Lecture 5 (9/17/21)

OUTLINE
Amino Acids
- Definition
- The 4 S’s
- Common Properties
- Five Classes
 - Hydrophobic–aliphatic [6]
 - Hydrophobic–aromatic [3]
 - Special–sulfur [2]
 - Hydrophilic–charged [5]
- Other amino acids
- Linking amino acids
- Acid/base properties
 - Titrations
 - Isoelectric point
- Electrophoresis

• Reading: Ch3; 82–87, 92–94
• Problems: Ch3; 3,5,8,13,14, Ch2; 34

NEXT
• Reading & Problems announced after exam

Hydrophilic, Charged

Amino Acids: Classification

<table>
<thead>
<tr>
<th>Name</th>
<th>3-letter</th>
<th>1-letter</th>
<th>Year discovered</th>
<th>% abundance in proteins</th>
<th>NOTES</th>
<th>(pK_a)</th>
<th>Structure mnemonic device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartate</td>
<td>Asp</td>
<td>D</td>
<td>1868</td>
<td>5</td>
<td>(\alpha)-amino-succinate; Most acidic(\alpha)-amino-glutarate</td>
<td>3.7</td>
<td>Ala+carboxyl</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Glu</td>
<td>E</td>
<td>1866</td>
<td>7</td>
<td>(\alpha)-amino-glutarate</td>
<td>4.3</td>
<td>Ala+acetate</td>
</tr>
</tbody>
</table>
Amino Acids: Naming Dicarboxylic Acids

<table>
<thead>
<tr>
<th>Rubric</th>
<th>Name (conjugate base)</th>
<th>Name of Acid</th>
<th>Structure (conjugate base)</th>
<th>X = (CH₂)ₓ in “OOOC-X-COO”<sup>−</sup></th>
<th>z=?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oh</td>
<td>oxalate</td>
<td>oxalic</td>
<td>OOOC-COO<sup>−</sup></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>My</td>
<td>malate</td>
<td>malic</td>
<td>OOOC-CH₂-COO<sup>−</sup></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Such</td>
<td>succinate</td>
<td>succinic</td>
<td>OOOC-CH₃-C₄H₉-COO<sup>−</sup></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>glutarate</td>
<td>glutamic</td>
<td>OOOC-CH₃-C₆H₁₃-COO<sup>−</sup></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Apple</td>
<td>adipate</td>
<td>adipic</td>
<td>OOOC-CH₃-C₈H₁₇-COO<sup>−</sup></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Pia</td>
<td>pimelate</td>
<td>pimelic</td>
<td>OOOC-CH₃-C₁₀H₂₁-COO<sup>−</sup></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Hydrophilic, Charged Amino Acids: Classification

As the electrons creating the double bond become delocalized, the positive charge also becomes delocalized.

<table>
<thead>
<tr>
<th>Name</th>
<th>3-letter</th>
<th>1-letter</th>
<th>Year discovered</th>
<th>% abundance in proteins</th>
<th>NOTES</th>
<th>Structure mnemonic</th>
<th>pK_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartate</td>
<td>Asp</td>
<td>D</td>
<td>1868</td>
<td>5</td>
<td>α-amino-succinate; Most acidic</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Glutamate</td>
<td>Glu</td>
<td>E</td>
<td>1866</td>
<td>7</td>
<td>α-amino-glutarate</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys</td>
<td>K</td>
<td>1889</td>
<td>6</td>
<td>Only “bis” amino acid</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
<td>R</td>
<td>1886</td>
<td>5</td>
<td>Most basic</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
<td>H</td>
<td>1896</td>
<td>2</td>
<td>Only physiological ionization</td>
<td>6.0</td>
<td></td>
</tr>
</tbody>
</table>
Amino Acids: Classification

