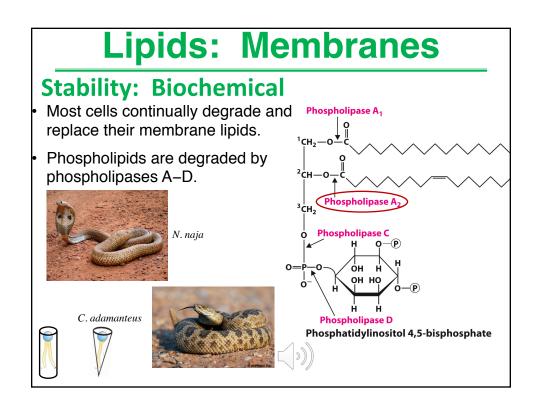

Lecture 31 **Lipids & Membranes Nucleic Acids** Transcription (12/8/25)Translation Genetic Code **tRNA Protein Biosynthesis TODAY** Membrane lipids e. Terpenes (isoprenes) · Reading: Ch11, 370-381 B. Membranes Ch4,6,8,10,14,16,17,18: 1. Introduction 118-119, 178,295, 356-359, 530-2. The 4 S's 531, 534-535, 576, 590,613-615, Size 629, 641-643 Solubility Ch 10, 356-360 Shape Ch17, 613-615 Stability #32. #33 3. Models for Membrane structure Homework: Old Model Data **NEXT** Fluid Mosaic Model Reading: Ch1, 79-4854-5; Ch13, 465-471, Testing the model 479-485 4. The Red-Blood Cell Membrane #34 Homework: 5. Membrane Asymmetry a. transverse b. lateral Need to Know! anchoring 6. Membrane Fluidity

Biological molecules that are characterized by low solubility in water, that is, are relatively hydrophobic. Classes of Lipids They have a high hydrocarbon content 1. Fatty acids 2. Fats (triglycerides) 3. Waxes 4. Membrane Lipids 5. Isoprenes


Common Biological Fatty Acids								
Number f Carbons	Common Name	Systematic Name	Symbol	Structure				
aturated fatty	acids							
12	Lauric acid	Dodecanoic acid	12:0	$CH_3(C\dot{H}_2)_{10}COOH$				
14	Myristic acid	Tetradecanoic acid	14:0	CH ₃ (CH ₂) ₁₂ COOH				
16	Palmitic acid	Hexadecanoic acid	16:0	CH ₃ (CH ₂) ₁₄ COOH				
	Stearic acid	Octadecanoic acid	18:0	CH ₃ (CH ₂) ₁₆ COOH				
18	ottaire acid							
18 20	Arachidic acid	Eicosanoic acid	20:0	$CH_3(CH_2)_{18}COOH$				
20		Eicosanoic acid Docosanoic acid	20:0 22:0	CH ₃ (CH ₂) ₁₈ COOH CH ₃ (CH ₂) ₂₀ COOH				
20	Arachidic acid							
20 22 24	Arachidic acid Behenic acid Lignoceric acid	Docosanoic acid Tetracosanoic acid	22:0	CH ₃ (CH ₂) ₂₀ COOH				
20 22 24 Insaturated fa	Arachidic acid Behenic acid Lignoceric acid atty acids (all double bo	Docosanoic acid Tetracosanoic acid onds are cis)	22:0 24:0	CH ₃ (CH ₂) ₂₀ COOH CH ₃ (CH ₂) ₂₂ COOH				
20 22 24 Insaturated fa 16	Arachidic acid Behenic acid Lignoceric acid atty acids (all double bo Palmitoleic acid	Docosanoic acid Tetracosanoic acid onds are cis) 9-Hexadecenoic acid	22:0 24:0 16:1 (Δ ⁹)	CH ₃ (CH ₂) ₂₀ COOH CH ₃ (CH ₂) ₂₂ COOH CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ COOH				
20 22 24 24 Insaturated fa 16 18	Arachidic acid Behenic acid Lignoceric acid atty acids (all double bo Palmitoleic acid Oleic acid	Docosanoic acid Tetracosanoic acid onds are cis) 9-Hexadecenoic acid 9-Octadecenoic acid	22:0 24:0 $16:1(\Delta^{9})$ $18:1(\Delta^{9})$	CH ₃ (CH ₂) ₂₀ COOH CH ₃ (CH ₂) ₂₂ COOH CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ COOH CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH				
20 22 24 Insaturated fa 16 18	Arachidic acid Behenic acid Lignoceric acid atty acids (all double bo Palmitoleic acid Oleic acid Linoleic acid	Docosanoic acid Tetracosanoic acid onds are cis) 9-Hexadecenoic acid 9-Octadecenoic acid 9,12-Octadecadienoic acid	22:0 24:0 16:1(Δ^9) 18:1(Δ^9) 18:2($\Delta^{9,12}$)	CH ₃ (CH ₂) ₂₀ COOH CH ₃ (CH ₂) ₂₂ COOH CH ₃ (CH ₂) ₂₂ COOH CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ COOH CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ CO				
20 22 24 Insaturated fa 16 18 18	Arachidic acid Behenic acid Lignoceric acid atty acids (all double bo Palmitoleic acid Oleic acid Linoleic acid α-Linolenic acid	Docosanoic acid Tetracosanoic acid onds are cis) 9-Hexadecenoic acid 9-Octadecenoic acid 9,12-Octadecadienoic acid 9,12-Octadecatrienoic acid	22:0 24:0 16:1(Δ°) 18:1(Δ°) 18:2(Δ°).2:1 18:3(Δ°).2:1	CH ₃ (CH ₂) ₂₀ COOH CH ₃ (CH ₂) ₂₂ COOH CH ₃ (CH ₂) ₂ CH=CH(CH ₂) ₇ COOH CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ COi CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ COi (5) CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COOF				
20 22 24 Insaturated fa 16 18	Arachidic acid Behenic acid Lignoceric acid atty acids (all double bo Palmitoleic acid Oleic acid Linoleic acid	Docosanoic acid Tetracosanoic acid onds are cis) 9-Hexadecenoic acid 9-Octadecenoic acid 9,12-Octadecadienoic acid	22:0 24:0 16:1(Δ^{9}) 18:1(Δ^{9}) 18:2($\Delta^{9,12}$) 18:3($\Delta^{9,12,1}$) 18:3($\Delta^{6,9,12,1}$)	CH ₃ (CH ₂) ₂₀ COOH CH ₃ (CH ₂) ₂₂ COOH CH ₃ (CH ₂) ₂₂ COOH CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ COOH CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ CO				

