

Lecture 30 (12/5/25)

Nucleic Acids

Transcription
Translation

Genetic Code

tRNA

Protein Biosynthesis

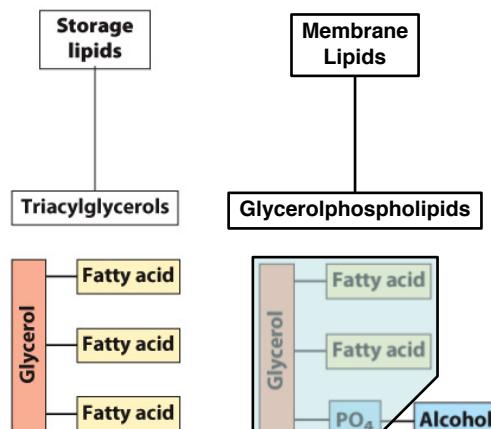
Lipids & Membranes

A. Lipids

1. Roles
2. Classes
 - a. Fatty Acids
 - b. Fats
 - c. Waxes
 - d. Membrane lipids
 - e. Terpenes (isoprenes)

B. Membranes

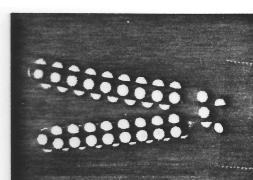
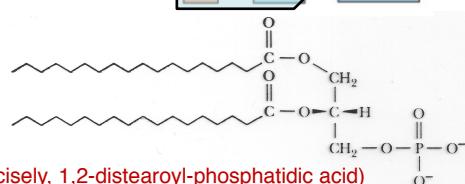
1. Introduction
2. The 4 S's
 - a. Size
 - b. Solubility
 - c. Shape
 - d. Stability
3. Models for Membrane structure
 - a. Old Model
 - b. Data
 - c. Fluid Mosaic Model
 - d. Testing the model
4. The Red-Blood Cell Membrane
5. Membrane Asymmetry
 - a. transverse
 - b. lateral
 - c. anchoring
6. Membrane Fluidity


TODAY

- Reading: Ch10, 352-354, 356; 367-369

NEXT

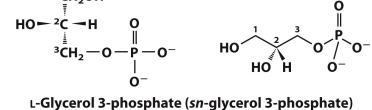
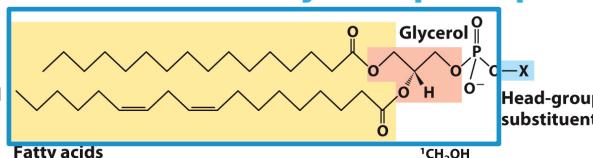
- Reading: Ch11, 370-381
Ch4, 6, 8, 10, 14, 16, 17, 18:
118-119, 178, 295, 356-359, 530-
531, 534-535, 576, 590, 613-615,
629, 641-643
Ch 10, 356-360
Ch17, 613-615
- Homework: #32, #33



Lipids: Membrane Lipids

Need to know structures and nomenclature:
Fatty acids: palmitate, stearate, oleate, linoleate, α -linolenate, arachidonate
Phospholipids: phosphatidate, sphingosine, PS, PE, PC, SM
Cholesterol

Phosphatidic Acid

(more precisely, 1,2-distearoyl-phosphatidic acid)

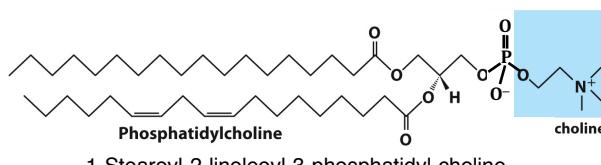



Lipids: Membrane Lipids

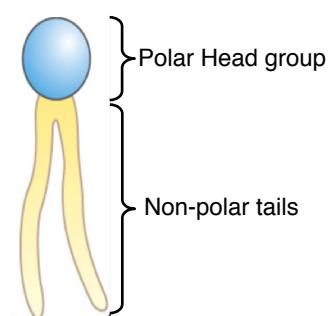
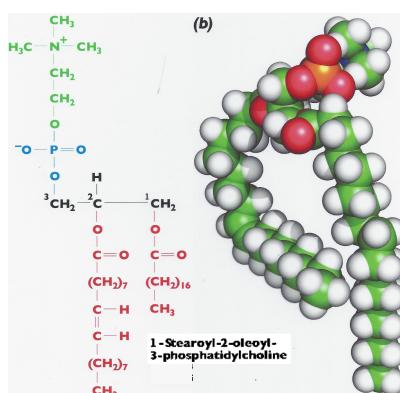
General Structure of Glycerophospholipids

Saturated fatty acid
(e.g., palmitic acid)

Unsaturated fatty acid
(e.g., linoleic acid)

