SYLLABUS

Introduction, Policies, \& General Education (HUB) for Biochemistry I \& II

Fall 2023/Spring 2024

Welcome to Biochemistry!!! The two-semester series of Biochemistry I and II were designed as a single course of study, and both semesters should be taken for a complete picture of this important and foundational field of biochemistry. Both courses are not required and many opt for just the fall course, which offers a foundation in understanding the molecules that make life possible. The second semester offers a foundation in understanding energy transformations and the chemical principles under which these molecules interact.

The field of biochemistry encompasses a large and diverse field of inquiry. It obviously interfaces with both chemistry and biology, but as well psychology, physics, mathematics, astronomy, bioinformatics, and of course, medicine all seek a level of biochemical understanding. Yet, Biochemistry is its own stand-alone discipline. The student studying biochemistry essentially needs a high-school level of understanding of the principles and nomenclature of cell and molecular biology; however, understanding biological molecules most importantly requires a solid foundation in the chemical principles learned in general and organic chemistry. Without this background, a student will struggle to grasp the concepts and significance of biochemistry.

Another purpose of these courses ($421 / 422$) is to introduce biochemistry in a way that lays a foundation for further study; be that in elective courses here at BU , in graduate school in virtually any biology or chemistry discipline, or in professional schools; including medicine, dentistry, nursing, and even law. For example, this two-semester course, along with the two-semester Molecular Biology courses, covers all the material one would confront in the Graduate Record Subject Examination in Biochemistry, Cell and Molecular Biology, and in particular for the MCAT5 examination with its emphasis on biochemistry. The competencies listed for the MCAT5 exam will require that both semesters (Biochemistry I \& II). The course will primarily take a problem-solving approach, integrated with a certain amount of memorization that is required to become fluent in the language of biochemistry. As mentioned above, this twosemester series is considered an integrated whole course, although there are distinct flavors in each semester. The first semester describes the molecules of life and the chemical principles under which they operate to maintain life. The second semester describes how these molecules are utilized and inter-converted, from small molecules to macromolecules and the building of organelles, and how energy is derived from them to power life as we know it. This course is a good preparation for advanced courses such as Physical Biochemistry (CH525), Protein Chemistry (CH722), Chemical Biology (CH423), Enzymology (CH625), Epigenetics (CH626), Metallobiochemistry (CH 634), RNA Structure and Function (CH427), Molecular Biology Laboratory (BB522), and Molecular Biology I \& II (B1552 \& BI553).

ENROLLMENT IN THE FALL

As alluded to above, this course constitutes the first of a two-semester course in introductory biochemistry. It is designed for undergraduate science majors, in particular those majoring in Biochemistry and Molecular Biology (BMB) or Chemistry: Biochemistry, as well as and first-year master's students. Students are enrolled in BI421, CH421, BI621, CH621, BI527, or CH527, depending on their program of study. In the fall, students will attend lectures in one of two parallel lecture sections (Section A1; MWF or Section A2, TR) (except those in 527). These two sections will cover the same material at roughly the same pace and order. However, the A1 and A2 lectures do not share common exams. Therefore, students should attend the lecture in which they are registered to ensure they have all of the section-specific information for the midterm exams. Graduate students (those in BI/CH621) will have a scholarly research topic/project and will meet at various times during the semester to discuss topics and other issues related to this assignment. For the laboratory (Section B), all students perform the same basic laboratory experiments and attend either one of two pre-lab discussion sections (Section C). In the spring (422), all students will attend the same lectures, take the same exams, and perform the same laboratory experiments.

PREREQUISITES

All students are REQUIRED to have passed two semesters of Organic Chemistry with a C or better to take Biochemistry I \& II. While this is the only prerequisite, students who have not had any biology since high school will find that in certain portions of the course they will need to work harder. Because of the structure of the curriculum here at BU , a majority of students who take biochemistry have also
had BI 108 and/or BI 203/206 (Intro Biology 2 \& Cell Biology/Genetics). For those who have not taken such courses, or need a refresher, we hope to mount a supplementary on-line lecture/review session after midterms that will review essential fundamental concepts required for successfully mastering the material related to the biochemistry of information transfer (how the information in DNA is stored and utilized). Others may prefer independent study of one of the many textbooks used in these courses (e.g., Albert's "Biology of the Cell" or Cooper \& Hausman's "Cell"), or you could form a study group with some of your classmates who have had this course to help you review some of the essential biology concepts you should have been exposed to in your high-school biology course. For those of you who have had BI 203, you may recognize some of the biochemistry and molecular biology to which you were exposed. However, you are also welcome to attend the supplemental lectures to ensure you are prepared.

Likewise, while the four semesters of prerequisite chemistry are required, the levels at which this chemistry was taught (or learned) will vary drastically among students. For EVERYONE, we will provide material in cell and molecular biology, and general and organic chemistry, available on Achieve, that comprises required prerequisite material for the class. Students may find study of this material in the first week or two of the class will allow you to assess your preparedness for this course.

TEXTS \& WEB SITES

The course uses two textbooks for the entire two semesters. (1) The main textbook for the lecture material will be "Lehninger's Principles of Biochemistry $8^{\text {th }}$ edition" by Nelson and Cox. (2) The laboratory will utilize "Biochemistry Laboratory Manual $5^{\text {th }}$ edition" by Tolan \& Medrano. This laboratory manual has introductory material for each laboratory exercise that describes the theoretical background of each experiment and problems for study. The textbook is generally offered as an "e-book" through enrolling in "Achieve." This resource also has required homework and quizzes to assist in your study, as well as supplemental materials and problems, as well as answers to all the problems in the textbook.

