• Reading: Ch3; Fig 3-23

Ch4; 106-110

• Homework: #7

Lecture 7 (9/24/25)

NEXT

• Reading: Ch3; 90-93, Box 3-2

• Homework: #8

OUTLINE

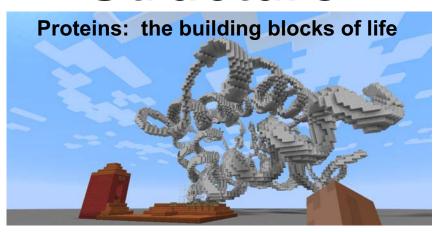
I. Protein Structure

A. Hierarchy; 1°, 2°, 3°, 4°

B. Primary

1. The peptide bond

2. 4 S's


3. Determination of 1° structure

a. Chemical

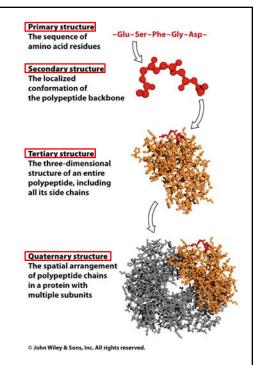
b. Physical

c. Biological

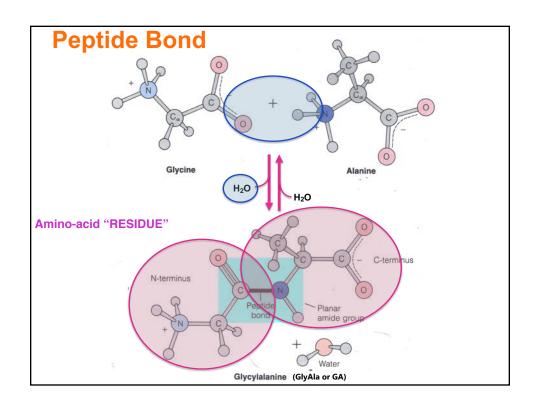
Protein Structure

4 Levels of Protein Structure

The **STRUCTURE** of proteins has been divided into **four** categories:


- primary structure sequence of amino acids
- 2) secondary structure small units of repetitive structure
- 3) tertiary structure overall 3D shape
- 4) quaternary structure shape of ≥2 chains

15


4 levels of protein structure

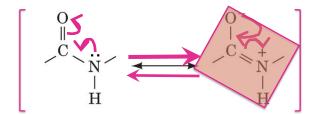
In order to understand these levels of structure, you need to understand the nature of the polymer first.

In other words, the linkage or PEPTIDE BOND

The Peptide Bond

Peptide Bond

The 4 S's for the Peptide Bond:


Shape

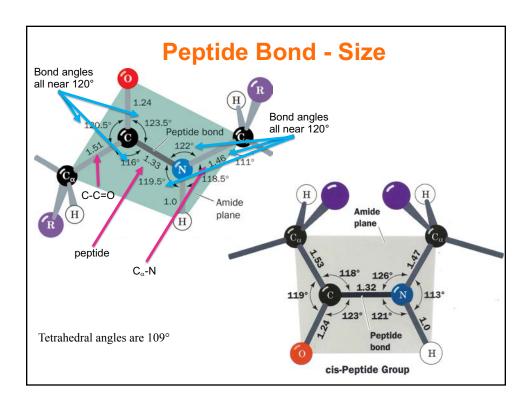
Size

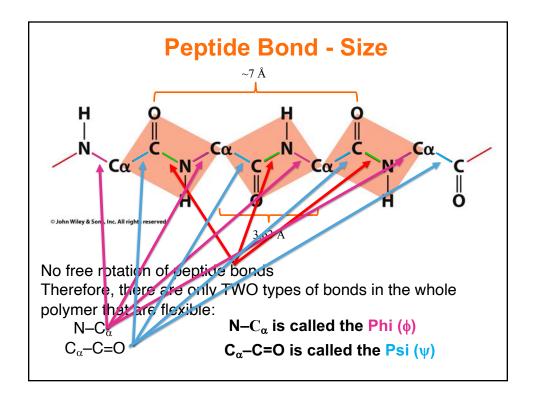
Solubility

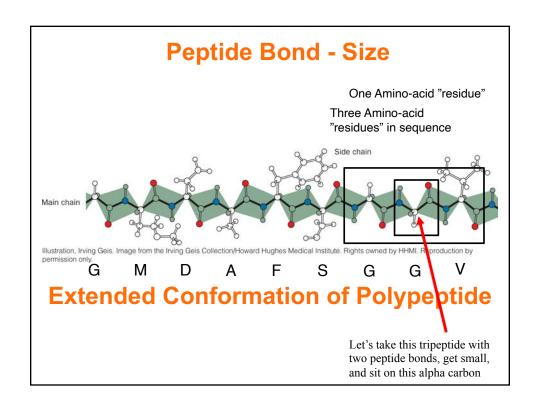
Stability

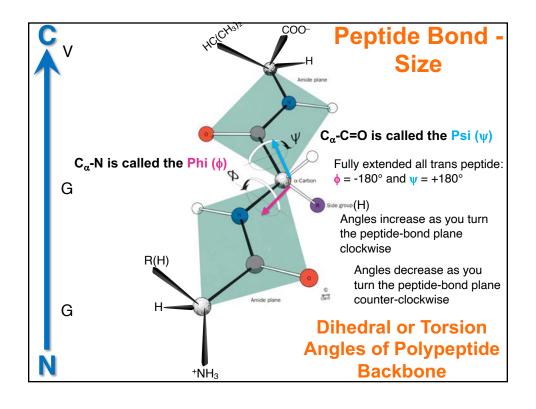
Peptide Bond - Shape

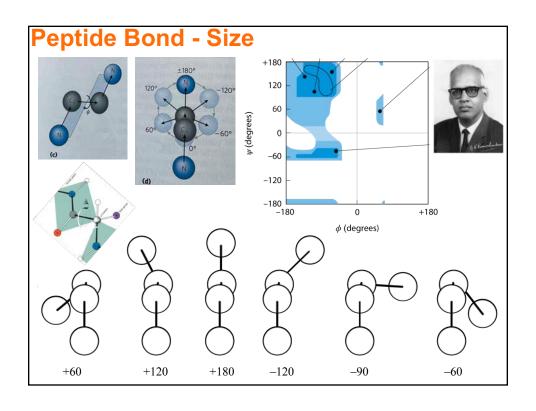
Resonance of Peptide Bond

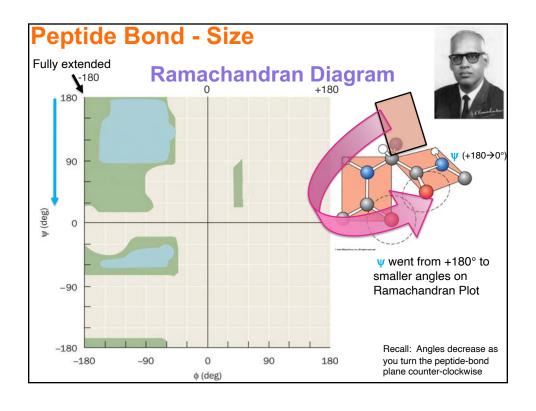

Consequences:

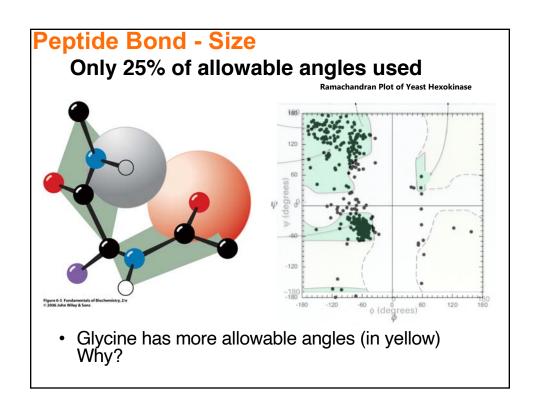

- 1) Double-bond Character
 - a) Length
 - b) Strength
 - c) Planarity


Peptide Bond - Shape


Trans vs. Cis of Peptide Bond


Most Peptide Bonds in Proteins Assume Trans
Configuration



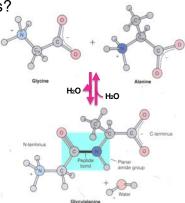


Peptide Bond - Solubility

Resonance of Peptide Bond

Consequences:

- 1) Double-bond Character
 - a) Length
 - b) Strength
 - c) Planarity
- 2) Partial charges on O & N Polarity of peptide bond
 - a) O is excellent H-bond acceptor
 - b) N is excellent H-bond donor


This makes the polymer (called "alpha-carbon backbone") very water soluble

Peptide Bond - Stability

What is the energetics of hydrolysis?

The ΔG of hydrolysis is -2.4 kcal/mole (-10 kJ/mole)

Glycylalanine + H₂O **⇌** Glycine + Alanine

Why doesn't your hair fall apart into AA & water, or all other proteins?

Kinetically stable, thermodynamically unstable

What does it take to hydrolyze proteins?