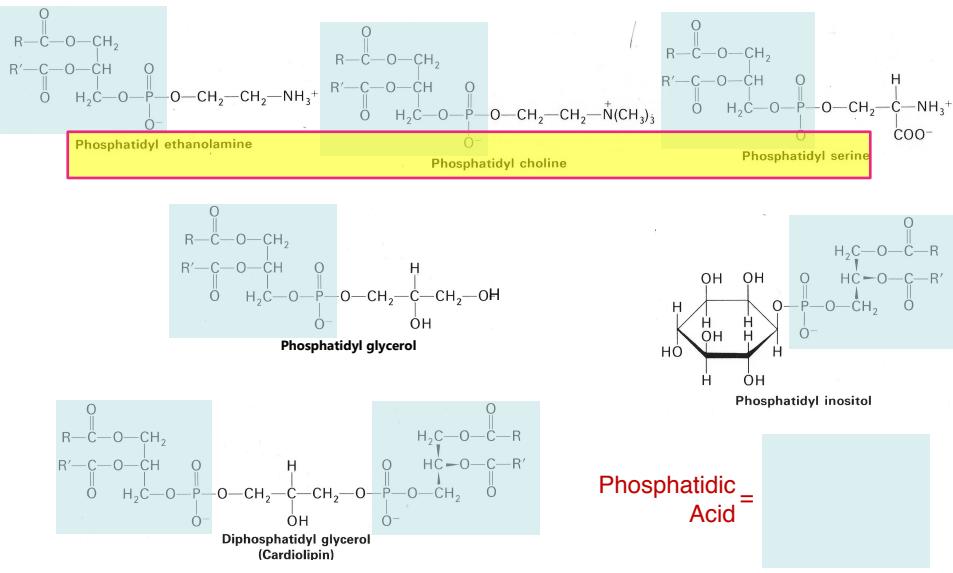


- Primary constituents of animal-cell membranes
- The phosphate group is negatively charged at physiological pH.
- Two fatty acids form ester linkages with the first and second hydroxyl groups of L-glycerol-3-phosphate.
- Unsaturated fatty acids are commonly found connected to C2 of glycerol-3-phosphate.
- The highly polar phosphate group may be further esterified by an alcohol; such substituent groups are called the head groups (another phospho-diester linkage).



What are these “head groups?”

Lipids: Membrane Lipids

Depictions of Glycerophospholipids



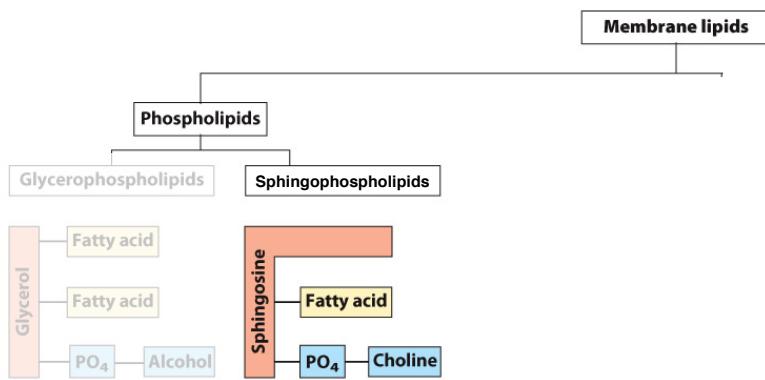
1-Stearoyl-2-linoleoyl-3-phosphatidyl-choline