- The 20 amino acids found in proteins can be placed in five families based on the physical and chemical properties of their R groups:
 - Hydrophobic, aliphatic (6)
 - Gavlip family
 - Hydrophobic, aromatic (3)
 - PTT family
 - Special (hydrophobic/hydrophilic)(2)
 - MC family
 - Hydrophilic, polar (4)
 - Qnst family
 - Hydrophilic, charged (5)
 - Dekrh family

<table>
<thead>
<tr>
<th>Name</th>
<th>3-letter</th>
<th>1-letter</th>
<th>Year discovered</th>
<th>% abundance in proteins</th>
<th>NOTES</th>
<th>pKa</th>
<th>Structure mnemonic device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>Gly</td>
<td>G</td>
<td>1820</td>
<td>7</td>
<td>Smallest, not chiral</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>Alanine</td>
<td>Ala</td>
<td>A</td>
<td>1888</td>
<td>8</td>
<td>Foundational for ~10 other AA</td>
<td></td>
<td>methyl</td>
</tr>
<tr>
<td>Valine</td>
<td>Val</td>
<td>V</td>
<td>1856</td>
<td>7</td>
<td>Isopropyl</td>
<td></td>
<td>V-shaped</td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu</td>
<td>L</td>
<td>1819</td>
<td>10</td>
<td>Most abundant, dominant</td>
<td></td>
<td>Ala + Val</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile</td>
<td>I</td>
<td>1904</td>
<td>6</td>
<td>Two chiral centers (L & D)</td>
<td></td>
<td>Val + Me, 5-membered ring; same # as Val; 3C</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro</td>
<td>P</td>
<td>1901</td>
<td>5</td>
<td>Only imino acid (2° amine); special bonds in proteins; is modified by OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe</td>
<td>F</td>
<td>1879</td>
<td>4</td>
<td>Aromatic, not chiral, most acidic</td>
<td></td>
<td>Phenyl+Ala, p-phenol+Ala</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr</td>
<td>Y</td>
<td>1846</td>
<td>3</td>
<td>Aromatic, can ionize, amphipathic</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Trp</td>
<td>W</td>
<td>1901</td>
<td>1</td>
<td>Aromatic & fluorescent, least abundant</td>
<td></td>
<td>Indole+Ala</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met</td>
<td>M</td>
<td>1922</td>
<td>2</td>
<td>Most like straight-chain aliphatic can ionize; nucleophile</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys</td>
<td>C</td>
<td>1899</td>
<td>2</td>
<td>Most like straight-chain aliphatic can ionize; nucleophile</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Glutamine</td>
<td>Glu</td>
<td>Q</td>
<td>1883</td>
<td>4</td>
<td>Gets hydrolyzed to Glu, first isolated from asparagus</td>
<td></td>
<td>Amide of Glu</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn</td>
<td>N</td>
<td>1806</td>
<td>4</td>
<td>Gets hydrolyzed to Asp, isolated from serine</td>
<td></td>
<td>Amide of Asp</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser</td>
<td>S</td>
<td>1865</td>
<td>7</td>
<td>Gets hydrolyzed to Serin, polar cousin of Ala</td>
<td></td>
<td>hydroxy+Ala</td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr</td>
<td>T</td>
<td>1935</td>
<td>6</td>
<td>Two chiral centers (L & D)</td>
<td></td>
<td>Me+Ser</td>
</tr>
<tr>
<td>Aspartate</td>
<td>Glu</td>
<td>D</td>
<td>1868</td>
<td>5</td>
<td>Alpha-amino-succinate, most acidic</td>
<td>3.7</td>
<td>Ala+carboxyl</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Asp</td>
<td>E</td>
<td>1866</td>
<td>7</td>
<td>Alpha-amino-glutamate</td>
<td>4.3</td>
<td>Ala-acetate</td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys</td>
<td>K</td>
<td>1889</td>
<td>6</td>
<td>Only “bis” amino acid</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
<td>R</td>
<td>1886</td>
<td>5</td>
<td>Most basic</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
<td>H</td>
<td>1896</td>
<td>2</td>
<td>Only physiological ionization</td>
<td>6.0</td>
<td>Ala+imidazole</td>
</tr>
</tbody>
</table>
Amino Acids Polymerize by Peptide Bonds

