

Hydrophilic,	polar		Amin	o Ao	cids: Cl	assifica	ation
	<u>çoo-</u>		<u>coo-</u>		coo -	င္၀၀-	
H₃Ň—	-с —н	H3	Ň—Ċ—H	н	I₃Ň—Ċ—H	H₃N — Ċ —H	
	СH2 СH2 СH2			cide ci	с́н₂он	н—с́—он сн₃ can form h	vdrogon
H ₂ N	°o I	1626 0		cius si		can ionin i	bonds.
Qnst family		asters			8		
G	iln A	mides	Asn		Ser Alco	ohols Thr	Structure
Name	3-letter	1-letter	Year discovered	% abundance in proteins	NC	DTES	mnemonic device
Glutamine	Gln	Q	1883	4	,0,,	rolyzed to Glu	Amide of Glu
Asparagine	Asn	N	1806	4	First isolated Asx; gets hyd	from asparagus Irolyzed to Asp	Amide of Asp
Serine	Ser	s	1865	7	Isolated from cousin of Ala	Sericin, p <i>olar</i>	hydroxyl+Ala
Threonine 🧹	Thr	Т	1935	6		enters (L & D)	Me+Ser

Hydrophili	С,	Charg	ed	<u>Amir</u>	o A	<u>cids: Classi</u>	fic	<u>ation</u>
			€ ←			α β γ δ		
	þ	ond beco	ome de-l narge als	reating the ocalized, th so becomes	double			
Name		3-letter	1-letter	Year discovered	% abundance in proteins	NOTES	pK _a	Structure mnemonic device
Aspartate		Asp	D	1868	5	α-amino-succinate; Most acidic	3.7	Ala+carboxyl
Glutamate		Glu	Е	1866	7	α -amino-glutarate	4.3	Ala+acetate
Lysine	/	Lys	K	1889	6	Only "bis" amino acid	10.5	ɛ-amino
Arginine	/	Arg	R	1886	5	Most basic	12.5	δ -guanidino
Histidine	/	His	Н	1896	1	Only physiological ionization	6.0	Ala+imidazole

Amino Acids: Classification

• The 20 amino acids found in proteins can be placed in five families based on the physical and chemical properties of their R groups:

- Hydrophobic, aliphatic (6) Gavlip family
- Hydrophobic, aromatic (3)
- Special (hydrophobic/hydrophilic)(2) MC family
- Hydrophilic, polar (4)

• Hydrophilic, charged (5)

Qnst family Dekrh family

PTT family

		_	Year	%			Structure
Name	3-letter		discovered	abundance in proteins	NOTES	рК _а	mnemonic device
Glycine	Gly	G	1820	7	Smallest, not chiral		Н
Alanine	Ala	A	1888	8	Foundational for ~10 othe	er AA	Methyl
Valine 🧹	Val	V	1856	7	isopropyl		V-shaped
Leucine	Leu	L	1819	10	Most abundant, domin	ant	Ala + Val
Isoleucine 🗸	lle	I	1904	6	Two chiral centers (L &	& D)	Val + Me
Proline	Pro	Р	1901	5	Only imino acid (2° amine); sp bonds in proteins; is modified		5-membered ring; same # as Val; 3C
Phenylalanine	Phe	F	1879	4	aromatic		Phenyl+Ala
Tyrosine	Tyr	Y	1846	3	aromatic, can ionize; amphipathic	10.1	p-phenol+Ala
Tryptophan 🗸	Trp	W	1901	1	aromatic & fluorescent; least abundant		Indole+Ala
Methionine 🗸	Met	М	1922	2	Most like straight-chain ali	ohatic	Ala+Me/ether
Cysteine	Cys	С	1899	2	can ionize; nucleophile		Alaton
Glutamine	Gln	Q	1883	4	Glx; gets hydrolyzed to G		Amide of Glu
Asparagine	Asn	N	1806	4	First isolated from aspara Asx; gets hydrolyzed to A	gus sp	Amide of Asp
Serine	Ser	S	1865	7	Isolated from Sericin, pola cousin of Ala	ar	hydroxyl+Ala
Threonine 🧹	Thr	Т	1935	6	Two chiral centers (L & D)		Me+Ser
Aspartate	Glu	D	1868	5	α-amino-succinate; Most acidic	3.7	Ala+carboxyl
Glutamate	Asp	E	1866	7	α -amino-glutarate	4.3	/
Lysine 🗸	Lys	K	1889	6	Only "bis" amino acid	10.5	ε-amino
Arginine 🗸	Arg	R	1886	5	Most basic	12.5	δ -guanidino
Histidine 🗸	His	Н	1896	1	Only physiological ionization	6.0	Ala+imidazole

