Lecture 3 (9/10/25)

• Reading: Ch3, 70

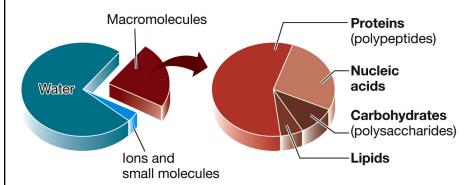
Ch1, 13-19

Ch4, 106-107

• Homework #4

NEXT

- Reading: Ch3, 70-76
- Homework –


OUTLINE

Components of Life

- PROTEINS
 - Definition
 - Size
 - Shape
 - Solubility
 - Stability
 - Types
 - Familiar
 - Structural
 - Functional
 - ·Ways of depicting Shape
 - •Configuration vs. Conformation

Review from Lecture 1: Components of Life

Going to talk about each of these and discover for each:

- 1. cellular functions
- 2. monomeric units
- 3. name of the bond that makes the polymer
- 4. characteristics of the macromolecule in terms of shape

Macromolecules in living organisms: proteins, carbohydrates, nucleic acids, "lipids"; nearly all are polymers

Polymers are composed of smaller molecules called **monomers**, which are part of the **precursors** of the polymer

- Proteins: combinations of 20 kinds of <u>amino</u> <u>acid</u> precursors/monomers
- Polysaccharides: sugar monomers, called monosaccharides (many kinds), are combined. Both monomers and polymers are called Carbohydrates
- Nucleic acids: combinations of 8 kinds of nucleotide precursors/monomers
- •[*Lipids*: non-covalent forces maintain interactions between lipid monomers]

"He said he hoped a lot of us would have careers in science,' she said. She didn't see anything funny in that. She was remembering a lesson that had impressed her. She was repeating it, gropingly, dutifully. 'He said, the trouble with the world was...'

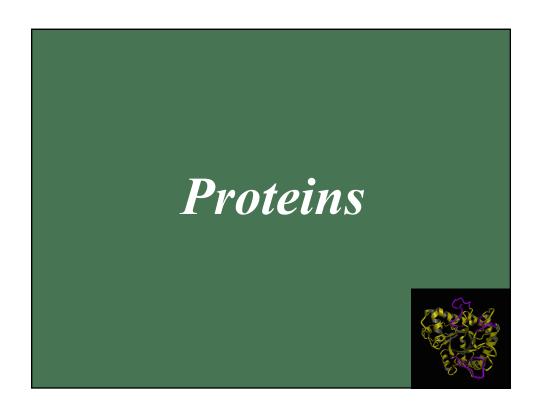
'The trouble with the world was,' she continued hesitatingly, 'that people were still superstitious instead of scientific. He said if everybody would study science more, there wouldn't be all the trouble there was.'

'He said science was going to discover the basic secret of life some day,' the bartender put in. He scratched his head and frowned. 'Didn't I read in the paper the other day where they'd finally found out what it was?'

'I missed that,' I murmured.

' I saw that, said Sandra. "About two days ago.'

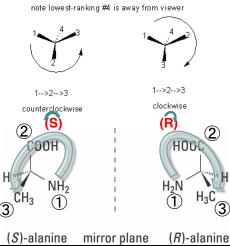
'That's right,' said the bartender.

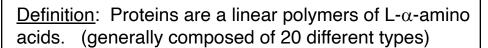

'What is the secret of life?' I asked.

'I forget,' said Sandra.

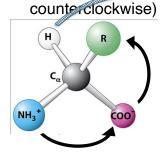
'Protein,' the bartender declared. 'They found out something about protein.'

'Yeah,' said Sandra, 'that's it."

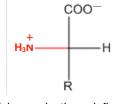

— Kurt Vonnegut Jr., Cat's Cradle



<u>Definition</u>: Proteins are a linear polymers of L- α -amino acids. (generally composed of 20 different types)


"L" refers to the old-style of configuration* nomenclature (S in R/S) comes from Greek for rotation to the left (levo-rotation; counterclockwise)

counterclockwise)



"L" refers to the old-style of configuration* nomenclature (S in R/S) comes from Greek for rotation to the left (levo-rotation;

*counter clockwise rotation = S = L

Fisher projections define a chiral carbon with carbons in chain up and down and substituents left and right. For amino acids, the higher MW substituent (amino group) is on the left, its "L".