- Using full amino acid names:
 - seryglyctyrolylaamylleucine
- Using the three-letter code abbreviation:
 - Ser-Gly-Tyr-Ala-Leu
- For longer peptides (like proteins) the one-letter is used:
 - SGYAL

Peptide Bond

In a protein, the Ionizable Side Chains have altered pKₐ values

| Group | Acid | Typical pKₐ | as AA | ΔpKₐ
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal carboxyl</td>
<td>COOH → COO⁻ + H⁺</td>
<td>3.1</td>
<td>2.3</td>
<td>+0.8</td>
</tr>
<tr>
<td>Aspartic and glutamic acid</td>
<td>COOH → COO⁻ + H⁺</td>
<td>4.4</td>
<td>3.7</td>
<td>+0.7</td>
</tr>
<tr>
<td>Histidine</td>
<td>CH₃N⁺ + H⁺</td>
<td>6.5</td>
<td>6.0</td>
<td>+0.5</td>
</tr>
<tr>
<td>Terminal amino</td>
<td>NH₃⁺ → NH₃₂⁺ + H⁺</td>
<td>8.0</td>
<td>9.6</td>
<td>−1.6</td>
</tr>
<tr>
<td>Cysteine</td>
<td>SH → S⁻ + H⁺</td>
<td>8.5</td>
<td>10.5</td>
<td>−2.0</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>OH⁻ → O⁻ + H⁺</td>
<td>10.0</td>
<td>10.1</td>
<td>−0.1</td>
</tr>
<tr>
<td>Lysine</td>
<td>NH₂⁺ → NH₃⁺ + H⁺</td>
<td>10.0</td>
<td>10.5</td>
<td>−0.5</td>
</tr>
<tr>
<td>Arginine</td>
<td>HNN⁺ → NN₂⁺ + H⁺</td>
<td>12.0</td>
<td>12.5</td>
<td>−0.5</td>
</tr>
</tbody>
</table>

*pKₐ values depend on temperature, ionic strength, and the microenvironment of the ionizable group.
Chemical Environment Affects pK_a Values

EXAMPLE: α-carboxy group is much more acidic than in carboxylic acids.

IN PROTEINS, the environment can be much different than in bulk solution, and pK_a values can change by several orders of magnitude.

Amino Acids Can Act as Buffers

Question: For one mole of completely protonated Gly, how many moles of base are required to titrate all the protons?

2

Cation \rightarrow Zwitterion \rightarrow Anion

Question: What does the curve of pH versus moles of base look like (i.e., the titration curve)?

Curved

Amino acids with uncharged side chains, such as glycine, have two pK_a values:

- The pK_a of the α-carboxyl group is 2.34.
- The pK_a of the α-amino group is 9.6.

As buffers prevent change in pH close to the pK_a, glycine can act as a buffer in two pH ranges.

Question: Why is this not linear?
Question: For one mole of completely protonated Gly, how many moles of base are required to titrate all the protons?

2

Cation \rightarrow Zwitterion \rightarrow Anion

Question: What does the curve of pH versus moles of base look like (i.e., the titration curve)?

Curved

Amino acids with uncharged side chains, such as glycine, have two pK_a values:

- The pK_a of the α-carboxyl group is 2.34.
- The pK_a of the α-amino group is 9.6.

As buffers prevent change in pH close to the pK_a, glycine can act as a buffer in two pH ranges.

Question: Why is this not linear?

Henderson-Hasselbalch Eqn!

$$pH = pK_a + \log \left(\frac{[A^-]}{[HA]} \right)$$

<table>
<thead>
<tr>
<th>% dissociated</th>
<th>[A−]/[HA]</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1/1</td>
<td>pK_a</td>
</tr>
</tbody>
</table>

$pK_1 = 2.34$
Amino Acids Can Act as Buffers

- Those amino acids with ionizable side chains can be also titrated.

