Lecture 5 (9/15/25)

OUTLINE

Amino Acids

- Definition, Structure, and Properties
 - · The 4 S's
 - · Common Properties
 - · Five Classes
 - Hydrophobic-aliphatic [6]
 - Hydrophobic-aromatic [3]
 - Special-sulfur [2]

 - Hydrophilic-polar [4]Hydrophilic-charged [5]
 - · Other amino acids
 - · Linking amino acids
 - · Acid/base properties
- Titrations
- Isoelectric point
 - · Electrophoresis

Protein Purification

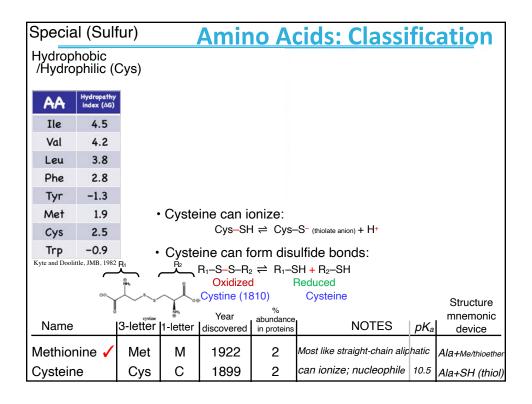
TODAY

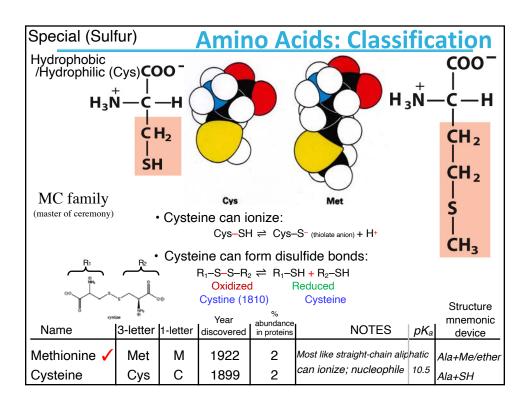
- Reading: Ch3; 76-82, 87-89
- Homework

NEXT

- Reading: Ch3; 83-87, 89-90
 - Ch1; Fig 7
 - Ch9; 313-314
- Homework #6

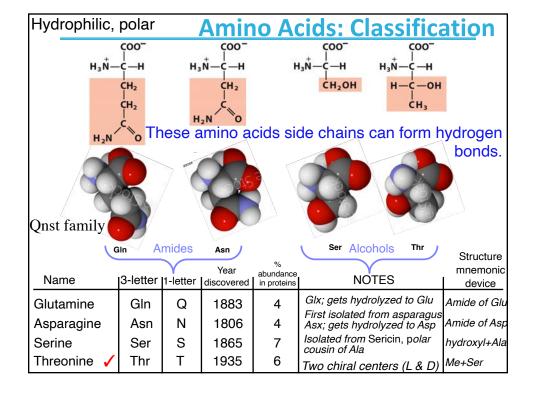
Amino Acids: Classification


- · The 20 amino acids found in proteins can be placed in five families based on the physical and chemical properties of their R groups:
 - Hydrophobic, aliphatic (6)


Gavlip family

Hydrophobic, aromatic (3)

PTT family

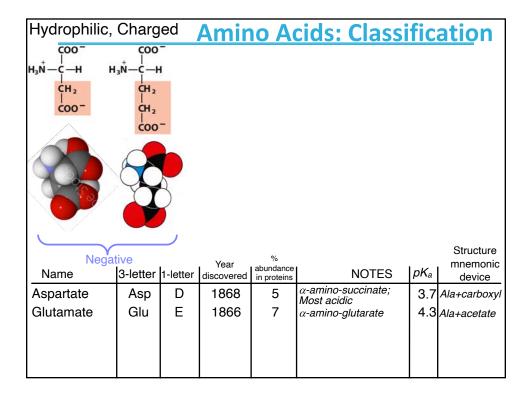

- Special (hydrophobic/hydrophilic)(2)
- Hydrophilic, polar (4)
- Hydrophilic, charged (5)