These courses have multiple web sites. The A1 course (those in BI 421, CH 421, BI 621, or CH 621 from CAS, GRS, or MET) has had a web site since before blackboard existed (http://www.bu.edu/aldolase/biochemistry). It was designed and is managed by Prof. Tolan and does not require Kerberos passwords for access. There is a separate Blackboard site with a portal to Achieve and purchase of the textbook ($\mathrm{B} \mid 421 / \mathrm{CH} 421 / \mathrm{BI} 621$ A1 Biochemistry 1 (Fall 2023)). The separate Blackboard site for the A2 course is BI/CH 421 A2 Biochemistry 1 (Fall 2023), and that for the Laboratory is BI421/527/621 Labs - Biochemistry 1 (Fall 2023). Those registered in BI 527 or CH 527 should use the Laboratory Blackboard site. All readings, problems, announcements, examples of old exams, course outlines, etc. will be available on the A1 web site.

In addition, because a problems approach is essential for learning biochemistry, students will use the companion Web site or the textbook: Achieve. The site has the homework assignments and assigned quizzes, as well as access to an interactive e-Book. It also has interactive metabolic maps, animated figures for biochemical techniques and enzymatic mechanisms, problem solving videos, and other resources.

For those who are going on to graduate study in chemistry or biochemistry, a more advanced text such as Mathews, van Holde, and Ahern's "Biochemistry," or Garrett \& Grisham's "Biochemistry," are recommended. For those who are premed, another text, Devlin's "Textbook of Biochemistry with Clinical Correlations" could be purchased. In addition, a subscription to the American Chemical Society journal, "Biochemistry," and/or the American Association for the Advancement of Science journal "Science" are both available at drastically reduced prices for students and would be useful.

GRADES

We don't wish anyone to be overly "grade conscious," but it is important to understand at the very outset exactly how you will earn your grade. Depending on which course you have enrolled, the exact grading process will be different (see syllabus). All the courses (except $\mathrm{BI} / \mathrm{CH} 527$) have three common aspects; the lecture examinations, the homework, and the laboratory. In the first semester, each lecture section will have 3-4 one-hour exams and one two-hour comprehensive final exam, which will be held at the scheduled times denoted on the appropriate syllabus. The Final Exam is mandatory and no make-ups will be given, so make your plans accordingly. For the A1 section, there are FOUR one-hour exams, each of which will cover roughly the same amount of new material, and the final exam, which will be part new material and part cumulative. The exams will be of a more problem-oriented nature, although due to the size of the class and the amount of material, multiple-choice and matching type questions cannot be eliminated. The examinations will cover material from lecture and may include some of the basic concepts from the laboratory (not specific analytical problems). Only those parts of the laboratory for which you will have already turned in a lab write-up, and had in returned for feedback will be included on the exam. In addition, several of the homework problems could re-appear on the examinations.

Because everyone makes mistakes, only your best 3 of the 4 one-hour exams will be used for computation of your grade. As such, no make-up exams will be given. If you miss an exam for ANY reason, it will count as your lowest exam. If you miss more than one exam (which must be for a legitimate reason (due to a serious illness, a personal or family emergency, or a religious observance; see below)), your two remaining exams will be averaged to give you the third score. If you miss the Final exam, you will be given an Incomplete (I) (see below). To help ease into the semester, the first two exams will cover less material than subsequent exams.

The exams during the second semester will be organized slightly differently. The details will accompany the course schedule to be given out in January.

Homework Policy: Using the $A C H I E V E$ website, there will be 30 problem-sets assigned as weekly homework. Most will come from the end-of-chapter questions, which are mostly due weekly. In addition, there will be about 20 adaptive quizzes from the chapters in the assigned reading designed to help study for each exam. All homework and quizzes are due at midnight on Sundays (average of 3 per week). These will be hard deadlines, there will be no makeup opportunities on the homework or quizzes regardless of any reason. The entire set of 50 assignments of homework and quizzes will comprise only 10% of your overall grade, mostly as incentive because doing them will help prepare yourself for the exams. Because no makeups are allowed, your lowest fifth of all the homework and quizzes will not count. In other words, only your top 24 homework scores (of 30) and top 16 quiz scores (of 20) will be used for calculating your overall homework score. Each quiz and/or homework is worth the same (0.25%) fraction of your grade despite differences in the number of questions and/or problems in each assignment.

COURSE SCHEDULE, GETTING HELP, AND SUCCESS STRATEGIES

All of the listed lectures and labs have required attendance. Much of the material presented in the lecture and lab discussion sections is not found in any of the textbooks. We will attempt to follow the accompanying schedule denoted in the syllabi, which have been prepared with some degree of optimism. It must be remembered that this is a difficult course, both in content and in the time required, particularly with the inclusion of the laboratory and its necessary theoretical background. While this in an introductory biochemistry course, it isn't a "survey" course since, as noted above; biochemistry is an interdisciplinary science that requires background, formal and informal, in several aspects of chemistry and biology.

PLEASE don't hesitate to approach the instructor or teaching fellows if the course pace is too slow or too fast for you, or if you have difficulties. ANY difficulties should be solved whenever they occur rather than be allowed to pile up to the end of the semester. This chiefly applies to your understanding of the material. If you have difficulties in comprehension, please ask for the available help during office hours or at another arranged time. All members of the teaching staff, professors and teaching fellows, check their email regularly and will normally respond within 24 hours. Due to the interdisciplinary nature of the biochemistry field, bear in mind that the educational background of students in this course is different. Areas in which we seem to be "creeping" to the biologist may seem like a jet flight to the chemist, and in other areas, of course it will be exactly the opposite. This course offers you the opportunity to form multidisciplinary study groups with other students not in your major who have different diverse backgrounds.

Through years of experience, we have learned from successful students that one is advised to recopy one's notes daily or weekly. You would be surprised at how well this helps for the comprehension and review of important points and "jogging" your memory. The reading for each lecture is set out in the syllabus. It is also available on the class web site. It is best to read the textbook prior to lecture and work through the "suggested" problems. Following the lecture is a good time to recopy notes and work through the problems. Although the answers to all the problems are given in the textbooks (more detailed answers to the textbook problems are on Achieve), it is best to work through each problem before looking at the answer. Do not hesitate to attend office hours to ask questions about lecture material or the assigned problems, especially those for which your answer and the provided answers differ.