Lipids: Membrane Lipids

Examples of Glycerophospholipids

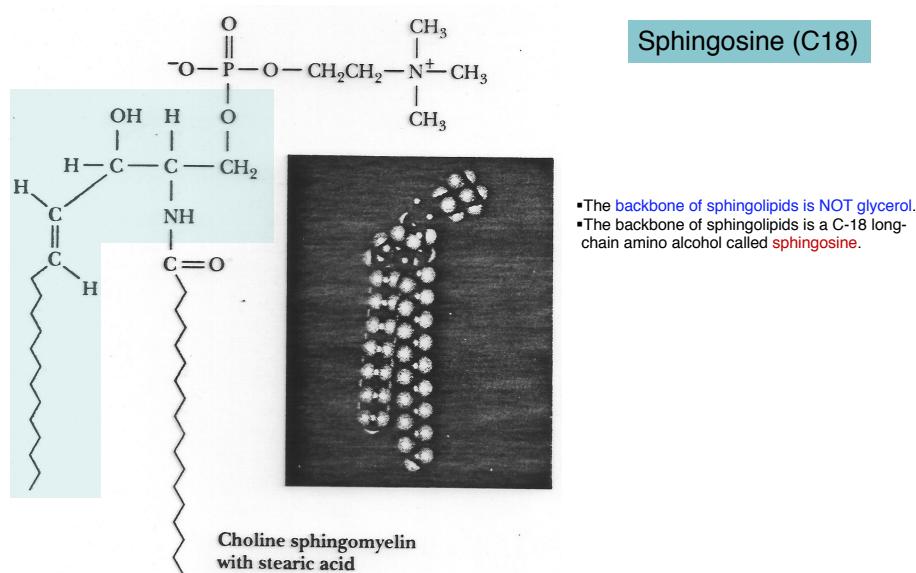
Phosphatidic Acid =

Lipids: Membrane Lipids

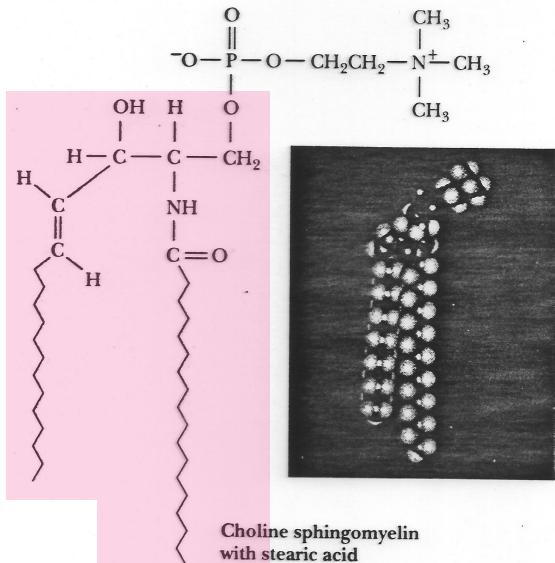

Examples of Glycerophospholipids

Name of glycerophospholipid	Name of X—O	Formula of X	Net charge (at pH 7)
Phosphatidic acid (PA)	—	PA	-2
Phosphatidylethanolamine	Ethanolamine	PA—	0
Phosphatidylcholine	Choline	PA—	0
Phosphatidylserine	Serine	PA—	-1
Phosphatidylglycerol	Glycerol	PA—	-1
Phosphatidylinositol 4,5-bisphosphate	myo-Inositol 4,5-bisphosphate	PA—	-4*
Cardiolipin	Phosphatidyl-glycerol	PA—	-2

Figure 10-8


Lipids: Membrane Lipids

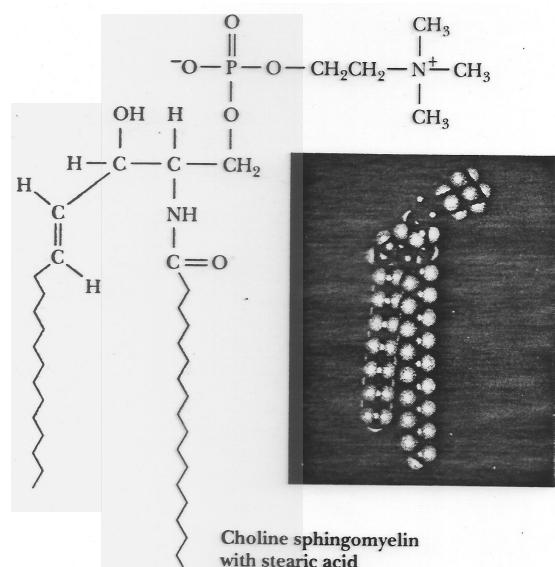
Sphingophospholipids


Lipids: Membrane Lipids

Examples of Sphingophospholipids

Lipids: Membrane Lipids

Examples of Sphingophospholipids


Sphingosine (C18)

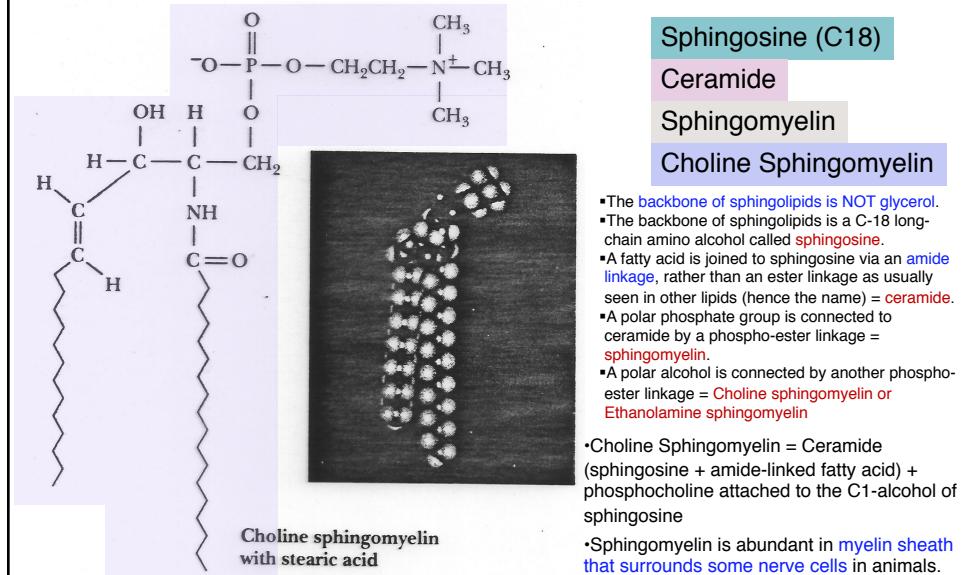
Ceramide

- The backbone of sphingolipids is NOT glycerol.
- The backbone of sphingolipids is a C-18 long-chain amino alcohol called sphingosine.
- A fatty acid is joined to sphingosine via an amide linkage, rather than an ester linkage as usually seen in other lipids (hence the name) = ceramide.