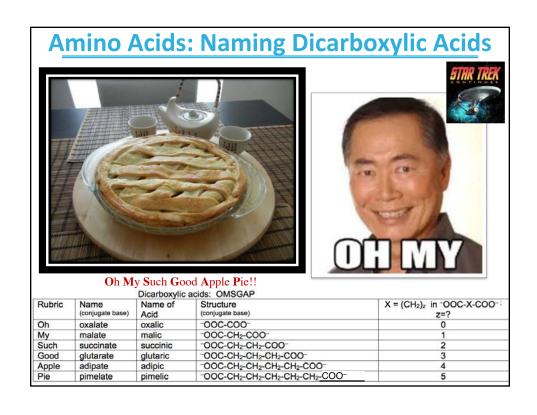
Amino Acids: Classification

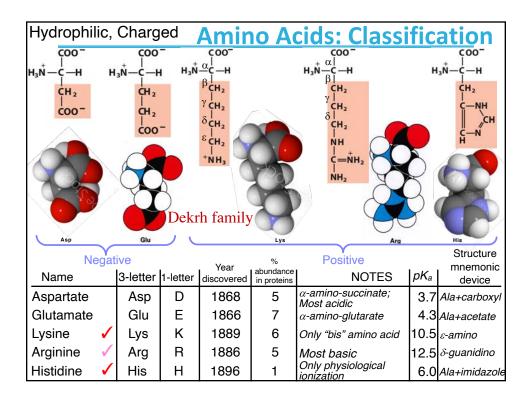
- The 20 amino acids found in proteins can be placed in five families based on the physical and chemical properties of their R groups:
 - Hydrophobic, aliphatic (6)
 Gavlip family
 - Hydrophobic, aromatic (3)
 PTT family
 - Special (hydrophobic/hydrophilic)(2) MC family
 - Hydrophilic, polar (4)
 - Hydrophilic, charged (5)

Amino Acids: Classification

 The 20 amino acids found in proteins can be placed in five families based on the physical and chemical properties of their R groups:


Hydrophobic, aliphatic (6)
 Gavlip family


Hydrophobic, aromatic (3)
 PTT family


Special (hydrophobic/hydrophilic)(2) MC family

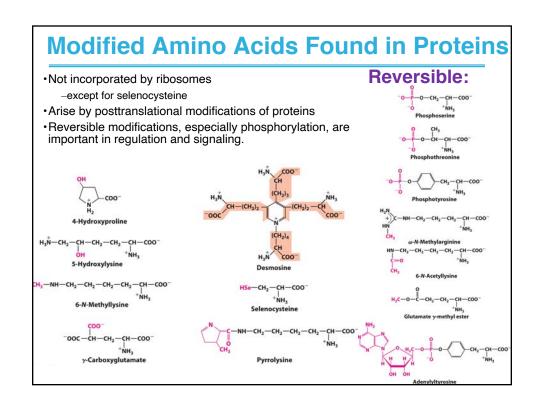
Hydrophilic, polar (4) Qnst family

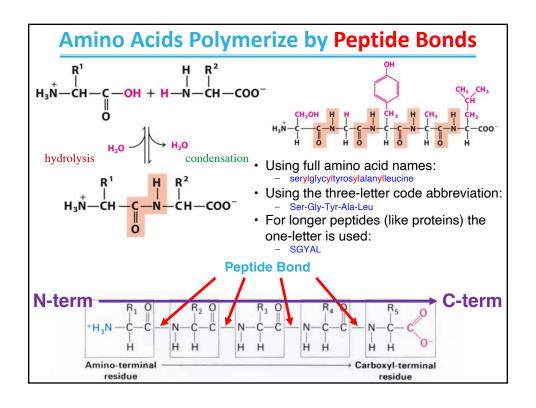
Hydrophilic, charged (5)

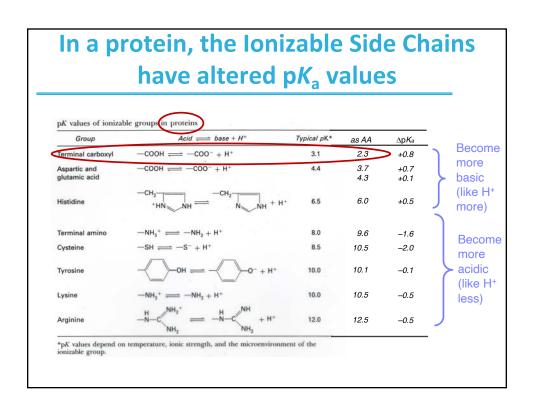
Amino Acids: Classification

 The 20 amino acids found in proteins can be placed in five families based on the physical and chemical properties of their R groups:

• Hydrophobic, aliphatic (6) Gavlip family

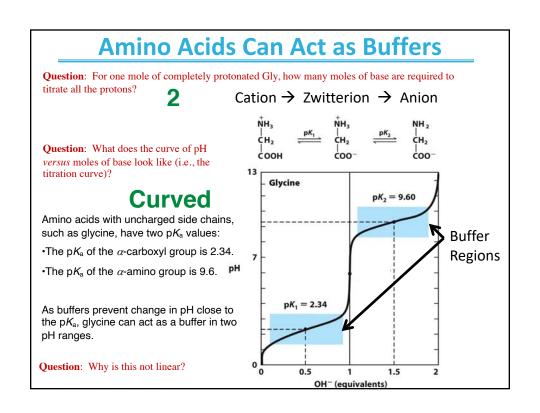

Hydrophobic, aromatic (3)
 PTT family

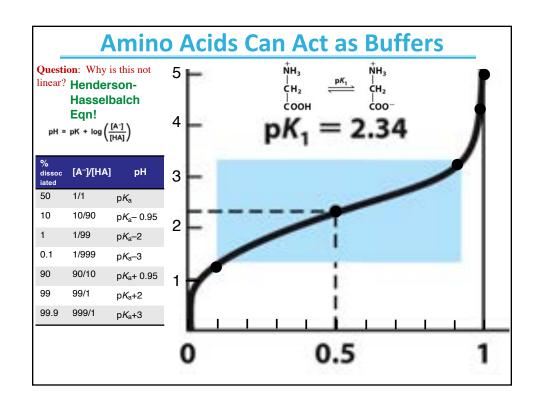

• Special (hydrophobic/hydrophilic)(2) MC family

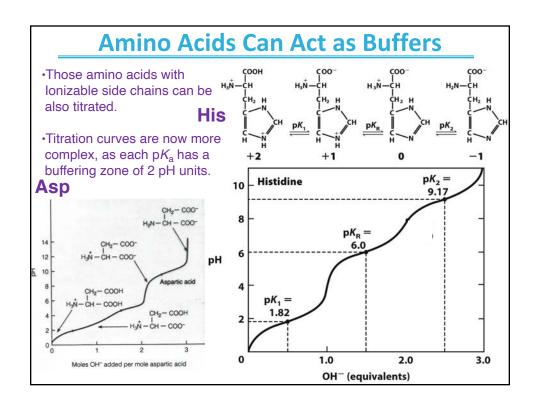

Hydrophilic, polar (4) Qnst family

Hydrophilic, charged (5)
 Dekrh family

			Year	% abundance		- 1/	Structure
	3-letter	1-letter	discovered	in proteins	NOTES	pĸa	mnemonic device
Glycine	Gly	G	1820	7	Smallest, not chiral		Н
Alanine	Ala	Α	1888	8	Foundational for ~10 other	er AA	Methyl
Valine 🗸	Val	V	1856	7	isopropyl		V-shaped
Leucine.	Leu	L	1819	10	Most abundant, domin	ant	Ala + Val
Isoleucine 🗸	lle	I	1904	6	Two chiral centers (L &	& D)	Val + Me
Proline	Pro	Р	1901	5	Only imino acid (2° amine); sp bonds in proteins; is modified		5-membered ring; same # as Val; 3C
Phenylalanine	∕ Phe	F	1879	4	aromatic		Phenyl+Ala
Tyrosine	Tyr	Υ	1846	3	aromatic, can ionize; amphipathic	10.1	p-phenol+Ala
Tryptophan 🗸	Trp	W	1901	1	aromatic & fluorescent; least abundant		Indole+Ala
Methionine <	Met	M	1922	2	Most like straight-chain ali	ohatic	Ala+Me/ether
Cysteine	Cys	С	1899	2	can ionize; nucleophile		Ala+SH
Glutamine	Gln	Q	1883	4	Glx; gets hydrolyzed to G		Amide of Glu
Asparagine	Asn	N	1806	4	First isolated from aspara Asx; gets hydrolyzed to A	gus sp	Amide of Asp
Serine	Ser	S	1865	7	Isolated from Sericin, pola cousin of Ala	ar	hydroxyl+Ala
Threonine 🗸	Thr	Т	1935	6	Two chiral centers (L & D)		Me+Ser
Aspartate	Glu	D	1868	5	α-amino-succinate; Most acidic	3.7	Ala+carboxyl
Glutamate	Asp	Ε	1866	7	α -amino-glutarate	4.3	Ala+acetate
Lysine 🗸	Lys	K	1889	6	Only "bis" amino acid	10.5	arepsilon-amino
Arginine 🗸	Arg	R	1886	5	Most basic	12.5	δ -guanidino
Histidine <	His	Н	1896	1 1	Only physiological ionization	6.0	Ala+imidazole