Workload: You should expect to spend at 4-8 hours per week outside of class studying for the lecture portion of BI/CH 421/621 (i.e. ~ 2 hrs per lecture). The required work includes (i) reading the textbook in preparation for class, (ii) rewriting your lecture notes after class, and (iii) working on the homework problems. In addition, the work associated with the laboratory portion of the course is constant and includes preparation of the weeks protocols and notebook entries, then analysis of the data from each week's lab and and prepartion of the report. You are encouraged to work with your lab partner or a group for all of this except the report. You should expect to spend 3-6 hours per week on the laboratory assignments. The success students have in this course is strongly linked to how much time and effort they put into it, so if you want to succeed be prepared to consistently do the necessary work.

You should feel free to ask questions during the lecture. That is part of what the lecture is for, and we strongly encourage it. If you are attending lecture in person and wish to ask a question, raise your hand and the instructor will get to you as soon as they reach a suitable break. We feel very strongly that there is no such thing as a stupid question. If, after some thought, you're still unsure about something, then you can bet that a lot of your classmates are too. We expect each of you to listen respectfully, as we will, to any
questions your classmates ask in class, even if the answer seems obvious to you, as you should expect other people to be appropriately respectful when you have a question.

We can't over emphasize the power of doing the Homework. The syllabus lists some relevant problems associated with each lecture, which will comprise the bulk of the homework questions. Completion of these homework assignments will enhance your understanding of the material and help you to identify concepts that you might need additional help mastering. You are encouraged to do the Homework independently or in small study groups. Any questions you have about these problems or concepts from lecture or assigned reading should be addressed at office hours. You can expect $\geq 10 \%$ of the points on each exam to come directly from these suggested problems.

Office hours and finding me for help: My open office hours are Mondays 1:30-2:15 PM, Tuesdays 4:45-5:30 PM, and Wednesdays 5:30-6:15 PM, which were determined from the class matrix as times most students can attend. If you cannot attend at this time, or students looking for individual appointments with me, you can book them by sending me an email with several suggested times. Office hours are not just for discussion of course material, but are intended for personal matters such as grade discussions. I can also be reached by email with quick questions that you don't think require face time. For these emails, please include in the subject, "Biochemistry Class." If that term is in the subject line, I will generally respond to emails within 24 hours. If not, it might go to the spam folder and I may never see it.

ACCOMODATIONS

Students with documented disabilities, including learning disabilities, may be entitled to accommodations intended to ensure that they have integrated and equal access to the academic, social, cultural, and recreational programs the university offers. Accommodations may include, but are not limited to, additional time on tests, staggered homework assignments, note-taking assistance. If you believe you should receive accommodations, please contact the Office of Disability \& Access Services (25 Buick Street, Suite 300, 617-353-3658) to discuss your situation. This office can give you a letter that you can share with instructors of your classes outlining the accommodations you should receive. The letter will not contain any information about the reason for the accommodations. If you already have a letter of accommodation, you are encouraged to share it with your instructor as soon as possible. If you need any special accommodations for this course, lecture or lab, such as extra time to complete assessments, specific room requirements during exams, etc., you need to notify Prof. Tolan and the appropriate lab coordinator about your needs as soon as possible and no later than Friday Sept 15th. This includes providing a letter from the Office of Disabilities and Access Services stating the precise nature of the accommodation. Time is needed to plan for these requests and last-minute requests may not be honored. Even if you do not yet have documentation, let us know about your needs as soon as possible. Attending office hours or even a quick email during the first week or two of class are good ways to communicate your needs to the teaching staff.

DIFFERENCES OF OPINION

If you believe that an error was made in correcting any exam, regrade requests are done exclusively through GradeScope. If you believe that an error was made in correcting any laboratory notebook, short report, quiz, or write-up, bring it to the attention of your TFs. If any unresolved issues remain after consulting with your laboratory TF, please bring the issue to the attention of the lab coordinator, Dr. Szymczyna.

Regardless of what you are disputing, you must bring it to the attention of the appropriate staff member or otherwise deal with it within one week of its distribution, and the staff will thoughtfully consider the problem. Any mistakes in the grading of exams, quizzes, etc. will be corrected quickly and happily. Please be aware that re-grading may need to consider a fresh look at the entire assignment. However, marks and grades will not be changed after the one-week "review" period. Likewise, if there is a concern about anything in the lecture, you have the responsibility to bring that problem to the attention of your professor before the next lecture or at the very least within one week. We value your feedback and we will try to help anyone and everyone as much as we can.

ACADEMIC CONDUCT

Integrity is the foundation of all academic endeavors. In this regard, lack of integrity is a severe violation of the spirit of inquiry and search for the truth. It is expected that every aspect of your performance and behavior will abide by this academic honesty. The College of Arts and Sciences Academic Conduct site offers online resources for those who need reminding of these principles and the policies developed to ensure academic honesty. If you are caught cheating on an examination, you will be awarded a "zero" for that exam and the incident will be reported to the Academic Conduct Committee in accordance to the Boston University Academic Conduct Code. For specifics on cheating or plagiarism in the laboratory, see below. The URL for Boston University's undergraduate Academic Conduct Code: https://www.bu.edu/academics/policies/academic-conduct-code/. The basic rule of thumb is "DON'T DO IT!"

LAB SECTIONS

The biochemistry laboratory is designed to introduce you to modern techniques used in biochemical research and give you hands-on experience "at the bench." It is aimed to help you appreciate how biochemists design and conduct experiments to test their hypotheses, and how to analyze your data and present your results. This part of the course has the greatest potential for securing jobs and postgraduate academic opportunities. The more you can say in an interview about the types of experiments you performed in this lab and your understanding of the theoretical underpinnings of the techniques, the more desirable you will be as a candidate for your potential employer or for a position in a past-graduate program.

