or ES complex that decreases overall activity $(K_1 = K_1')$
- Non-Competitive Inhibition (Mixed) Binds to free enzyme or ES complex $(K_1 > K_1')$ or $K_1 < K_1'$)

- Competitive Inhibition Binds to free enzyme only & competes with substrate for active site
- Uncompetitive Inhibition Binds to distinct site from substrate active site and binds only to ES complex
- Pure Non-Competitive Inhibition Binds to a distinct site on the free enzyme or ES complex that decreases overall activity $(K_1 = K_1')$
- Non-Competitive Inhibition (Mixed) Binds to free enzyme or ES complex $(K_1 > K_1')$ or $K_1 < K_1'$

Competitive Inhibition

Uncompetitive Inhibition

Pure Non-Competitive Inhibition

Non-Competitive Inhibition (Mixed)

See pp. 99-100 for equations

Chapter 4A-B: Procedure

Reagent	Chapter 3 recipe	Chapter 4 recipe
Enzyme	LDH	LDH
Cofactor	NADH	NADH
Substrate	Pyruvate	Pyruvate
Buffer	Potassium phosphate	Tris
Diluent	dH ₂ O	dH_2O

- Re-assay LDH using Chapter 3 recipe and write down activity concentration
- Make new cocktail with Tris-Buffer pH 8.2 Cocktail A
 - Phosphate acts as a mild inhibitor on LDH
- Perform activity assays where you vary [pyruvate] without inhibitor
 - Starting ΔA_{340} /min = 0.02-0.04 for lowest [pyruvate] (*correction)
 - Dilute appropriately to get in range

Chapter 4C: Procedure

- Make new cocktail with Tris-Buffer pH 8.2 and inhibitor – Cocktail B
 - Make sure to write down letter and concentration of your assigned inhibitor
- Perform activity assays where you vary [pyruvate] in presence of the inhibitor
 - Rates with inhibitor < Rates of uninhibited reactions

Make sure to prepare data tables p. 106-7
BEFORE LAB!

Include all cocktail recipes in your notebook!

Chapter 4: Lab manual typos

- Cocktail tables (pg 104 & 105) --
 - For Na⁺ pyruvate, volume range should be 0.025 0.25 mL
 - For H₂O, volume range should be 0.475 0.25 mL
- Part B.1 & Table 1 in notebook section
 - For your initial trials, the lowest pyruvate concentration should be 0.05 mM, not 0.1 mM
- ΔA/min range for initial trials
 - For your initial trials, use a ΔA/min range between 0.02 and 0.04 at the lowest pyruvate concentration

Lab Notebook: Chapter 4

- Raw Data for uninhibited and inhibited LDH
- Calculation of rates in mM/min:

$$\left(\frac{\left(\frac{\Delta A_{340}}{min}\right)}{\left(\varepsilon_{app\ in\ mM^{-1}}\right)}\right)\left(\frac{(3\ mL\ total\ volume)(Dilution\ Factor)}{(0.1\ mL\ enzyme\ used)}\right) = Rates\ in\ mM/min$$

 Michaelis-Menten and Lineweaver-Burk Plots for uninhibited and inhibited LDH

- Calculation of K_M and V_{max} Show calculations!
- Calculation of K₁ for <u>your</u> type of inhibition

Lab Notebook: Chapter 4

• To calculate K_{l} you will need your V_{max} , K_{m} and inhibitor concentration values, depending on your type of inhibitor

Plot your data first to figure out which type of inhibitor you have

Chapter 4:

Before the lab period, you should have:

- ✓ Completed your prelab
 - ✓ Title, date, introduction, procedures
 - ✓ Be sure to account for all corrections and changes in lab manual

At the end of lab, you should have:

- ✓ Re-assayed your LDH using Chapter 3 cocktail
- ✓ Collected LDH data for varying pyruvate concentrations
- ✓ Recorded your inhibitor letter and concentration
- ✓ Collected LDH data for varying [pyruvate] with inhibitor present

Questions?