Lipids: Membrane Lipids

Examples of Sphingophospholipids

Sphingosine (C18)


Ceramide

Sphingomyelin

- The backbone of sphingolipids is NOT glycerol.
- The backbone of sphingolipids is a C-18 long-chain amino alcohol called **sphingosine**.
- A fatty acid is joined to sphingosine via an **amide linkage**, rather than an ester linkage as usually seen in other lipids (hence the name) = **ceramide**.
- A polar phosphate group is connected to ceramide by a phospho-ester linkage = **sphingomyelin**.

Lipids: Membrane Lipids

Examples of Sphingophospholipids

Lipids: Membrane Lipids

Sphingomyelin is Structurally Similar to Phosphatidylcholine

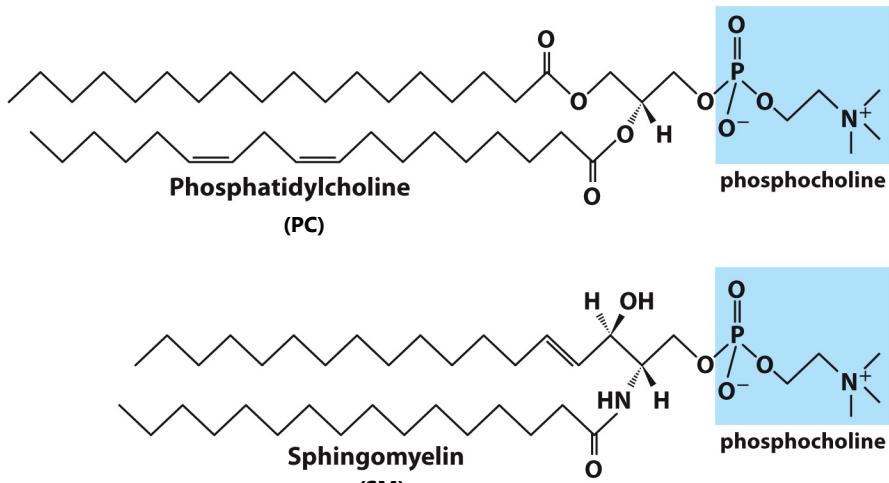
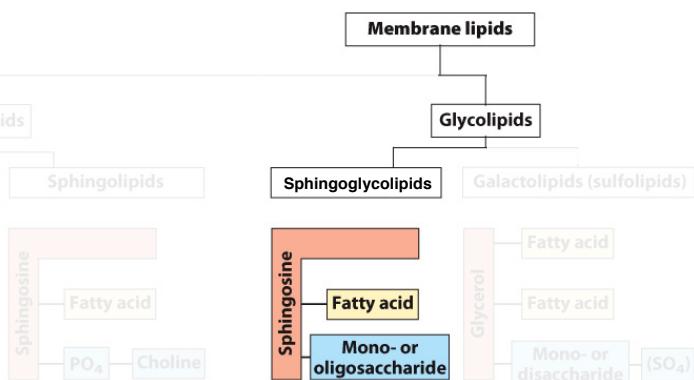
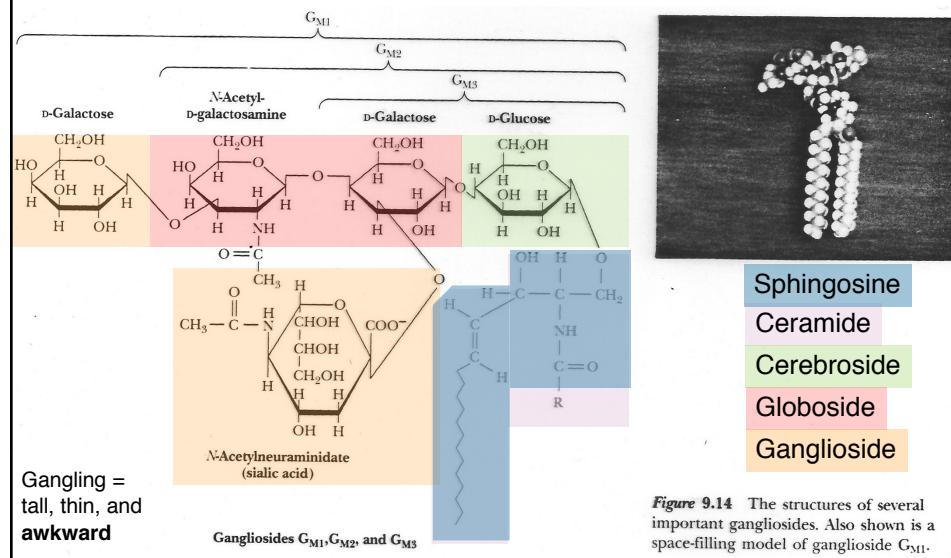
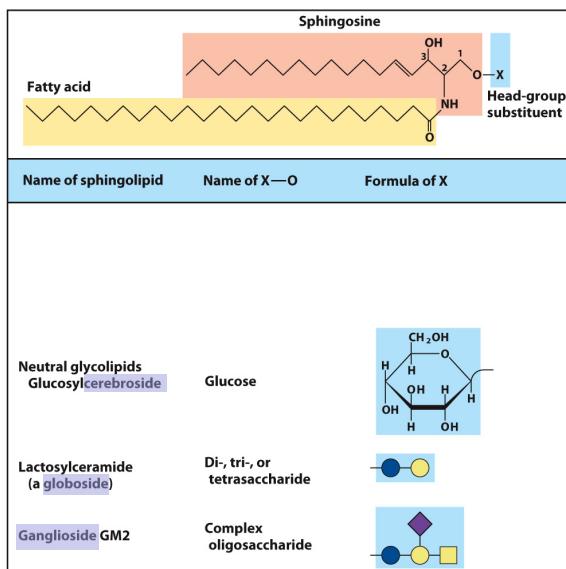