EXAMPLE: α-carboxy group is much more acidic than in carboxylic acids. PK_a 2 4 6 In proteins, the α-amino group is much more acidic glycine) pK_a = 2.34 The protonated amino group withdraws electrons from the carboxyl group, lowering its pK_a.

IN PROTEINS, the environment can be much different than in bulk solution, and pK_a values can change by several orders of magnitude.

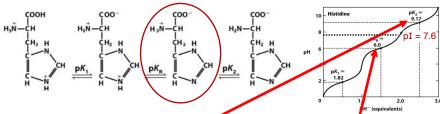
Amino Acids Carry a Net Charge of Zero at a Specific pH value (the pl)

- The Isoelectric Point (equivalence point, pl) is the pH value where the net charge is ZERO.
- Zwitterions predominate at pH values between the pK_a values of the amino and carboxyl groups.
- The exact value is the average of the two pK_a values forming or titrating the zwitterion.
- At the pH equal to the pI:
- $pI = \frac{pK_1 + pK_2}{2}$
- AA is least soluble in water.
- AA does not migrate in electric field.
- AA does not bind well to other charged media/compounds

How to Calculate pl

What is the pl of glycine?

- Identify the zwitterion (species that carries a net charge of zero).
- Identify the pK_a value for the reaction that protonates the zwitterion.
- Identify the pK_a value for the reaction that titrates a proton from
 the zwitterion.
- Take the average of these two pK_a values.


$$pI = \frac{pK_1 + pK_2}{2}$$
$$pI = (2.3 + 9.6)/2$$

How to Calculate the pl When the Side Chain Is Ionizable His

· Identify species that carries a net zero charge.

- Identify the p K_a value for the reaction that protonates the zwitterion. For His this occurs on the R-group (p K_R).
- Identify the p K_{α} value for the reaction that titrates the next proton from the zwitterion. For His this is the α -amino group $(pK_{NH_{\alpha}})$.
- Take the average of these two pK_a values.

What is the pl of histidine?

pI = (6.0 + 9.2)/2 pI = 7.6

How to Calculate the pl of a peptide

Estimate the pl value of the following hexapeptide:

Phe-Lys-Asp-Cys-Thr-Tyr

Step 1: Determine the total positive charge on the peptide when all acidic and basic groups are fully protonated (at low pH).

Step 2: Determine the total negative charge on the peptide when all the groups are titrated (at high pH).

Step 3: List the pK_a values of all acidic and basic groups in order from lowest (pK_{a1}) to highest.

Step 4: Calculate the pl as the average of the values for pK_a value of the proton dissociation forming a neutral species from a +1 species, and pK_a value of the proton dissociation forming a -1 species from the neutral species.

So for this peptide

Step 1: charge when fully protonated +2

Step 2: charge when fully de-protonated -4

Step 3: pK_a values are:

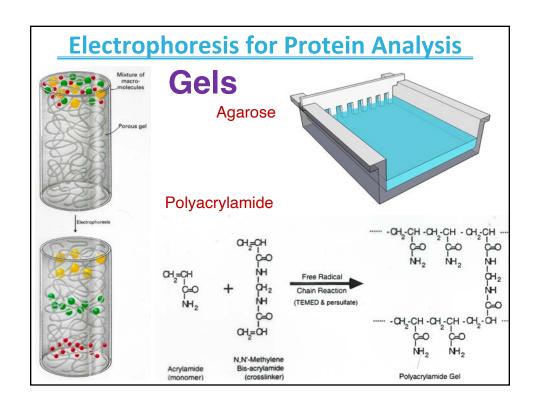
9.0(N-term), 10.5(Lys), 3.9(Asp), 8.4 (Cys), 10.5(Tyr), 3.5(C-term)