- Titration curves are now more complex, as each pK_a has a buffering zone of 2 pH units.

Amino Acids Can Act as Buffers

- Those amino acids with ionizable side chains can be also titrated.

- Titration curves are now more complex, as each pK_a has a buffering zone of 2 pH units.
Amino Acids Carry a Net Charge of Zero at a Specific pH value (the pI)

• The Isoelectric Point (equivalence point, pI) is the pH value where the net charge is ZERO.

• Zwitterions predominate at pH values between the pKₐ values of the amino and carboxyl groups.

• The exact value is the average of the two pKₐ values forming or titrating the zwitterion.

• At the pH equal to the pI:
 – AA is least soluble in water.
 – AA does not migrate in electric field.
 – AA does not bind well to other charged media/compounds

\[
pI = \frac{pK_{a1} + pK_{a2}}{2}
\]

How to Calculate pI

What is the pI of glycine?

• Identify the zwitterion (species that carries a net charge of zero).

• Identify the pKₐ value for the reaction that protonates the zwitterion.

• Identify the pKₐ value for the reaction that titrates a proton from the zwitterion.

• Take the average of these two pKₐ values.

\[
pI = \frac{pK_{a1} + pK_{a2}}{2}
\]

\[
pI = \frac{2.3 + 9.6}{2}
\]

\[
pI = 5.95
\]
How to Calculate the pI When the Side Chain Is Ionizable

- Identify species that carries a net zero charge.
- Identify the pK_a value for the reaction that protonates the zwitterion. For His this occurs on the R-group (pK_R).
- Identify the pK_a value for the reaction that titrates the next proton from the zwitterion. For His this is the α-amino group (pK_{NH_2}).
- Take the average of these two pK_a values.

$\text{pI} = \frac{pK_1 + pK_2}{2}$

What is the pI of histidine?

$pI = \frac{6.0 + 9.2}{2} = 7.6$

How to Calculate the pI of a peptide

Estimate the pI value of the following hexapeptide:

Phe-Lys-Asp-Cys-Thr-Tyr

Step 1: Determine the total positive charge on the peptide when all acidic and basic groups are fully protonated (at low pH).
Step 2: Determine the total negative charge on the peptide when all the groups are titrated (at high pH).
Step 3: List the pK_a values of all acidic and basic groups in order from lowest (pK_{acid}) to highest.
Step 4: Calculate the pI as the average of the values for pK_a value of the proton dissociation forming a neutral species from a $+1$ species, and pK_a value of the proton dissociation forming a -1 species from the neutral species.

So for this peptide

Step 1: charge when fully protonated $+2$
Step 2: charge when fully de-protonated -4
Step 3: pK_a values are:

9.0(N-term), 10.5(Lys), 3.9(Asp), 8.4(Cys), 10.5(Tyr), 3.5(C-term)

List from lowest to highest

<table>
<thead>
<tr>
<th>pK_a</th>
<th>3.5</th>
<th>3.9</th>
<th>8.4</th>
<th>9.0</th>
<th>10.5</th>
<th>10.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charges</td>
<td>$+2$</td>
<td>$+1$</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
</tbody>
</table>

Step 4: The pI is $(3.9 + 8.4)/2 = 6.2$
Proteins and their pI Values

- **IN GENERAL**, if you take the % abundance of acidic and basic residues (Glu+Asp) and (Lys+Arg), you have 12 and 11%.
- So, there are more acidic residues than there are basic residues.
- Half way between the most basic of these acidic residues lies the pI values for most proteins; most are below the average of 4.3 (Glu) + 10.5 (Lys) ÷ 2 = 7.4.
- Therefore, given that there is 1% more (Glu+Asp) than (Lys+Arg), most proteins are slightly more acidic than physiological pH.
 - That doesn’t mean there are not many proteins that are very acidic (pI values <<7.4; negatively charged at pH 7.4):
 - Transcription factors
 - Pepsin
 - Ovalbumin
 - Serum albumin
 - Or, very basic (pI values >>7.4; positively charged at pH 7.4):
 - Cytochrome c
 - Lysozyme
 - Histones
 - Ribosomal proteins