In a protein, the Ionizable Side Chains have altered pK_a values

				· ·
Terminal carboxyl	$-COOH \implies -COO^- + H^+$	3.1	2.3	+0.8
Aspartic and glutamic acid	COOH ⇒COO ⁻ + H ⁺	4.4	3.7 4.3	+0.7 +0.1
Histidine	$\xrightarrow{-CH_2}_{+HN} \xrightarrow{NH} \xrightarrow{-CH_2}_{N} \xrightarrow{NH} +$	H+ 6.5	6.0	+0.5
Terminal amino	$-NH_3^+ \Longrightarrow -NH_2 + H^+$	8.0	9.6	-1.6
Cysteine	$-SH \implies -S^- + H^+$	8.5	10.5	-2.0
Tyrosine	-√ОН == -√О- + Н+	10.0	10.1	-0.1
Lysine	$-NH_3^+ \implies -NH_2 + H^+$	10.0	10.5	-0.5
Arginine	$-\overset{H}{\overset{N}{\overset{N}{\overset{N}{\overset{L}{\overset{T}{\overset{N}}}}}}}}}$	12.0	12.5	-0.5

Amino Acids Carry a Net Charge of Zero at a Specific pH value (the pI)

- The Isoelectric Point (equivalence point, pl) is the pH value where the net charge is ZERO.
- Zwitterions predominate at pH values between the pK_a values of the amino and carboxyl groups.
- The exact value is the average of the two p*K*_a values forming or titrating the zwitterion.
- At the pH equal to the pI:

$$pI = \frac{pK_1 + pK_2}{2}$$

- AA is least soluble in water.
- AA does not migrate in electric field.
- AA does not bind well to other charged media/compounds

How to Calculate the pl of a peptide
Estimate the pl value of the following hexapeptide:
Phe-Lys-Asp-Cys-Thr-Tyr
Step 1: Determine the total positive charge on the peptide when all acidic and basic groups are fully protonated (at low pH).
Step 2: Determine the total negative charge on the peptide when all the groups are titrated (at high pH).
Step 3: List the pK _a values of all acidic and basic groups in order from lowest (pK _{a1}) to highest.
Step 4: Calculate the pl as the average of the values for pK_a value of the proton dissociation forming a neutral species from a +1 species, and pK_a value of the
proton dissociation forming a -1 species from the neutral species.
So for this peptide
Step 1: charge when fully protonated +2 Step 2: charge when fully de-protonated -4
Step 3: pK ₂ values are:
9.0(N-term), 10.5(Lys), 3.9(Asp), 8.4 (Cys), 10.5(Tyr), 3.5(C-term)
List from lowest to highest
pKa 3.5 3.9 8.4 9.0 10.5 10.5
Charges $+2 \div +1 \div 0 \div -1 \div -2 \div -3 \leftrightarrows -4$
Step 4: The pl is (3.9 + 8.4)/2 = 6.2

Protein Purification

Proteins are separated from each other (along with other macromolecules) due to the vast variability they have. The basis of the separation can be put into 4 categories:

- Size, shape, density
- Charge
- Solubility
- Binding characteristics

Hydrodynamic properties

Chemical properties

Biological properties

Basis	Procedure	Covered			
Hydrodynamics (size, shape, density	Gel filtration <u>Chromatography</u> SDS-PAGE Centrifugation	Lab 🔶 Lab 🔶 Lab 🦕			
Charge	Ion exchange <u>Chromatography</u> Isoelectric focusing Native electrophoresis	Lab 🖛			
Solubility	Salting out Organic extraction Hydrophobic interaction Chromatography	Lab ←			
Binding Specificity	Affinity Chromatography	Lab 🖕			

Purifica	tion of	a hyp	othetic	al protein
Procedure or step	Fraction volume (ml)	Total protein (mg)	Activity (units)	Specific activity (units/mg)
I. Crude cellular extract	1,400	10,000	100,000	10
2. Precipitation	280	3,000	96,000	32
3. Ion-exchange chromatography	90	400	80,000	200 -
4. Size-exclusion chromatography	80	100	60,000	600
5. Affinity chroma- tography	6	3	45,000	15,000

-If protein was "pure" after step #5, what would the Specific Activity be after you performed a step #6? -What is the Yield?