Throughout the semester you will be working in pairs in your lab sections using extensive resources including expensive equipment, costly materials, and experienced teaching fellows (TFs), who are committed to making your lab experience as valuable as possible. We hope that you will all appreciate this collective effort and be proactive about making the best use of this opportunity.

We will have 11 sections doing the laboratory exercises each week this semester, with about 14-20 students, and two TFs responsible for the safety, instruction, preparation, equipment, grading, and procedures for their section. Please keep in mind that just as you would appreciate a clean work area and functional equipment when you come into the lab to do your experiments, the same is true of everyone in the section that follows yours. PLEASE clean up after yourselves as not doing so will negatively affect your grade.

You should purchase a pair of approved safety eye goggles and a spiral laboratory notebook with perforated carbonless copy pages and square grids. All pre- and in-lab work will be done in this notebook. In addition, any written lab reports that may be required, will use electronic automated checks for plagiarism (see below). As mentioned above, all questions and difficulties should be brought to the attention of your TFs. If you miss either of your TFs' office hours, go see one of the other TFs in the course. An office-hour matrix is posted on the website. If any laboratory issues are not resolved by your TFs, have them contact the lab coordinator Dr. Blair Szymczyna to help resolve the issue. In addition, the laboratory coordinator, the laboratory curator (Mr. Joe Salzo), and/or Drs. Tolan or Liu may attend various times during each of the laboratory periods.

Assignment to, and attendance of, laboratory sections is required. Most laboratory exercises will be done with a lab partner. Partners and final laboratory sections will be arranged during the first week of classes. Your laboratory grade will be determined based on your attendance, the written accounts of your work, and overall laboratory performance as evaluated by the teaching staff. Attendance and punctuality, preparation, effort, laboratory skills, quality of experimentation, ability to work in a group, fully analyzed data, and adherence to safety regulations will all be factored into this evaluation. The lab write-up assignments are DUE and should be available at the times requested (see syllabus). Late assignments will be penalized up to $10-20 \%$ per day. You should not wait until the last minute to start analyzing data and discussing results with your partner, especially those labs that extend over two or more weeks.

Since you will be working in pairs, you will be sharing data. It is your responsibility to have the complete data set for each experiment before you leave. The write-up/analysis for each laboratory should be your own work. Students are allowed, and encouraged, to talk and discuss the experiment and the results with each other. You can expect to have a greater understanding when you collaborate on understanding the material. However, ALL work in preparing and writing the assignment, including the generation of graphs and tables, that is turned in for grading should be done individually. No joint preparation of lab write-ups is allowed. Failure to adhere to this policy in the laboratory will be considered a violation of the Academic Code of Conduct and treated accordingly. Any violation of the Academic Code of Conduct will result in failure of that laboratory, possibly resulting failure of the course, without a chance to withdraw.

EXCUSED ABSENCES

We affirm the Policy on Religious Observance. For other students who must be absent for legitimate reasons (besides religious observations: validated medical issue or serious personal reasons), you will be given an opportunity, if possible, to make up missed work, which applies mostly to the laboratory. The policy on missed exams is stated above under GRADES.

INCOMPLETES

The use of incompletes will adhere to the College of Arts and Sciences rules. This is generally for and circumstances prevent the student from completing remaining requirements by the conclusion of the course. A substantial amount of work must have been satisfactorily completed before approval of such a grade is given. The instructor and student must sign the Incomplete Grade Agreement indicating the nature of the work and a date by which all course requirements must be completed.

STATEMENT ON COPYRIGHTED COURSE MATERIALS

The syllabus, course descriptions, text slides, and handouts created by the Professors of this course, and all class lectures, are copyrighted by Boston University and Professor Tolan. Except with respect to enrolled students as set forth below, the materials and lectures may not be reproduced in any form or otherwise copied, displayed or distributed, nor should works derived from them be reproduced, copied, displayed or distributed without the written permission of the Professors. Infringement of the copyright in these materials, including any sale or commercial use of notes, summaries, outlines or other reproductions of lectures, constitutes a violation of the copyright laws and is prohibited. Students enrolled in the course are allowed to share with other enrolled students course materials, notes, and other writings based on the course materials and lectures, but may not do so on a commercial basis or otherwise for payment of any kind. Please note in particular that selling or buying class notes, lecture notes or summaries, or similar materials both violates copyright and interferes with the academic mission of the College, and is therefore prohibited in this class and will be considered a violation of the student Academic Conduct Code of responsibility that is subject to academic sanctions.

CLASSROOM BEHAVIOR

Students and faculty each have responsibility for maintaining an appropriate learning environment. Those who fail to adhere to such behavioral standards may be subject to discipline. Professional courtesy and sensitivity are especially important with respect to individuals and topics dealing with differences of race, color, culture, religion, creed, politics, veteran's status, sexual orientation, gender, gender identity and gender expression, age, disability, and nationalities. This policy is outlined on the BU website (see below).

Class rosters are provided to the instructor with the student's legal name. The teaching staff will gladly honor your request to address you by an alternate name or gender pronoun. Please advise Prof. Tolan of this preference early in the semester so that appropriate changes can be communicated to the staff and the course records.

DISCRIMINATION AND HARASSMENT

Boston University is committed to maintaining a positive learning, working, and living environment. The University Policy states that the University and its entities does not discriminate on the basis of race, color, national origin, sex, age, disability, creed, religion, sexual orientation, or veteran status in admission and access to, and treatment and employment in, its educational programs and activities. Students who believe they have been discriminated against should contact the Equal Opportunities Office or if harassment under Title IX, contact CAS Advising. Although Boston University requires sexual misconduct prevention training, incidents and experiences occur. We care about student well-being and are committed to maintaining a healthy campus community and awareness and resources are available for anyone who may feel discriminated against or harassed. There are also online reporting mechanism you can use to report an issue or incident.