Peptide Bond

The catalysis of the hydrolysis reaction to cleave the Peptide Bond:

Acid – 6 N HCl, 16 hr at 110 C°

All peptide (and amide) bonds cleaved

Base –3 N NaOH, 6 hr at 100 C°

All peptide (and amide) bonds cleaved, but hydroxyl groups and guanidino groups

are destroyed

Enzymes –proteolysis; incomplete due to specificity of enzymes

Use hydrolysis to answer 2 questions:

- 1) determine amino acid composition
- 2) Help determine entire amino-acid **sequence** by fragmenting into small peptides

Peptide Bond

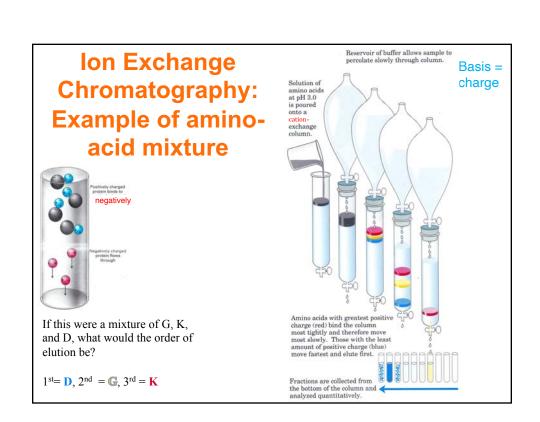
The 4 S's for the Peptide Bond (recap):

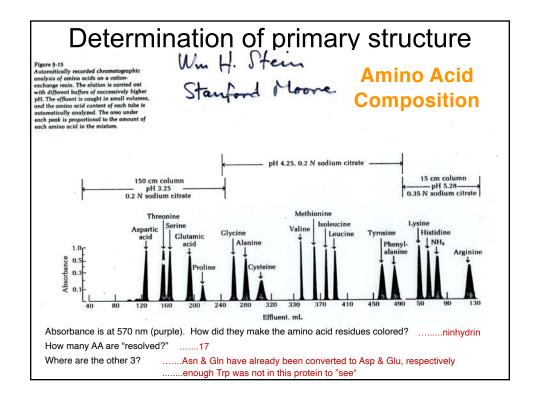
Shape —trans & double-bond, planar character due to resonance

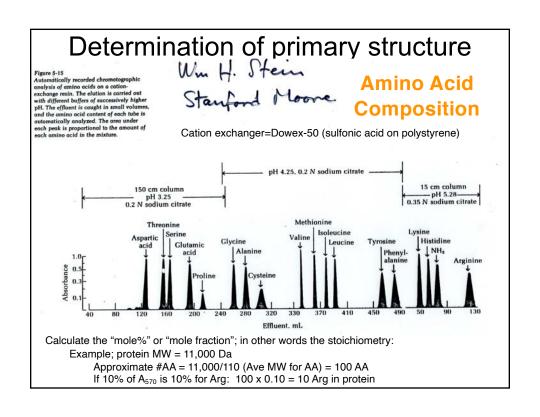
Size -7 Å repeat length & two rotatable bonds at $C\alpha$ (ϕ & ψ)

Solubility —highly polar bond due to resonance

Stability —high bond energy due to resonance


	TABLE 4-2 Composition of Some P	roteins			V 1 1 6
	<u> </u>	Number of Amino Acid Residues	Number of Polypeptide Chains	Molecular Mass (D)*	Fred Sanger 1918-2013
	Insulin (bovine)	51	2	5733	1958 Nobel Priz
	Rubredoxin (Pyrococcus)	53	1	5878	110.9
	Myoglobin (human)	153	1	17,053	
	Phosphorylase kinase (yeast)	416	1	44,552	
	Hemoglobin (human)	574	4	61,972	
	Reverse transcriptase (HIV)	986	2	114,097	
	Nitrite reductase (Alcaligenes)	1029	3	111,027	
	C-reactive protein (human)	1030	5	115,160	107.8
	Pyruvate decarboxylase (yeast)	1112	2	121,600	
	Immunoglobulin (mouse)	1316	4	145,228	
	Ribulose bisphosphate carboxylase (spinach)	5048	16	567,960	
	Glutamine synthetase (Salmonella)	5628	12	621,600	110.5
	Carbamoyl phosphate synthetase (E. coli)	5820	8	637,020	
	© John Wiley & Sons, Inc. All rights reserved. * Dalton (D) =				amu = g/mol
▼			kΙ	D = kilodal	ton = 1000 D
	ss		1	residue (a	a) ~ 110 D (0.11
A chain					


Determination of primary structure


- 1) Purify protein
- 2) Determine the amino-acid composition, including stoichiometry
- 3) Disrupt structure $(2^{\circ}, 3^{\circ}, 4^{\circ}, \text{ and disulfides})$
- 4) Determine the number of peptide chains by counting number of amino terminal ends
- 5) Divide into fragments and determine sequence
- 6) Divide into different set of fragments and determine sequence
- 7) Determine overlaps and piece original sequence back together

Determination of primary structure

- 1) Purify protein
- 2) Determine the amino-acid composition, including stoichiometry
- 3) Disrupt structure (2°, 3°, 4°, and disulfides)
- 4) Determine the number of peptide chains by counting number of amino terminal ends
- 5) Divide into fragments and determine sequence
- 6) Divide into different set of fragments and determine sequence
- 7) Determine overlaps and piece original sequence back together