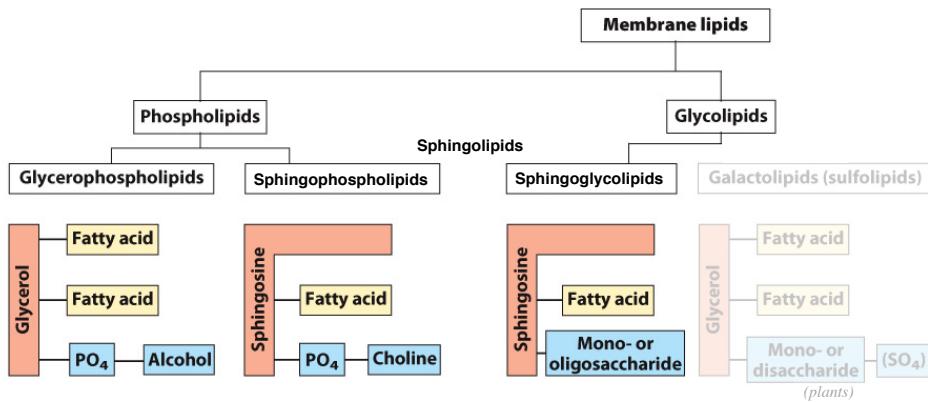
Figure 10-13
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W.H. Freeman and Company


Lipids: Membrane Lipids

Sphingoglycolipids


Lipids: Membrane Lipids

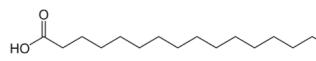
Sphingoglycolipids


Lipids: Membrane Lipids

Sphingoglycolipids

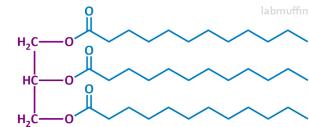
Lipids: Membrane Lipids

Classification of Membrane Lipids

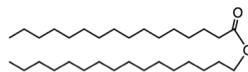

Lipids: Classes

Biological molecules that are characterized by low solubility in water, that is, are relatively hydrophobic.

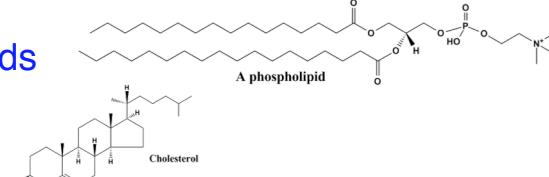
Classes of Lipids


They have a high hydrocarbon content

1. Fatty acids

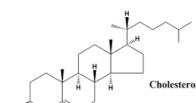

labmuffin

2. Fats (triglycerides)



Structure of a fat

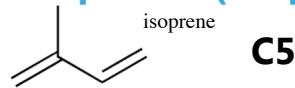
3. Waxes



4. Membrane Lipids

A phospholipid

5. Isoprenes



Cholesterol

Lipids: Membrane Lipids

Cholesterol & Terpenes (Isoprenes)