WELL-BEING

Predecessors in this course have described it as one of the most time consuming and challenging courses in the College. After graduation, these same predecessors describe the course as one of the most valuable and rewarding. In taking on this challenge, students should be mindful of their physical and mental well-being. One of the things that biochemistry has taught us is that long-term memory requires sleep. Therefore, staying up all night to memorize amino-acid structures is usually not effective. In fact, sleep is one of the most important aspects to physical and mental well-being. Although lectures start early in the morning, plan ahead and get to class. It's often stated that 80% of success is just showing up! (the other 20% is being able to follow directions). If you have difficulties in any aspect of maintaining physical and mental health due to circumstances in the course or beyond the course, there are resources available.

The Center for Teaching and Learning has a clearing house of resources available. Among these is the Educational Resource Center's staff is there to work with students who need time management, study skills or academic planning assistance. They hold weekly workshops for students to assist them with test preparation, anxiety, time management, etc. The ERC offers Peer Tutoring, Writing Assistance, Language Link conversation groups, and Workshops; although, resources for tutoring in biochemistry are limited, they have excellent tutors in the basics of chemistry and biology. The ERC professional staff is also available to meet with students individually to develop a personalized plan for academic success and/or to assist them in developing specific skills. These services are free and can benefit all students who are interested in improving their academic performance.

The most important aspect of well-being is your mental state. Often during the course of the course life happens and students may feel overwhelmed. If circumstances occur in your life, please do not hesitate to ask for help. As a start, student health services offers a variety of mental health resources for you.

GENERAL EDUCATION: THE BU HUB

HUB Units earned in the Fall:

Quantitative Reasoning II (QR2)

Quantitative II Outcome 1

Students will frame and solve complex problems using quantitative tools, such as analytical, statistical, or computational methods. Both the lecture and the lab include calculations of force, free energy, entropy, pH , product and reactant concentrations, activities, buffer capacity, calibration curves, normalization, errors and error propagation, inhibition, equilibrium constants. Algebra and calculus, as well as graphical tools are used too solve problems posed in class lecture and data from the laboratory. By the completion of this course, all students will be adept at use of spread sheets such as Excel for data analysis.

Quantitative II Outcome 2

Students will apply quantitative tools in diverse settings to answer biochemical questions. Both statistics and graphs are used in a variety of laboratory exercises, as well as in-lecture quizzes, to answer questions about macromolecular size and purity, enzyme action and kinetic parameters, membrane transport and chemiosmosis, etc. Nearly every week in either lecture or laboratory, new tools and ways of analysis to answer biochemical questions are learned. Communicating quantitative data using graphs and tables supporting various models and communicate this quantitative information visually and numerically is part of many laboratory reports.

Quantitative II Outcome 3

Students will formulate, and test an argument by marshaling and analyzing quantitative evidence. For most of the quantitative calculations and tools involved in the course are used to answer a question or formulate an argument, such as what is the relative size of these macromolecules consistent with the argument, or what is the dissociation equilibria for a molecule from the enzyme, and what kind of inhibition is being exhibited?

Quantitative II Outcome 4

Students will communicate quantitative information symbolically, visually, numerically, or verbally. Visual and numerical communication of quantitative information is an essential part of written lab reports; within which questions are formulated and tested by properly displaying data, including the use of statistical analysis. Furthermore, many test questions require answers that communicate of quantitative information in the answer, often reiterating and reinforcing what was done in the lab reports, such as draw the shape of a curve indicating some kind of behavior (binding, allostery, state-transition, etc.) along with proper labeling of axes, etc. There are explicit questions coming from laboratory pedagogy included in the lecture exams.

Quantitative II Outcome 5

Students will recognize and articulate the capacity and limitations of quantitative methods and the risks of using them improperly. Recognition of the limitations of quantitative methods, such as extrapolation versus interpolation from a calibration curve, are constantly taught. Direct feedback on a weekly basis comes from the return of lab reports where these limitations are expected as part of the analysis. In particular, the limitations of significance when doing calculations on spreadsheets like Excel are learned. Lecture emphasizes instances where the correct application of an equation, theory, or calculation is to be used and why.

Critical Thinking (CRT)

Critical Thinking Outcome 1

Students will be able to identify key elements of critical thinking, such as habits of distinguishing deductive from inductive modes of inference, recognizing common logical fallacies and cognitive biases, translating ordinary language into formal argument, distinguishing empirical claims about matters of fact from normative or evaluative judgments, and recognizing the ways in which emotional responses can affect reasoning processes. Building on formal teaching in distinguishing the inductive and deductive parts of the scientific method, students in biochemistry will put these forms of logic to work by developing hypotheses in laboratory write-ups and deducing the conclusions from data in lecture exams. The 421 course will amplify these skills by weekly or daily interrogations about data presented in class or measured in the laboratory. Students will have to describe the questions being tested and deduce from the data the answers to those questions. In several instances, common fallacies and evaluation judgements that can bias conclusions will be taught.

Critical Thinking Outcome 2

Drawing on skills developed in class, students will be able to evaluate the validity of arguments, including their own. How to evaluated and think critically about the validity of their own data in all the laboratory modules, as well as examples from the literature of scientific dogma presented in lectures (and included on examinations) are taught. In particular, students will be taught how to read (from the literature) and create graphs and tables of data, including how that presentation of the arguments provides evidence for supporting or refuting a given hypothesis. In lecture, students will engage in several critical thinking points throughout the semester such as the hyperventilating patient, the sequence analysis puzzle, comparisons regarding structure and function, the interpretation of kinetic data to get modes of inhibition and deducing what that means for enzyme structure and function, as well as the effect of the nano-environments inside of proteins and how these change the chemistry.