*arrangement of bonds

Proteins

The 4 S's for Proteins:

Size

Shape

Solubility

Stability

Size of Proteins

The Size's for Proteins are variable due to the length of the polymers:

Protein polymers range from ~30-50 AA (insulin) to 50,000 AA (dystrophin)

Smaller than ~30 AA are usually called peptides

Protein diameters are much larger than Water: 10-20 Å up to 1000 Å in diameter

Size of Proteins

TABLE 5-1 Compositions of Some Proteins

Protein	Amino Acid Residues	Subunits	Protein Molecular Mass (D)
Proteinase inhibitor III (bitter gourd)	30	1	3,427
Cytochrome c (human)	104	1	11,617
Myoglobin (horse)	153	1	16,951
Interferon-γ (rabbit)	288	2	33,842
Chorismate mutase (Bacillus subtilis)	381	3	43,551
Triose phosphate isomerase (E. coli)	510	2	53,944
Hemoglobin (human)	574	4	61,986
RNA polymerase (bacteriophage T7)	883	1	98,885
Nucleoside diphosphate kinase (Dictyostelium discoideum)	930	6	100,764
Pyruvate decarboxylase (yeast)	2,252	4	245,456
Glutamine synthetase (E. coli)	5,616	12	621,264
Titin (mouse)	35,213	1	3,906,488

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

WILEY

Size of Proteins

TABLE 3-2 Molecular Data on Some Proteins				
Protein	Molecular weight	Number of residues	Number of polypeptide chains	
Cytochrome c (human)	12,400	104	1	
Ribonuclease A (bovine pancreas)	13,700	124	1	
Lysozyme (chicken egg white)	14,300	129	1	
Myglobin (equine heart)	16,700	153	1	
Chymotrypsin (bovine pancreas)	25,700	245	1	
Chymotrypsinogen (bovine)	25,700	245	1	
Hemoglobin (human)	64,500	574	4	
Serum albumin (human)	66,000	609	1	
Hexokinase (yeast)	107,900	972	2	
RNA polymerase (E. coli)	450,000	4,158	5	
Apolipoprotein B (human)	513,000	4,536	1	
Glutamine synthetase (E. coli)	619,000	5,628	12	
Titin (human)	2,993,000	26,926	1	

Polypeptide Size and Number Varies Greatly in Proteins

Shape of Proteins

The Shape's for Proteins are variable due to the size of the polymer as well, but much more due to the AA composition and sequence of the amino acids in the polymer.

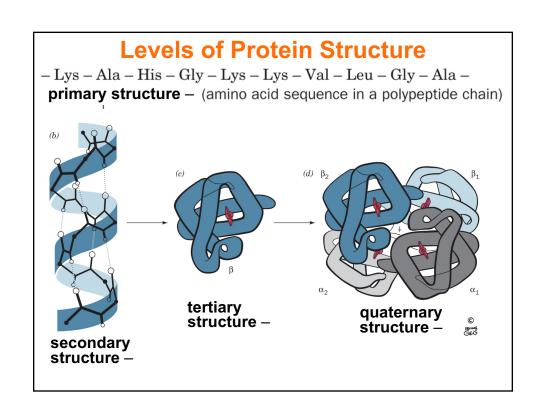
HUGE variability!!

All these variable shapes are governed by those non-covalent bonds we just discussed: H-bonds, hydrophobic effect, van der Waals, and ionic interactions.

Shapes of Proteins @ 4,000,000X

TIS 18 - MARCH 1993

Proteins @ 4,000,000X


TIS 18 - MARCH 1993

TIS 18 - MARCH 1

Shape of Proteins

The **STRUCTURE** of proteins has been divided into **four** categories:

- 1) primary structure sequence of amino acids
- **2) secondary structure** small units of repetitive structure
- 3) tertiary structure overall threedimensional shape
- **4)** quaternary structure shape of ≥2 chains

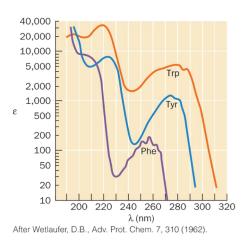
Solubility of Proteins

The Solubility's for Proteins are variable due to the size of the polymer and the composition and sequence of the amino acids in the polymer, but generally they are polar and thus soluble in water.

As we will see, the amino acids have "R" groups that differ by their solubility, hence also proteins.

Some proteins are not soluble; e.g., α -keratin

Stability of Proteins


The Stability's for Proteins are variable as well and the reasons are not completely known.

Measuring protein concentration: Lab

Most proteins are not colored. If so, then the degree of color is proportional to the concentration (Beer's Law).