2 x isoprene = terpene

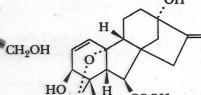
MONOTERPENES

Limonene

Citronellal

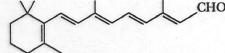
Menthol

SESQUITERPENES

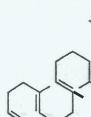


Bisabolene

DITERPENES

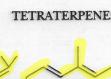

Phytol

Gibberellic acid



Eudesmol

All-trans-retinal

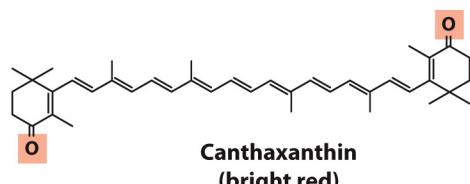

TRITERPENES

Squalene

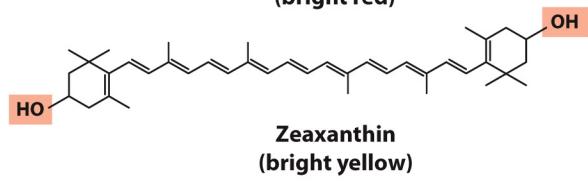
Lanosterol

All-trans-retinal

TETRATERPENES



Lycopene

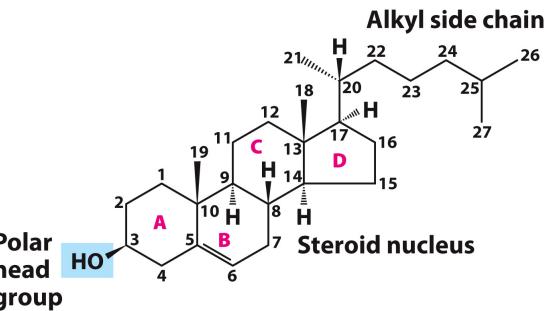
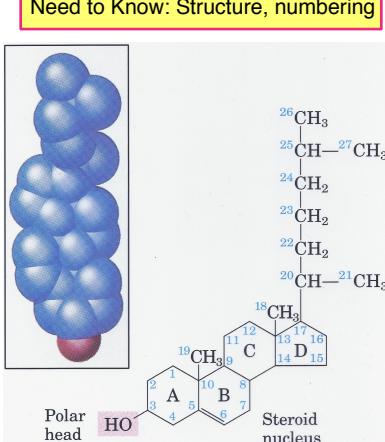

Lipids: Membrane Lipids

Cholesterol & Terpenes (Isoprenes)

Lipids Can Provide Pigment

Dr. Dan Sudia/Science Source

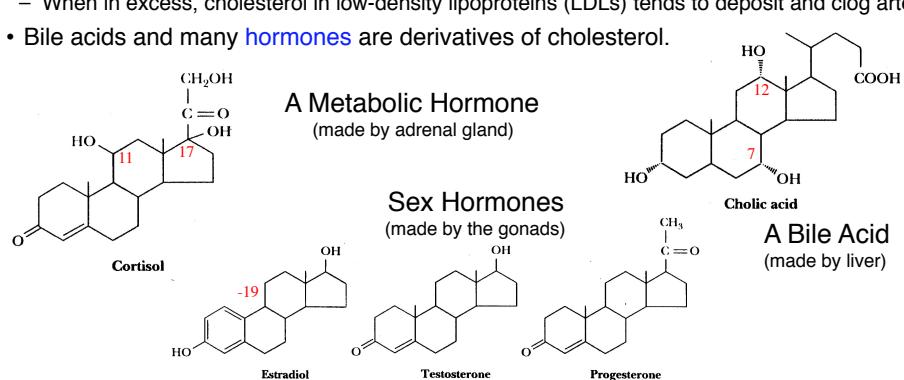
Richard Day/VIREO



Figure 10-23

Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Lipids: Membrane Lipids

Cholesterol & Terpenes (Isoprenes)


- Cholesterol
 - Tri-terpene
 - steroid nucleus: four fused rings (lanosterol)
 - hydroxyl group (polar head) in the A-ring
 - various nonpolar side chains
- The tetracycle structure of Cholesterol is almost planar.

Lipids: Membrane Lipids

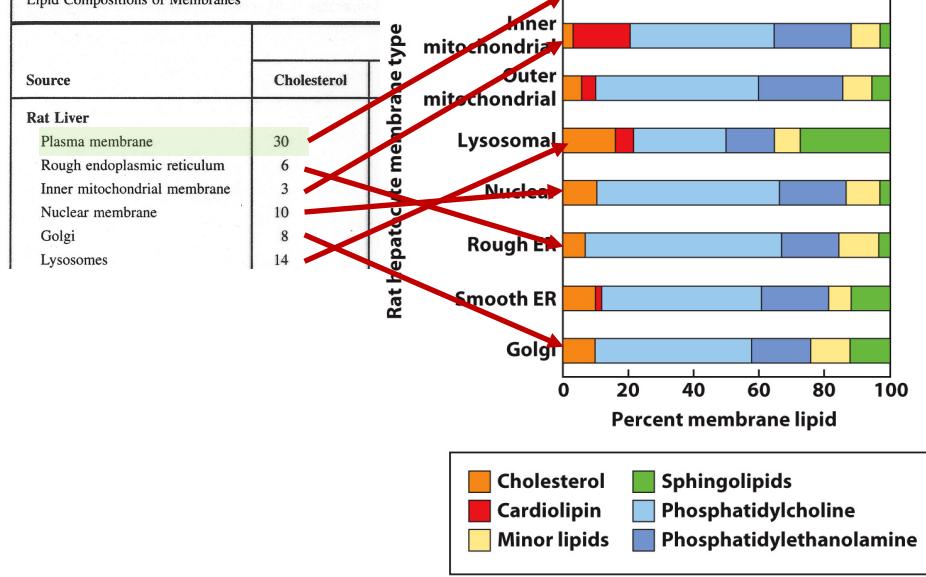
Cholesterol & Terpenes (Isoprenes)