The 4 S's

Size Shape Solubility

Stability (biological)

Introduction

The 4 S's

Size

Solubility

Shape

Models for Membrane structure

Old Model

Data

Fluid Mosaic Model

Testing the model

The Red-Blood Cell Membrane

Membrane Asymmetry

Lipids

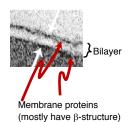
transverse

lateral

Protein

anchoring

glycoproteins


Membrane Fluidity

Lipids: Membranes

Models for Membrane Structure

OLD MODEL (ca. 1940-1970) Sandwich model proposed by Danielli-Dayson.

Based on the structures in the EM

Scientifically, this is a good MODEL because it is clearly TESTABLE! This model makes several testable predictions:

- 1) Protein-lipid interactions should be mostly electrostatic; proteins should have lots of charged groups.
- 2) Should be able to "wash" nearly all membrane proteins off the membranes with high salt.
- 3) Isolated membrane proteins should show lots of β-structure
- 4) Importantly, NO PROTEINS ON THE INSIDE

Introduction

The 4 S's

Size

Solubility

Shape

Stability

Models for Membrane structure

Old Model

Data Data

Fluid Mosaic Model

Testing the model

The Red-Blood Cell Membrane

Membrane Asymmetry

Lipids

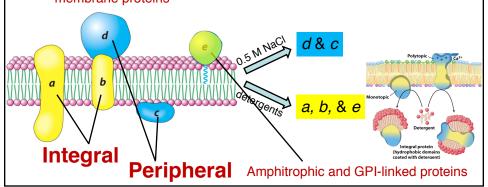
transverse

lateral

Protein

anchoring

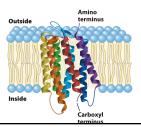
glycoproteins

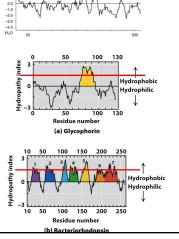

Membrane Fluidity

Lipids: Membranes

Models for Membrane Structure

TESTING OLD MODEL: DATA


- 1) & 2) Wash isolated membranes with high-salt solutions or changes in pH.
 - > Removes some but not all proteins
 - ➤ This leads to an operational definition of peripheral (those that wash off with 0.5 M salt), an integral (those that remain after washing) membrane proteins