The teaching and implementation of teamwork and collaboration is key, actually critical, to BOTH semesters of the laboratory. Both semesters will teach the skills of proper teamwork and collaboration, and then allow students to act it out week after week, thus seeing the value in this skill. In the first semester, the basics of 2-3 person teams in constant support in performing the laboratory exercises are taught, performed, and evaluated. This skill is also taught in the first weeks and evaluated as a group at the end of the semester.

Teamwork Outcome 1

As a result of explicit training in teamwork and sustained experiences of collaborating with others, students will be able to identify the characteristics of a well-functioning team. In the first lecture each semester, and the first pre-lab discussion sections, successful teamwork strategies will be taught and emphasized as the only way to get through the laboratory exercises. Aspects of a well-functioning team are described and identified, as well as the lessons teamwork teaches; innovation, leadership development, and fostering knowledge of one's own strengths and appreciation for those of others. In addition, there it's explained that success in the laboratory will rely on effective collaboration with others, most importantly is the sustained interactions with their lab partner. All lab exercises are performed with a lab partner(s). Partners work closely the entire semester in preparation, performance, and analysis. The biochemistry laboratory aims to mimic a real-world situation wherein you have several overlapping objectives that all must be completed in the allotted four hours. This can only be accomplished if there is cooperation. Moreover, there are several exercises that require the cooperation among the pairs, so teams and tasks expand and contract during the semester. During the end of the semester, in the prelab discussion sections, an evaluation of how well the partners and teams worked together and what worked for success and what interfered with success will be included.
Teamwork Outcome 2
Students will demonstrate an ability to use the tools and strategies of working successfully with a diverse group, such as assigning roles and responsibilities, giving and receiving feedback, and engaging in meaningful group reflection that inspires collective ownership of results. How well teams function are assessed on a regular basis, as well as how well everyone functions as a member of that team. Teamwork is learned by performing all data collection and analysis working with a lab partner throughout the semester and with other groups at various points when data comparisons warrant. The ability to work successfully with diverse groups in which everyone may have different roles are integral to the laboratory's function. Final assessment of achieving this teamwork learning outcome, will include submission of both a self-evaluation and team-evaluation to their instructor at the end of the semester. The instructor will consider these evaluations in the context of the team contract when assigning final grades for teamwork, attitude, attendance, safety, and communication, all of which comprises 10% of their lab grade.

Writing Intensive (WIN)

The teaching of scientific writing in several genres is a major thread throughout the laboratory sections of BOTH semesters. Both semesters will teach these writing skills to different degrees in each semester. In the fall semester, the emphasis will be on composing and writing a proper laboratory notebook. In the second semester, the emphasis will be on composing and writing proper tables, figures, and legends needed for scientific reports, publications, and proposals. These two major skills are taught throughout the twosemester series, but emphasized accordingly. This part of the course is often cited anecdotally from graduates as a key aspect to their attaining employment or admission to their post-graduate endeavors.

Examples of proper scientific writing in lecture, either protocols from notebooks or data from publications, are used in lecture. Moreover, the nature of the laboratory manual guides students from data collection and analysis that begin with "cook-book"-like recipes and data tables, through generation of flow charts and data tables, through conversion of raw data to analyzed data, to extraction of procedures and analysis from the manual and conversation into a properly written protocols in the Notebook and polished presentation of analyzed data in Tables and Figures, with footnotes and legends, respectively, in the write-ups. Written and analyzed data allow students to gauge how well such data to stand on its own and can be understood by the reader without reference to another source like the manual. Each week pre-lab notebook assignments teach the basic skills of writing protocols and flow charts. The end-ofchapter write-ups get progressively more sophisticated teaching how to present raw versus analyzed data, then to write a stand-alone figure legend polished for a presentation. Write-ups are due following the completion of the laboratory, but are not due until feedback is received from the prior writeups.

Writing Intensive Outcome 1

Students will be able to craft responsible, considered, and well-structured written arguments, using media and modes of expression appropriate to the situation. Writing is fundamental for communication of scientific discoveries. The assignments in these courses will introduce students to biochemical writing. These assignments will introduce the form and function of formal and informal scientific writing, and allow the honing of skills in this writing style. How to construct a convincing arguments based on data collected will be taught, and all for seeing new ways of evaluating evidence collected in the laboratory.

It is expected that students can already read the primary literature, and recognize the structure and important features common to publications in the primary literature. in biology and chemistry. This course will teach throughout each semester the more informal, but equally valuable, form of scientific intensive writing: keeping a scientific notebook and reporting scientific data.

In the first, the basic tenants and importance of keeping a scientific notebook will be taught. The lab manual is designed to progress from exercises where the procedure and data collection are spelled out explicitly, to exercises wherein the procedures are merely described in essence and the data to be collected is discerned from the questions being asked. Every week, this information in the manual is transposed into a lucid and sound set of procedures for their weekly protocol. This includes assigning roles between them and their partners.

In the second, how to write scientific reports will be taught. Such reports are part of any laboratory presentation, grant proposal, manuscript, or formal presentation in the biochemical sciences. As such the reports required in these courses lay the foundation for all of these genres of scientific writing. Lab reports will teach how to make: a proper figure, with figure legend, a proper Table with footnotes, and a proper conclusion $\&$ discussion.

All writing assignments are evaluated each week by the Teaching Fellows, who will give feedback for the following weeks assignments. The final product, as well as the ability to synthesize and improve following feedback, will be assessed. These writing assignments comprise the majority of the points for grading the laboratory, 70% of the lab grade, which is 21% of the final course grade coming from the writing components.

Writing Intensive Outcome 2

Students will be able to read with understanding, engagement, appreciation, and critical judgment. Both genres of writing derived from information in the laboratory manual, literature articles, and information in pre-lab discussion sections to understand and appreciate how to extract such details from these sources and create a logical protocol, flow chart, and/or data table for their notebook and for their reports. This skill is required for any scientist who has to develop protocols suited to their questions and situation derived from previously published literature.