- Cholesterol and related sterols are present in the membranes of most eukaryotic cells.
 - modulate fluidity and permeability
 - thicken the plasma membrane
 - no sterols in most bacteria
- Mammals obtain cholesterol from **food** or **synthesize** it *de novo* in the liver.
- Cholesterol, bound to proteins, is transported to tissues via blood vessels.
 - When in excess, cholesterol in low-density lipoproteins (LDLs) tends to deposit and clog arteries
- Bile acids and many **hormones** are derivatives of cholesterol.

Lipids: Membrane Lipids

Table 19.4
Lipid Compositions of Membranes

Source	Lipid Composition ^a (% of total lipids)								
	Cholesterol	PC	SM	PE	PI	PS	PG	DPG	Glycolipids
Rat Liver									
Plasma membrane	30	18	14	11	4	9	—	—	—
Rough endoplasmic reticulum	6	55	3	16	8	3	—	—	—
Inner mitochondrial membrane	3	45	3	25	6	1	2	18	—
Nuclear membrane	10	55	3	20	7	3	—	—	—
Golgi	8	40	10	15	6	4	—	—	—
Lysosomes	14	25	24	13	7	—	—	5	—
Rat Brain Myelin	22	11	6	14	—	7	—	—	21
Rat Erythrocyte	24	31	9	15	2	7	—	—	3
<i>E. coli</i> Plasma Membrane	0	0	—	80	—	—	15	5	—


^aPC = phosphatidylcholine; SM = sphingomyelin; PE = phosphatidylethanolamine; PI = phosphatidylinositol; PS = phosphatidylserine; PG = phosphatidylglycerol; DPG = diphosphatidylglycerol (cardiolipin).

Source: Adapted from M. K. Jain and R. C. Wagner. *Introduction to Biological Membranes*, John Wiley & Sons, New York, 1980.

*This is the mung bean and the PM contains a large fraction of phosphatidic acid (21%). From Yoshida *et al.* (1986) *Plant Physiol* 82:807

Lipids: Membrane Lipids

Table 19.4
Lipid Compositions of Membranes

Lipids: Membranes

Introduction

The 4 S's

Size
Solubility
Shape
Stability

Models for Membrane structure

Old Model
Data
Fluid Mosaic Model
Testing the model

The Red-Blood Cell Membrane

Membrane Asymmetry

Lipids
transverse
lateral
Protein
anchoring
glycoproteins

Membrane Fluidity

Lipids: Membranes

- All cells have a cell membrane, which separates the cell from its surrounding.
- Eukaryotic cells have various internal membranes that divide the internal space into compartments (i.e., organelles).
- Membranes are complex lipid-based structures that form stable, dynamic, pliable “sheets”/barriers
- Membranes are composed of a variety of lipids and proteins

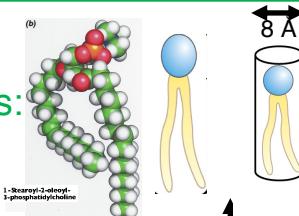
Lipids: Membrane Proteins

TABLE 11-1 Major Components of Plasma Membranes in Various Organisms

	Components (% by weight)				
	Protein	Phospholipid	Sterol	Sterol type	Other lipids
Human myelin sheath	30	30	19	Cholesterol	Galactolipids, plasmalogens
Mouse liver	45	27	25	Cholesterol	—
Maize leaf	47	26	7	Sitosterol	Galactolipids
Yeast	52	7	4	Ergosterol	Triacylglycerols, steryl esters
Paramecium (ciliated protist)	56	40	4	Stigmasterol	—
<i>E. coli</i>	75	25	0	—	—

Note: Values do not add up to 100% in every case because there are components other than protein, phospholipids, and sterol; plants, for example, have high glycolipid content.

Membrane Composition Is
Highly Variable in Different Organisms...
and different organelles

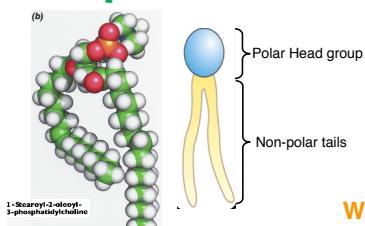

Lipids: Membranes

The 4 S's
Size
Shape
Solubility
Stability

Lipids: Membranes

Size

Phospholipids:



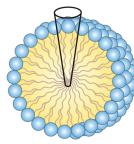
Individual units are cylindrical (cross section of head equals that of side chain).