- React with chemicals to create something that is "colored" (colorimetric)
 - Must be a product that is not dependent on different amino acids; specific to it being a polymer
 - Copper ions in base will react with the amide nitrogen supplanting the hydrogen with the copper making a complex that is colored.
 - 2) Coomassie Brilliant blue DYE changes color when bound to peptide bonds.
- Take advantage of absorbance of amino acids in the ultraviolet region of the spectrum.

Measuring protein concentration: Lab

Take advantage of absorbance of amino acids in the ultraviolet region of the spectrum.

Types of Proteins

Familiar

Egg white (mostly ovalbumin and lysozyme)

 α -keratin (hair, nails, feathers)

Casein (milk protein)

Zein (corn protein)

Myosin/actin (muscle proteins)

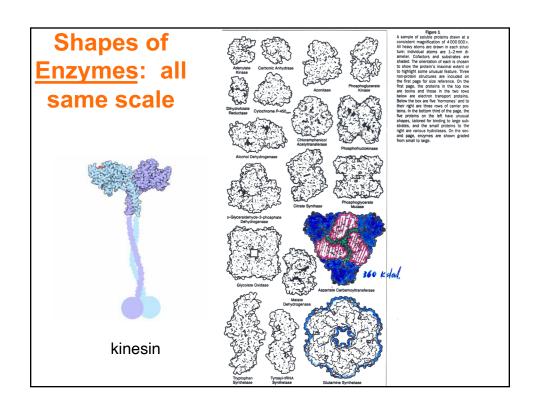
Collagen (tendons, cartilage, extra-cellular matrix, gelatin)

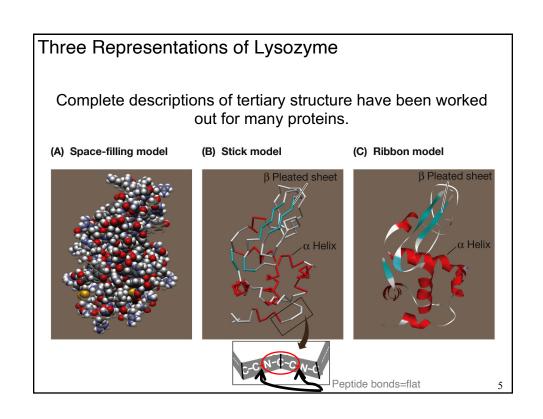
Schratin (insect exoskeleton)

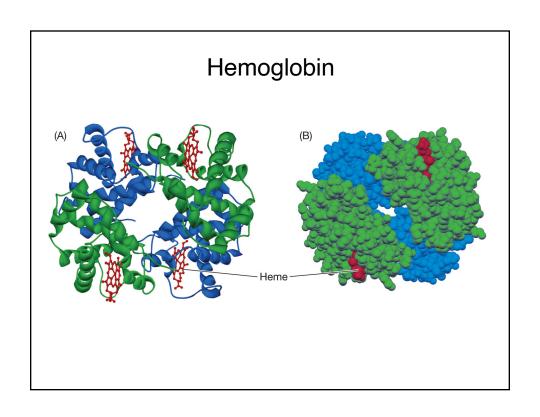
Types of Proteins

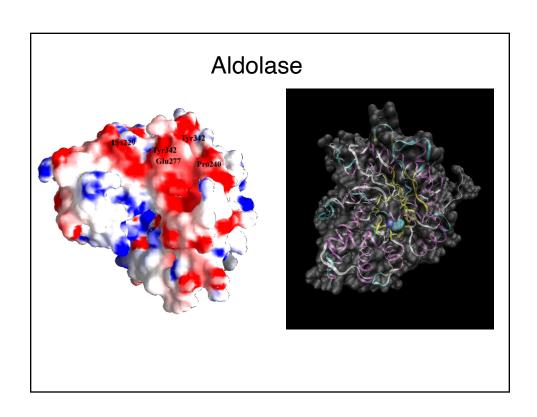
Based on Structure

- Fibrous (α-keratin, myosin, F-actin, tubulin, collagen)
- Globular (hemoglobin, enzymes, antibodies)