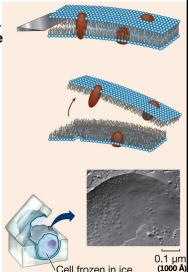


Models for Membrane Structure

TESTING OLD MODEL: DATA

- 3) Isolated membrane proteins should show lots β -structure.
 - Peripheral membrane proteins looked like cytosolic proteins
 - CD showed there was actually more α-helix than β-structure
 - Integral membrane proteins had patches of hydrophobic residues in their sequence

Lipids: Membranes


Models for Membrane Structure

TESTING OLD MODEL: DATA

- 4) Importantly, NO PROTEINS ON THE INSIDE.
 - So, lets look: performed Freeze-fracture EM on cell membranes
 - ➤ This immediately became an explanation for Integral membrane proteins.

OMG!!! NOT smooth inside!

Oops, maybe proteins DO span the membrane.

Introduction

The 4 S's

Size

Solubility

Shape

Models for Membrane structure

Old Model

Fluid Mosaic Model

Testing the model

The Red-Blood Cell Membrane

Membrane Asymmetry

Lipids

transverse

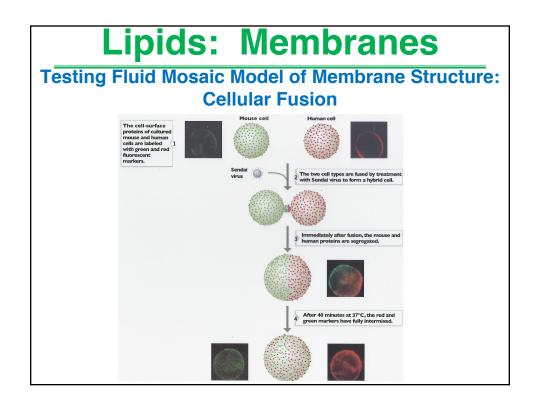
lateral

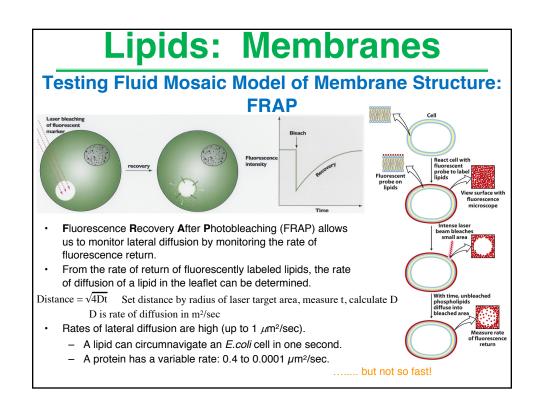
Protein

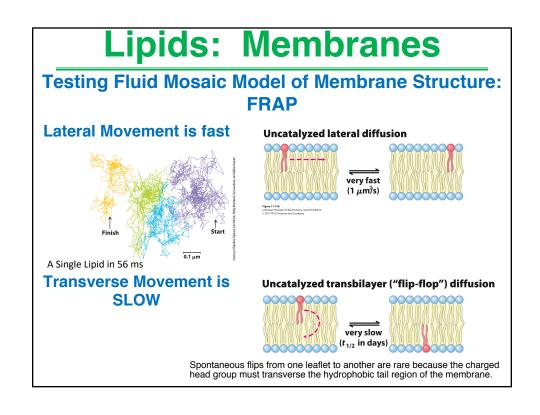
anchoring glycoproteins

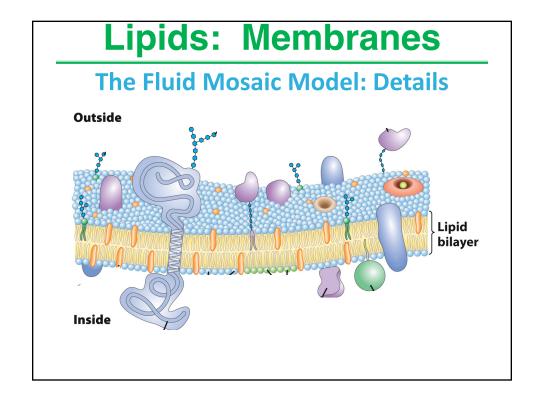
Membrane Fluidity

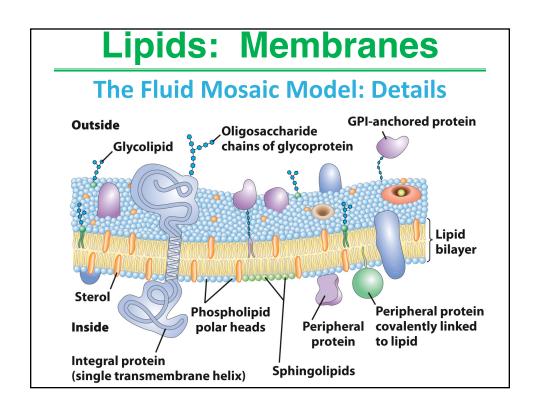
Lipids: Membranes

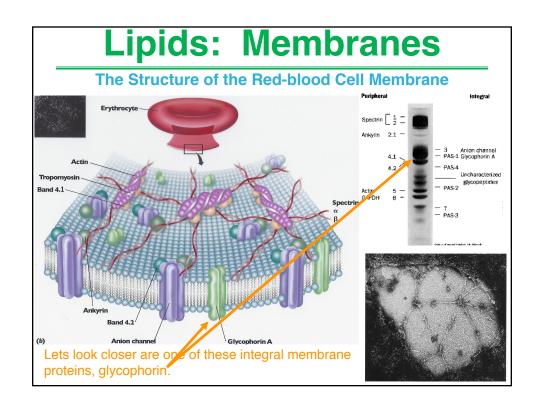

Models for Membrane Structure

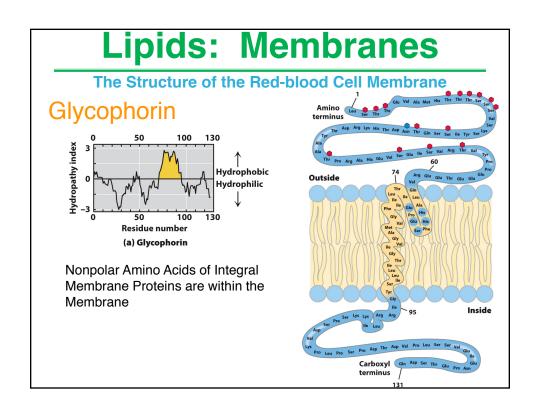

NEW MODEL (1972)


Fluid Mosaic Model proposed by SJ Singer & GL Nicholson


- · Lipids form a viscous, twodimensional solvent into which proteins are inserted and integrated more or less deeply.
- · Proteins can either be embedded in or associated with the membrane:
- (1924-2017)
- Integral membrane proteins are firmly associated with the membrane, often spanning the bilayer.