Writing Intensive Outcome 3

Students will be able to write clearly and coherently in a range of genres and styles, integrating graphic and multimedia elements as appropriate. As mentioned above, the two major genres of scientific writing honed by the completion of this course, keeping a scientific notebook and reporting scientific data, require intelligible writting. This importantly includes integration of graphical and tabular data and analysis. Logical and lucid writing of conclusions and opinions deduced from collected data are taught. The graphical presentation of the analyzed data, with proper footnotes and legends, are key elements of what students will learn to write.

HUB Units earned in the Spring:

Pending:
Creativity and Inovation (CRI)
Writing Intensive (WIN)
Teamwork \& Collaboration (TWC)
The teaching and implementation of teamwork and collaboration is key, actually critical, to BOTH semesters of the laboratory. Both semesters will teach these skills of proper teamwork and collaboration, and then allow students to act it out week after week, thus seeing the value in this skill. In the second semester, larger groups of teams are brought together in organized efforts to get complementary experiments accomplished. In addition, the group project for the spring semester for solving problems of biosynthesis, metabolism, or enzyme mechanisms will be done in groups of 6-8 students, which will foster working together in an intellectual context outside the laboratory. This skill is also taught in the first weeks and evaluated as a group at the end of the semester.

Teamwork Outcome 1

As a result of explicit training in teamwork and sustained experiences of collaborating with others, students will be able to identify the characteristics of a well-functioning team. In lecture and pre-lab discussion sections, successful teamwork strategies will be taught and emphasized as the only way to get through the laboratory exercises. Aspects of a well-functioning team are described and identified, as well as the lessons teamwork teaches; innovation, leadership development, and fostering knowledge of one's own strengths and appreciation for those of others. In addition, there it's explained that success in the laboratory will rely on effective collaboration with others, most importantly is the sustained interactions with their lab partner. All lab exercises are performed with a lab partner(s). Partners work closely the entire semester in preparation, performance, and analysis. The biochemistry laboratory aims to mimic a real-world situation wherein you have several overlapping objectives that all must be completed in the allotted four hours. This can only be accomplished if there is cooperation. Moreover, there are several exercises that require the cooperation among the pairs, so teams and tasks expand and contract during the semester. During the end of the semester, in the prelab discussion sections, an evaluation of how well the partners and teams worked together and what worked for success and what interfered with success.
Teamwork Outcome 2
Students will demonstrate an ability to use the tools and strategies of working successfully with a diverse group, such as assigning roles and responsibilities, giving and receiving feedback, and engaging in meaningful group reflection that inspires collective ownership of results. Students are assessed on a regular basis on how well they are functioning as a team and as a member of that team. They learn teamwork by performing all data collection and analysis working with a lab partner throughout the semester and with other groups at various points when data comparisons warrant. Students will demonstrate an ability to work successfully with diverse groups in which they may have different roles. Final assessment of achieving this teamwork learning outcome, will include submission of both a self-evaluation and team-evaluation to their instructor at the end of the semester. The instructor will consider these evaluations in the context of the team contract when assigning final grades for teamwork, attitude, attendance, safety, and communication, all of which comprises 10% of their lab grade.

Research Information Literacy (RIL)

The teaching of Research Information Literacy is a year-long process in the biochemistry for majors courses. Throughout the course, the lectures refer to various publicly available biochemical and molecular data bases and analytical resources. At various times, the class is lead to those sites on the Internet, and lessons proceed using them. Moreover, during a continuous laboratory exercise that begins in the fall and finishes in the spring, students get hands-on training in using several of these publicly available databases for asking a basic research question: How do pharmaceutical companies analyze targets for drug development? For this, several hypotheses are posed and students are lead to the information sources to help test these ideas. They finally communicate their findings in the lab write-ups for these two exercise, call bioinformatics exercises.

Research Outcome 1

Students will be able to search for, select, and use a range of publicly available and discipline-specific information sources ethically and strategically to address research questions. This HUB unit is one taught and earned throughout the two-semester course and awarded with successful completion of 422. For teaching literacy in information technology in biochemistry, there are rich and varied collections of data about which students will be introduced in lectures. Furthermore, through constant reference and attribution in the lectures, as well as a purposefully sequenced laboratory exercise for hands on use of many of these information databases in the laboratory sections of both 421 and 422, students will learn of the content and sources of such biochemical information. Furthermore, students will learn how to use primary literature sources to support and report their findings as they write their lab reports.
Research Outcome 2
Students will demonstrate understanding of the overall research process and its component parts, and be able to formulate good research questions or hypotheses, gather and analyze information, and critique, interpret, and communicate findings. Again, throughout the two-semester course, both in lecture and laboratory, students learn the use of these databases as tools in a laboratory setting; learning the quality and analyze the validity of data from many of these informational databases; report and communicate what they know about informational databases in their laboratory write-ups; and apply such information for addressing the problem posed, culminating with a discussion section in the laboratory write up that requires students to formulate a subsequent hypothesis based on their observations, specifically using informational databases as a tool.