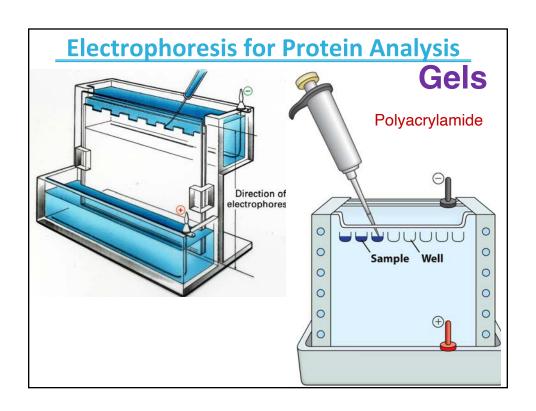
List from lowest to highest

pKa 3.5 3.9 8.4 9.0 10.5 10.5 Charges $+2 \leftrightarrows +1 \leftrightarrows 0 \leftrightarrows -1 \leftrightarrows -2 \leftrightarrows -3 \leftrightarrows -4$

Step 4: The pl is (3.9 + 8.4)/2 = 6.2

Proteins and their pl Values


 $\begin{array}{ccc} & \text{Cation} \rightarrow \text{Zwitterion} \rightarrow \text{Anion} \\ \text{pH at:} & \text{<pI} & \text{pI} & \text{>pI} \end{array}$


- IN GENERAL, if you take the % abundance of acidic and basic residues (Glu+Asp) and (Lys+Arg), you have ~12 and ~11%.
- So, there are slightly more acidic residues than there are basic residues.
- Half way between the most basic of these acidic residues lies the pl values for most proteins; most are below the average of 4.3 (Glu) + 10.5 (Lys) ÷ 2 = 7.4.
- Therefore, given that there is 1% more (Glu+Asp) than (Lys+Arg), most proteins are slightly more acidic than physiological pH.
 - ➤ That doesn't mean there are not many proteins that are very acidic (pl values <<7.4; negatively charged at pH 7.4):
 - Transcription factors
 - Pepsin
 - Ovalbumin
 - Serum albumin
 - ➤ Or, very basic (pl values >>7.4; positively charged at pH 7.4):
 - Cytochrome c
 - Lysozyme
 - Histones
 - Ribosomal proteins

- •Like AA, for proteins, at the pH equal to the pI:
 - Protein is least soluble in water, could precipitate.
 - Protein does not migrate in electric field.

Electrophoresis for Protein Analysis

- Electrophoresis is the migration of molecules in an electric field.
- Electrophoresis is one of the most commonly used analytical scale <u>separation</u> techniques
 - The electric field pulls proteins according to their charge.
- Gel electrophoresis adds a solid support in which the separation occurs. The gel matrix hinders mobility of proteins according to their size and shape.
 - The commonly used gels are either polyacrylamide (proteins) or agarose (nucleic acids).
 - separation of proteins via electrophoresis is often called polyacrylamide gel electrophoresis, or PAGE.
- For proteins to separate, they have to have a charge.

Electrophoresis for Protein Analysis

- For proteins to separate, they have to have a charge.
- The charge on a protein will depend on the pH.

 $f \propto \text{mass}$, shape, viscosity of media

 $f = 6 \Pi \cdot \boldsymbol{\eta} \cdot \mathbf{r}$

where:

 η = coefficient of viscosity

r = Stokes radius (mass and shape)[this is from actual radius and specific volume (cm³/g)] Velocity = $\frac{E}{6\pi \cdot \eta}$

This is essentially the charge:mass ratio if all proteins are roughly the same shape (globular).

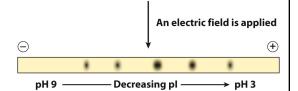
Electrophoresis for Protein Analysis

- For proteins to separate, they have to have a charge.
- pH and pl dependence:
 - \circ At pH near the pI, not much movement
 - At pH below the pl, proton concentration is higher, so charge becomes positive
 - At pH above the pI, protons will be titrated off, so the charge will become

Recall:

Cation → Zwitterion → Anion pH at: <pI pI >pI

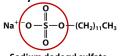
Isoelectric Focusing Takes advantage of the pl differences in Proteins for Separation