- Peripheral membrane proteins are weakly associated and can be removed easily.
 - o Some are non-covalently attached.
 - o Some are linked to membrane lipids (amphitrophic)(more later).


This model was also testable





Lipids: Membranes Introduction The 4 S's Size Solubility Shape **Stability Models for Membrane structure Old Model** Data Fluid Mosaic Model Testing the model The Red-Blood Cell Membrane **Membrane Asymmetry** Lipids transverse lateral **Protein** anchoring

glycoproteins
Membrane Fluidity

Introduction

The 4 S's

Size

Solubility

Shape

Stability

Models for Membrane structure

Old Model

Data

Fluid Mosaic Model

Testing the model

The Red-Blood Cell Membrane

Membrane Asymmetry

Lipids

transverse

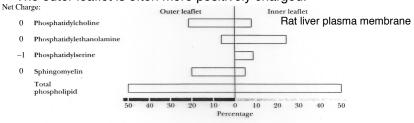
lateral

Protein

anchoring

glycoproteins

Membrane Fluidity

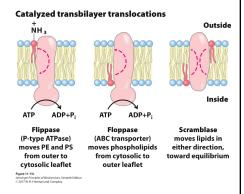

Lipids: Membranes

Asymmetry

- Membranes are very asymmetric.
- All kinds of asymmetry: <u>Components</u>—lipids, proteins <u>Types</u>—transverse, lateral

–Lipids (transverse):

- · Two leaflets have different lipid compositions.
- · The outer leaflet is often more positively charged.


Rothman and Lenard, 1977, Science 194:1744.)

- If Phosphatidylserine is found outside, it has a special meaning:
 - platelets: activates blood clotting
 - other cells: marks the cell for destruction

How is this asymmetry maintained?

Asymmetry

- Lipids (transverse): Flippases
- Special enzymes catalyze transverse diffusion.
 - Though often referred to by category name "flippase," there are unique unidirectional and bidirectional enzymes to catalyze lipid movement.
- Some flippases use energy of ATP to move lipids against the concentration gradient.