Fall 2023 (version 2)

Staff Phone	Office	E-mail	Office Hours
Dr. Dean R. Tolan 3-5310	Rm 702 \& 704, 24 Cummington (LSE)	tolan@bu.edu	M-1:30-2:15; T-4:45-5:30; W-5:30-6:15, or by arrangement
Dr. Blair Szymczyna (Lab Coordinator)	Rm-358B 590 Commonwealth (SCI)	bszymcz@bu.edu	TBA
Dr. Pinghua Liu (A2 Professor)	SCI-453	pinghua@bu.edu	T/R/F, 5:30-6:30
Teaching Fellows:			
Dr. Wen Yi Low (B1 \& B9)	TBA	wlow@bu.edu	TBA
Jackson (Vuong Quoc) Ho (B2 \& B6)	TBA	jvho3@bu.edu	TBA
Yinze Wu (B3)	TBA	yinzewu@bu.edu	TBA
Madison G. Marano (B2 \& B4)	TBA	mmarano@,bu.edu	TBA
Francis (Xufeng) Fang (B3 \& B5)	TBA	fangxf@bu.edu	TBA
Aiwen Wen (B4 \& B8)	TBA	aiwen@bu.edu	TBA
Fukai Chen (B5 \& B7)	TBA	fukchen@,bu.edu	TBA
Christine Foran (B6 \& B8)	TBA	cforan@bu.edu	TBA
Rufuto Rahman (B1 \& B7)	TBA	rufutor@bu.edu	TBA
Alison Brack (B9 \& BA)	TBA	alibrack@,bu.edu	TBA
Luke Fournier (BA \& BB)	TBA	lukeaf@bu.edu	TBA
Iana Nikorich (BB)	TBA	iniko@bu.edu	TBA

Sections	Times	Places
Lecture	M 8:00 AM; W 9:05 AM; \& F 9:05 AM (all end at 9:55 AM) (A1)	SCI 113
Pre-lab Disc. ${ }^{\text {§ }}$	T 2:30-1:45 PM (C1)	SCI 109
	T 2:00-3:15 PM (C2)	KCB 101
Laboratory	W 8:00, 1:25 \& 6:30 (B1, B2, B3); R 8:00, 1:25 \& 3:30 (B4, B5, B6); F 8:00, 1:25 \& 3:30 (B7, B8, B9); M 10:10 \& 3:35 (BA, BB)	SCI 162
621 Discussion (Grad students)	Grad students) TBA	TBA

Day-Date	Lecture \#	\# Topic	Reading in Lehninger	Problems*	Laboratory
M-Sept 4		HOLIDAY - Labor Day			
W-Sept 6	0	Organization \& Introduction	Ch1, 1-3, 10-12	review orgo;	
F-Sept 8	1	- Introduction, thermodynamics	Ch1, 6-9, 13-14, 19-25	1,2,3,4	
			Ch13, 466-469	1,2,3,4; $\mathbf{1}$	
		- Water \& Hydrogen Bonds	Ch2, 43	3	
M-Sept 11	$\underline{2}$	- National Patriot Day			
		- Molecular Forces	Ch2, 43-53	1,2; 2	
		- pH	Ch2, 53-64	$\begin{aligned} & 5,6,9,10,14,15,17,20,22, \\ & 24,29,35 ; \mathbf{3} \end{aligned}$	
$\begin{aligned} & \text { T-Sept } 12 \\ & \text { W-Sept } 13 \end{aligned}$					Discussions begin
	3	- Proteins; Introduction	Ch3, 70	-	LAB STARTS/Chapter 1
			Ch1, 13-19	11,13	
			Ch4, 106-107	12; 4	
F-Sept 15	4	- Amino Acids I-structure \& properties	Ch3, 70-76	2	
M-Sept 18	5	- Amino Acids II pH - Amino Acids III pI ADD deadline	Ch3, 76-82; 87-89	3,5,8,13,14	
			Ch2	34; 5	
W-Sept 20	6	- Protein Purification	Ch3, 83-87, 89-90	12,15,16,25	Chapter 2
			Ch1, Fig 1-7	9; 6	
			Ch9, 313-314		
F-Sept 22		- Review Session			
M-Sept 25		HOUR EXAM I (8:00-10:00 AM at MOR101) [Lectures 1-6] (8)			
W-Sept 27	7	- Protein Structure I: Primary (1°)	Ch3, Fig 3-23	6,10,18,24	Chapter 3; A,B,C
			Ch4, 106-110	1,5,6,12; 7	
F-Sept 29	8	- Protein Structure II: Determination of 1°	Ch3, 90-93, Box 3-2	20,21,22,26; 8	
M- Oct 2	$\underline{9}$	- Protein Structure III: 2° the α-helix - Protein Structure IV: 2° the β-sheet;	Ch4, 119-122,125-127,131-133	2,3,4,9	
			Ch4, 114-115,120-121,123-124	13; 9	
$\begin{aligned} & \text { W- Oct } 4 \\ & \text { F- Oct } 6 \end{aligned}$	10	- Protein Structure V: $3^{\circ} \& 4^{\circ}$	Ch4, 116-117, 126-128	7,15,16; 10	Chapter 3; D, E
	11	- Protein Structure VI: Characterization of Proteins; Determination of $2^{\circ}, 3^{\circ}, 4^{\circ}$ - Review Session (TBD)	Ch4, 116, 138-142	11,17; 11	
M-Oct 9		HOLIDAY - Columbus Day			
T-Oct 10(Mon Sched)		HOUR EXAM II (8:00-10:00 AM at MOR101) [Lectures 7-11; 1,2†] (6)			M-labs; Disc recorded
		DROP deadline			
$\begin{aligned} & \text { W-Oct } 11 \\ & \text { F-Oct } 13 \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	- Protein Structure VII: Collagen - Enzymes I; intro., binding \& catalysis;	Ch4, 118-120		Chapter 11 (Ch 3 finish)
			Ch1, 25-27		Chapter 11 (Ch 3fmish)
			Ch5, 147-148, 150-152, 157	1,3,4,5; 12	
			Ch6, 177, 209-210		
M-Oct 16	14	- Enzymes II; enzyme nomenclature; mechanism nomenclature (Cleland) transition-state theory, catalytic strategies - Enzymes III; mechanistic strategies Steady-state kinetics;	Ch6, 178-179	3,5	
			Ch6, 194-195	17	
			Ch6, 179-181,184-185	2,6	
			Ch6, 186-188	16; 13	
			Ch6, 188-195	7,8,9,10,11,12,13; 14	