Membranes:

40-60 Å

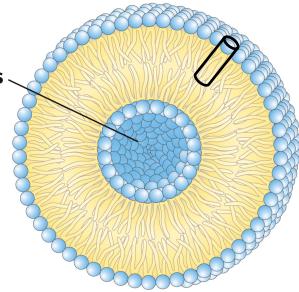
Shape

It has a "trilaminar" structure as seen in the EM


What are the consequences of this shape?

Lipids: Membranes

Shape


Individual units are wedge-shaped (cross section of head greater than that of side chain).

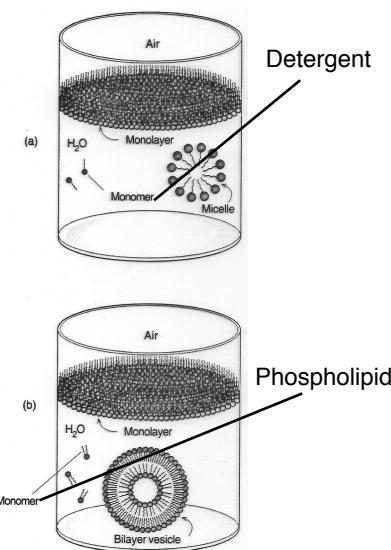
Micelle

Aqueous cavity

Vesicle

- Two major structures are observed:
 - Bilayers/vesicles
 - micelles
- Structures formed depend on:
 - type of lipid
 - Concentration
- Both form spontaneously in aqueous solution and are stabilized by noncovalent forces, especially hydrophobic effect due to **amphipathic** molecules: large polar head & tail
 - Examples that form micelles: fatty acids, sodium dodecyl sulfate
 - Examples that form bilayers: phospholipids, glycolipids
- Micelles are composed of a few dozen to a few thousand lipid molecules.

What is this concentration dependence?

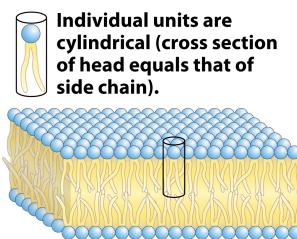

Lipids: Membranes

The 4 S's

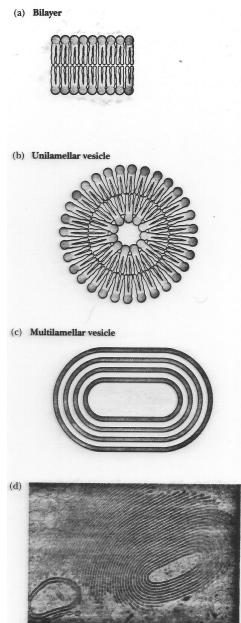
Size Shape Solubility Stability

Lipids: Membranes

Solubility


The diagram shows two cylindrical containers representing water. In container (a), labeled 'Detergent', a single 'Monomer' molecule is shown at the air-water interface, labeled 'Monolayer'. A line labeled 'Detergent' points to this monolayer. In container (b), labeled 'Phospholipid', a 'Monomer' molecule is shown at the air-water interface, labeled 'Monolayer'. A line labeled 'Phospholipid' points to this monolayer. Below the monolayer in both containers, a cluster of molecules is labeled 'Micelle' in (a) and 'Bilayer vesicle' in (b).

- The first molecules, at low concentration, go to the air/liquid interface and form a monolayer.
- Once that is crowded, they “dissolve” in the water
- Once the concentration is sufficient to form aggregates, micelles or vesicles form.
- Depending on the lipid, this concentration is called the “Critical Micellar Concentration” (CMC).


Lipids: Membranes

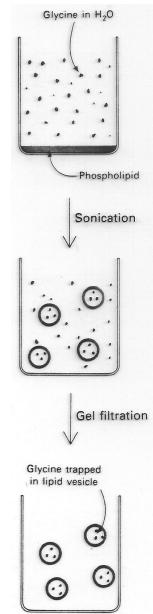
Solubility: Membrane Bilayer

- Consists of **two leaflets** (e.g., layers) of **lipid monolayers**

Bilayer

- Forms when lipids with polar head groups and more than one lipid tail are in aqueous solution
 - **phospholipids**
 - **sphingoglycolipids**
- Hydrophilic head groups interact with water on both sides of the bilayer.
- Hydrophobic fatty acid tails are packed inside.

Vesicle (Liposome)
Originally called Bangosomes
after Sir Alex Bangham


Lipids: Membranes

The 4 S's
Size
Shape
Solubility
Stability

Lipids: Membranes

Stability

- Synthetic vesicle membranes can be made *in vitro* and can contain artificially inserted proteins.
- The central aqueous cavity can enclose dissolved molecules.
- They are useful artificial carriers of molecules (e.g., drugs).
- Vesicles fuse readily with cell membranes or with each other.
- Permeable to hydrophobic molecules (lipids, e.g., steroids) and water, but not permeable to large polar solutes and ions
- Dynamic and flexible structures