Can also be used to determine the pI values

Isoelectric Focusing

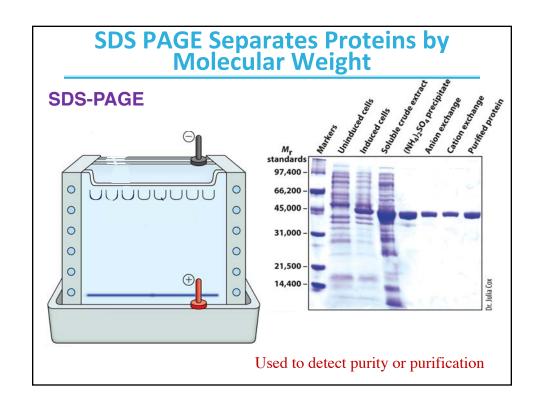
Velocity = $\frac{E}{6\pi \cdot \eta} \left(\frac{z}{r} \right)$

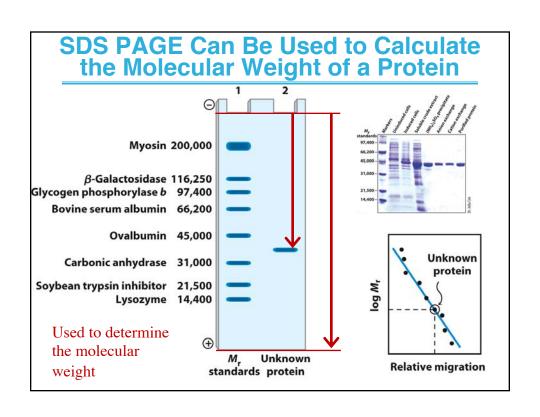
Ampholytes are highly charged small MW polymer with variable pI values. Due to their high z/r, they migrate rapidly setting up a buffered pH gradient. Once they reach the pH equal to their individual pl values, they STOP migrating, thus creating an immobilized pH gradient.

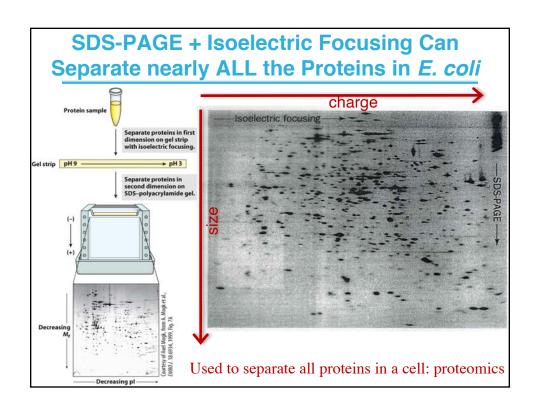

A protein sample may be applied to one end of a gel strip with an immobilized pH gradient. Or, a protein sample in a solution of ampholytes may be used to rehydrate a dehydrated gel strip.

After staining, proteins are shown to be distributed along pH gradient according to their pl values.

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS PAGE) Separates Proteins by Molecular Weight


• SDS – sodium dodecyl sulfate – a detergent




Velocity = $\frac{E}{6\pi \cdot \eta}$ $\frac{z}{r}$

Sodium dodecyl sulfate (SDS)

- SDS micelles bind to proteins and facilitate unfolding.
 - SDS gives all proteins a uniformly negative charge and shape (micelle)
 - The native shape is perturbed; de-natured.
 - SDS binds proteins at a constant ratio of mass (1.4g SDS/g protein), coating them with a negative charge.
 - So much charge is added that all proteins have the same charge:mass ratio, and the rate of movement will only depend on the sieving properties of the gel: small proteins will move farther.

Protein Purification

Protein Purification

Proteins are separated from each other (along with other macromolecules) due to the vast variability they have. The basis of the separation can be put into 4 categories:

- Size, shape, density
- Charge
- Solubility
- Binding characteristics

Hydrodynamic properties

Chemical properties

Biological properties

TABLE 5-2 Pro			
Protein Characteristic	Purification Procedure		
Solubility	Salting out	\leftarrow	
Ionic Charge	Ion exchange chromatography Electrophoresis Isoelectric focusing	—	Lal
Polarity	Hydrophobic interaction chromatography		
Size	Gel filtration chromatography	\leftarrow	Lal
	SDS-PAGE Centrifugation	—	Lal Lal
Binding Specificity	Affinity chromatography		Lal

Before you can separate "your favorite protein (YFP)" from all the thousands of others, you need a way to "see" it........ An Assay!

- enzymes → activity assay
- binding proteins → binding assay
- other proteins → immunoblot or ELISA

How do you monitor the purification?

• Specific Activity = Activity of YFP

Total protein