

Vitamins & Cofactors

Vitamins

- > Definition: essential nutrients required in the diet
- > Different vitamins for different species

e.g., for rats & mice ascorbate is not a vitamin *E. coli* do not have any vitamins

> Vitamins are classified as water soluble or fat soluble

Cofactors/Coenzymes

- Definition: low M_r molecules that act as carriers or give special functionality to enzymes
- > Many coenzymes have vitamin molecules as their basis

Need to know: name, abbreviation, recognize structure, role in chemistry

Vita	amins & Cofac	tors	S			
Vitamins and Coenzymes	nes					
Vitamin	Coenzyme Form	Reaction mediated	Human Deficiency			
Water-Soluble			Disease			
1 Thiamine (vitamin B ₁)	Thiamine pyrophosphate	Acyl-group transfer	Beriberi			
2 Niacin (nicotinic acid)	Nicotinamide adenine dinucleotide (NAD ⁺) Nicotinamide adenine dinucleotide phosphate (NADP ⁺)	Re-dox	Pellagra			
3 Riboflavin (vitamin B ₂)	Flavin adenine dinucleotide (FAD) Flavin mononucleotide (FMN)	Re-dox	-			
4 Pantothenic acid	Coenzyme A	Acyl-group transfer	-			
(5) Pyridoxal, pyridoxine, pyridoxamine (vitamin B ₆)	Pyridoxal phosphate	Amino-group transfer	dermatitis			
6 Cobalamin (vitamin B ₁₂)	5'-Deoxyadenosylcobalamin Methylcobalamin	Alkylation	Pernicious anemia			
⑦ Biotin	Biotin-lysine complexes (biocytin)	Carboxylation	-			
8 Lipoic acid	Lipoyl-lysine complexes (lipoamide)	Acyl-group transfer	-			
9 Folic acid	Tetrahydrofolate	C1-group transfer	Megaloblastic anemi			
Ascorbic acid (vitamin C)	Ascorbate	Re-dox	Scurvy			
Tat-soluble (1) Retinol (vitamin A)	Retinal		Night blindness			
Ergocalciferol (vitamin D ₂)						
Cholecalciterol (vitamin D ₃)			Rickets			
(4) Vitamin K			Hemorrhage			

Vita	mins & Cofac	tors	
Vitamins and Coenzymes			
Vitamin	Coenzyme Form	Reaction mediated	Human Deficiency
Water-Soluble			Disease
1 Thiamine (vitamin B ₁)	Thiamine pyrophosphate	Acyl-group transfer	Beriberi
Niacin (nicotinic acid)	Nicotinamide adenine dinucleotide (NAD ⁺) Nicotinamide adenine dinucleotide phosphate (NADP ⁺)	Re-dox	Pellagra
(3) Riboflavin (vitamin B ₂)	Flavin adenine dinucleotide (FAD) Flavin mononucleotide (FMN)	Re-dox	-
4 Pantothenic acid	Coenzyme A	Acyl-group transfer	-
(5) Pyridoxal, pyridoxine, pyridoxamine (vitamin B ₆)	Pyridoxal phosphate	Amino-group transfer	dermatitis
6 Cobalamin (vitamin B ₁₂)	5'-Deoxyadenosylcobalamin Methylcobalamin	Alkylation	Pernicious anemia
7 Biotin	Biotin-lysine complexes (biocytin)	Carboxylation	-
8 Lipoic acid	Lipoyl-lysine complexes (lipoamide)	Acyl-group transfer	-
9 Folic acid	Tetrahydrofolate	C1-group transfer	Megaloblastic anemia
Ascorbic acid (vitamin C)	Ascorbate	Re-dox	Scurvy
Tat-soluble T Retinol (vitamin A)	Retinal		Night blindness
2 Ergocalciferol (vitamin D ₂)			D:1 (
Cholecalciterol (vitamin D_3)			RICKEIS
	· · · · · · · · · · · · · · · · · · ·		Hemorrhage

Recall from First lecture: Energetics of Life

- Living organisms cannot create energy from nothing.
- Living organisms cannot destroy energy into nothing.
- Living organism may transform energy from one form to another.
- In the process of transforming energy, living organisms must increase the entropy of the universe.
- In order to maintain organization within themselves, living systems must be able to extract useable energy from their surroundings and release useless energy (heat) back to their surroundings.

Organisms Use the First Law Big-Time (perform energy transformations) to Stay Alive

Favorable and Unfavorable Reactions

The breakdown of some metabolites releases a significant amount of free energy (**exergonic**).

- Their cellular concentration is far higher than their equilibrium concentration.
- Metabolites, such as ATP, NADH, NADPH, can be synthesized using the energy from sunlight and fuels.....

Synthesis of complex molecules and many other metabolic reactions requires free energy (**endergonic**).

- A reaction might be thermodynamically unfavorable (∆G°>0).
 - · Creating order requires work and energy.

Metabolism

Issues:

- Thermodynamics and biochemistry; carbon/oxygen cycle
 & nitrogen cycle
- Common organic-chemical principles in biochemistry
- Some biomolecules are "high energy" with respect to their hydrolysis and group transfers.
- Energy stored in reduced organic compounds can be used to reduce cofactors such as NAD⁺ and FAD, which serve as universal electron carriers and lead to ATP formation.

Metabolism

TABLE 13-5 T	Total Concentrations of Adenine Nucleotides, Inorganic Phosphate, and Phosphocreatine in Some Cells						
		Concentration (mM) ^a					
	ATP	ADP ^b	AMP	Energy Charge	Pi	PCr	
Rat hepatocyte	3.38	1.32	0.29	0.81	4.8	0	
Rat myocyte	8.05	0.93	0.04	0.94	8.05	28	
Rat neuron	2.59	0.73	0.06	0.87	2.72	4.7	
Human erythrocyte	2.25	0.25	0.02	0.94	1.65	0	
E. coli cell	7.90	1.04	0.82	0.86	7.9	0	

mitochondria). In the other types of cells the data are for the entire cell contents, although the cytosol and the mitochondria have very different concentrations of ADP. PCr is phosphocreatine, discussed on p. 516. ^b This value reflects total concentration; the true value for free ADP may be much lower (p. 509).

Cellular ATP concentration is usually far above the equilibrium concentration, making ATP a very potent source of chemical energy.

End of BB 421

• TODAY – Course Evaluation <u>bu.edu/courseeval, email, or Bb</u>

• Review session – Thursday 5:00-6:00 PM in HAR-208.

For cumulative questions

• Review session – next Monday 4:00-5:45 PM in HAR-208.

• Final Exam – December 18, Wednesday 8-11 AM in MORSE.