Lipids: Membranes

Asymmetry

Lipids (lateral):

- 1) On the inner leaflet, can induce phosphoserine to coalesce with calcium.
- 2) On the outerleaflet, can induce "raft" formation; the coalescence of particular membrane lipids (cholesterol, sphingoglycolipids, sphingomyelin, etc.)

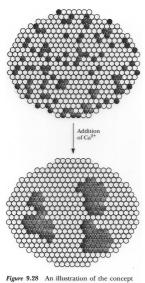
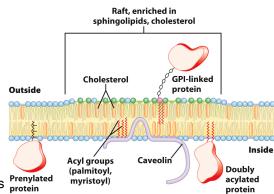
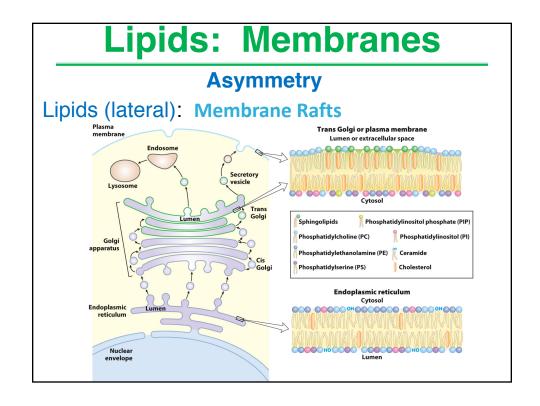
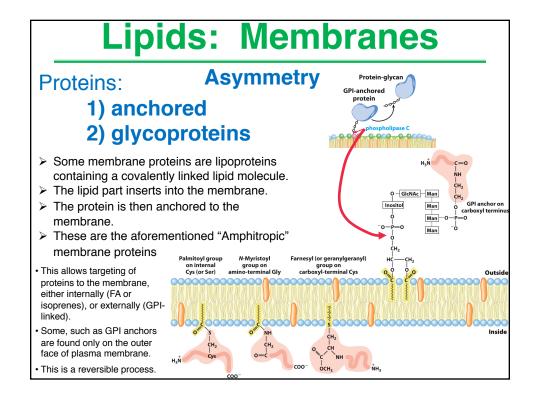


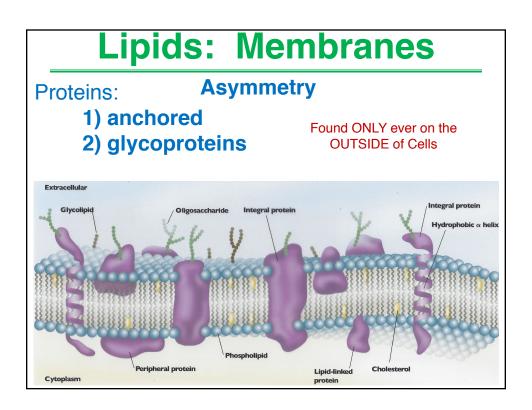
Figure 9.28 An illustration of the concept of lateral phase separations in a membrane Phase separations of phosphatidylserine (green circles) can be induced by divalent cations such as Ca²⁺.


Asymmetry


Lipids (lateral): Membrane Rafts

Lipid distribution in a single leaflet is not random or uniform.


Lipid rafts:


- contain clusters of sphingoglycolipids with longer-than-usual tails and cholesterol
- are more ordered (not as fluid)
- contain specific doubly or triply acylated proteins
- allow segregation of proteins Prenylated protein in the membrane

Lipids: Membranes Asymmetry Proteins: 1) anchored 2) glycoproteins > Some membrane proteins are lipoproteins containing a covalently linked lipid molecule. > The lipid part inserts into the membrane. > The protein is then anchored to the membrane. These are the aforementioned "Amphitropic" membrane proteins · This allows targeting of proteins to the membrane, either internally (FA or isoprenes), or externally (GPI-Some, such as GPI anchors are found only on the outer face of plasma membrane. This is a reversible process.