Electrophoresis for Protein Analysis

- **Electrophoresis** is the migration of molecules in an electric field.
- **Electrophoresis** is one of the most commonly used analytical scale **separation** techniques
 - The electric field pulls proteins according to their charge.
- **Gel electrophoresis** adds a solid support in which the separation occurs. The gel matrix hinders mobility of proteins according to their size and shape.
 - The commonly used gels are either polyacrylamide (proteins) or agarose (nucleic acids).
 - Separation of proteins via electrophoresis is often called polyacrylamide gel electrophoresis, or PAGE.
- **For proteins to separate, they have to have a charge.**
Electrophoresis for Protein Analysis

Gels

Agarose

Polyacrylamide

Electrophoresis for Protein Analysis

Gels

Polyacrylamide
Electrophoresis for Protein Analysis

- For proteins to separate, they have to have a charge.
- The charge on a protein will depend on the pH.

But once they are moving, what does the velocity depend on?

\[
\text{Velocity} = \frac{E \cdot z}{f}
\]

where:

\[
f \propto \text{mass, shape, viscosity of media}
\]

\[
f = 6\pi \eta \cdot r
\]

where:

- \(\eta\) = coefficient of viscosity
- \(r\) = Stokes radius (mass and shape) [this is from actual radius and specific volume (cm³/g)]

This is essentially the charge:mass ratio if all proteins are roughly the same shape (globular).

Electrophoresis for Protein Analysis

- For proteins to separate, they have to have a charge.

- pH and pI dependence:
 - At pH near the pI, not much movement
 - At pH below the pI, proton concentration is higher, so charge becomes positive \(\oplus\)
 - At pH above the pI, protons will be titrated off, so the charge will become \(\ominus\)
Isoelectric Focusing Takes advantage of the pI differences in Proteins for Separation

Can also be used to determine the pI values

Isoelectric Focusing

A protein sample may be applied to one end of a gel strip with an immobilized pH gradient. Or, a protein sample in a solution of ampholytes may be used to rehydrate a dehydrated gel strip.

Ampholytes are highly charged small MW polymer with variable pI values. Due to their high $\frac{z}{r}$, they migrate rapidly setting up a buffered pH gradient. Once they reach the pH equal to their individual pI values, they STOP migrating, thus creating an immobilized pH gradient.

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS PAGE) Separates Proteins by Molecular Weight

- SDS – sodium dodecyl sulfate – a detergent

 ![Sodium dodecyl sulfate (SDS)](image)

 Velocity = $\frac{E}{6\eta r}$

- SDS micelles bind to proteins and facilitate unfolding.
 - SDS gives all proteins a uniformly negative charge and shape (micelle)
 - The native shape is perturbed; de-natured.
 - SDS binds proteins at a constant ratio of mass (1.4g SDS/g protein), coating them with a negative charge.
 - So much charge is added that all proteins have the same charge:mass ratio, and the rate of movement will only depend on the sieving properties of the gel: small proteins will move farther.
SDS PAGE Separates Proteins by Molecular Weight

SDS-PAGE

SDS PAGE Can Be Used to Calculate the Molecular Weight of a Protein

- Myosin: 200,000
- β-Galactosidase: 116,250
- Glycogen phosphorylase b: 97,400
- Bovine serum albumin: 66,200
- Ovalbumin: 45,000
- Carbonic anhydrase: 31,000
- Soybean trypsin inhibitor: 21,500
- Lysozyme: 14,400

Unknown protein
SDS-PAGE + Isoelectric Focusing Can Separate nearly ALL the Proteins in *E. coli*