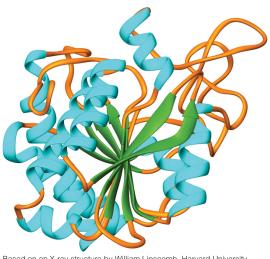



Properties	Fibrous Protein	Globular Protein
Shape	Long and narrow	Rounded / spherical
Role	Structural (strength and support)	Functional (catalytic, transport, etc.)
Solubility	(Generally) insoluble in water	(Generally) soluble in water
Sequence	Repetitive amino acid sequence	Irregular amino acid sequence
Stability	Less sensitive to changes in heat, pH, etc.	More sensitive to changes in heat, pH, etc.
Examples	Collagen, myosin, fibrin, actin, keratin, elastin	Catalase, haemoglobin, insulin, immunoglobulin


Types of Proteins


Based on Function

- Enzymes—catalytic proteins
- Binding or Transport Proteins (carry substances within the organism or membrane bound to transport in and out.)
 - a. Globins (hemoglobin (Hb), Mb; carry di oxygen)
 - b. Cytochromes (Fe in a porphorin ring; carry electrons)
 - c. albumins (serum; carry fatty acids)
 - d. immunoglobulins (antibodies, defense)
 - e. receptor proteins (receive and respond to molecular signals)
 - f. Genetic regulatory proteins regulate when, how, and to what extent a gene is expressed (transcription/translation factors)
- Storage proteins store amino acids (casein, zein).
- Signal proteins; hormonal and regulatory proteins—control physiological processes
- Structural proteins provide physical stability and movement (collagen, keratin, histones).
- Motor proteins: convert chemical into kinetic energy (kinesin, dyenin, flagellin, myosin)



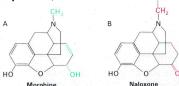
Based on an X-ray structure by William Lipscomb, Harvard University. PDBid 3CPA.

http://www.rcsb.org/pdb/explore/explore.do?structureId=3CPA

Carboxypeptidase A PDBid 3CPA

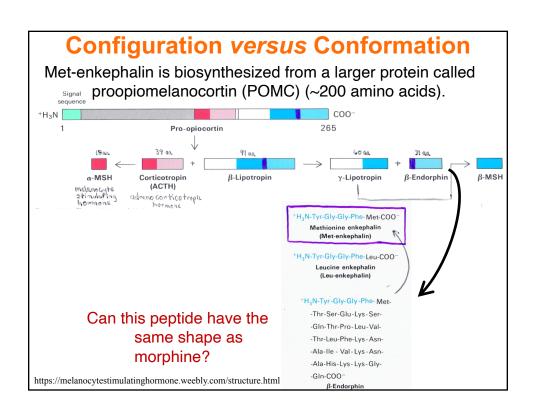
Proteins Sometimes Need Help

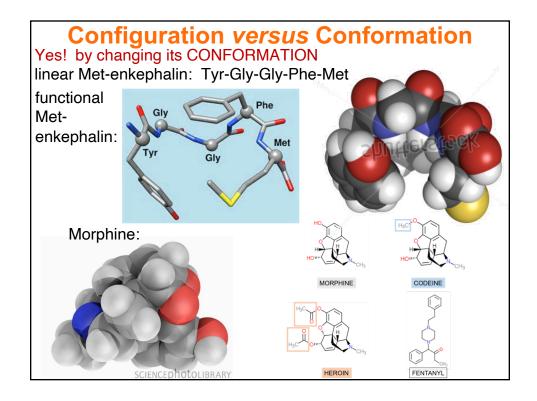
Proteins are comprised of:


- Polypeptides (covalently linked α -amino acids) + possibly:
 - cofactors
 - metal ions
 - organic molecules (functional non-amino acid component: Coenzymes)
 - coenzymes
 - organic cofactors
 - e.g., NAD⁺ in lactate dehydrogenase
 - prosthetic groups
 - covalently attached cofactors
 - e.g., heme in myoglobin
 - other modifications (post-translational modifications)

Configuration versus Conformation

EXAMPLE:


In biology, peptides can have an amazing versatility in function.


One example are the endorphins–signal molecules produced by the brain that are mimicked by analgesic drugs such as codeine, morphine, and heroin.

The smallest endorphin is called Met-enkephalin which is an active penta-peptide sequence of Tyr-Gly-Gly-Phe-Met.

Somehow the SHAPE of these drugs and the SHAPE of this peptide must be similar enabling their binding to the same pain receptors

Configuration versus Conformation

CONFORMATION is the spatial arrangement of substituent groups that are free to assume different positions in space WITHOUT breaking any covalent bonds due to free rotations.

CONFIGURATION is the spatial arrangement by which substituent groups or atoms are covalently linked in a molecule. Different configurations REQUIRE breaking covalent bonds.