Introduction

The 4 S's

Size

Solubility

Shape

Stability

Models for Membrane structure

Old Model

Data

Fluid Mosaic Model

Testing the model

The Red-Blood Cell Membrane

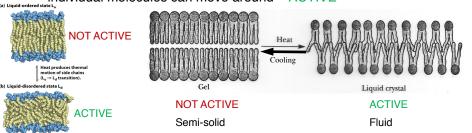
Membrane Asymmetry

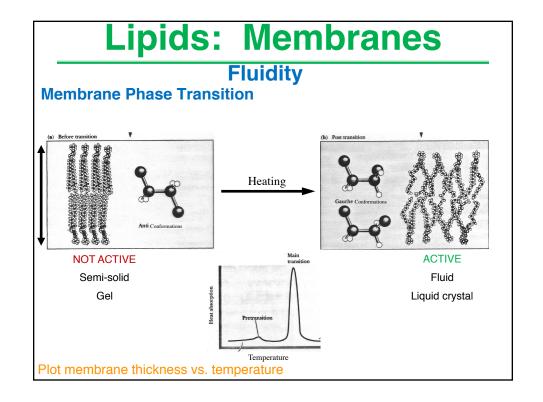
Lipids

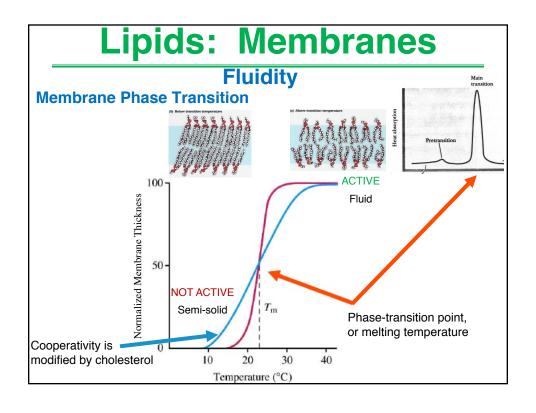
transverse

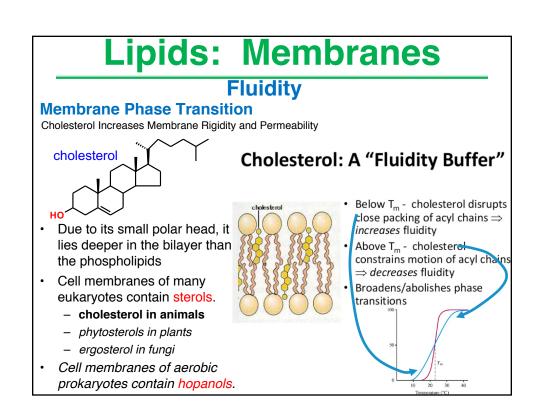
lateral

Protein


anchoring glycoproteins


Membrane Fluidity


Fluidity


Membrane Phase Transition

- · Cells must maintain fluidity for membranes to function properly.
- Depending on their composition and the temperature, the lipid bilayer must maintain a fluid phase; if cooled, it undergoes a phase transition and goes to a gel state.
 - liquid-ordered state (i.e., "gel phase"): individual molecules do not move around – NOT ACTIVE
 - liquid-disordered (or liquid crystal) state (i.e., "fluid phase"):
 individual molecules can move around ACTIVE

Fluidity

Organisms Can Adjust the Temperature of the Phase Transition by Changing the Membrane Composition

- Membrane fluidity is determined mainly by the fatty acid composition and melting point.
- The temperature of the phase transition (T_m):
 - Melting temperature higher with more saturated fatty acids.
 - Melting temperature higher with longer fatty acids.
 - Melting temperature lower with more unsaturated fatty acids.
 - Melting temperature lower with shorter fatty acids.
- Therefore, at higher temperatures, cells need more long, saturated fatty acids.
- And at lower temperatures, cells need more shorter, unsaturated fatty acids.

Lipids: Membranes

Fluidity

TABLE 11-2	Fatty Acid Composition of $E.\ coli$ Cells Cultured at Different Temperatures						
		Percentage of total fatty acids ^a					
		10 °C	20 °C	30 °C	40 °C		
Myristic acid		4	4	4	8		
Palmitic acid		18	25	29	48		
Palmitoleic acid		26	24	23	9		
Oleic acid		38	34	30	12		
Hydroxymyristic acid		13	10	10	8		
Ratio of unsaturated to saturated ^b		2.9	2.0	1.6	0.38		

SOURCE: Data from A. G. Marr and J. L. Ingraham, J. Bacteriol. 84:1260, 1962.

^aThe exact fatty acid composition depends not only on growth temperature but on growth stage and growth medium composition.

^bRatios calculated as the total percentage of 16:1 plus 18:1 divided by the total percentage of 14:0 plus 16:0. Hydroxymyristic acid was omitted from this calculation.